测量误差分析与数据处理(1)
测量误差分析和实验数据处理

《力学实验原理与技术》复习提纲(参考)第二章测量误差分析和实验数据处理本章內容:1.测量误差基本概念2.随机误差3.系统误差4.间接误差5.测量结果的表示和不确定度6.实验数据处理2.1 测量误差基本概念1. 测量——比较∙测量的方式:(1)直接测量:米尺量桌子可直接知道桌子长度。
(2)间接测量:由直接测量的数据,通过一定的函数关系,计算求得结果的测量方法∙静态测量与动态测量:按照被测量在测量过程中的状态是否随时间变化判断静态/动态,常规、稳态/过程、瞬态2. 误差——测量的质量∙真值:在一定时空条件下,某物理量的理想值,表达为A。
真值仅为理想概念。
真值可以用修正过的测量值的算术平均值代替。
∙误差的表达方法:绝对误差: 测量值与被测量物理量的真值的差示值相对误差: 绝对误差与真值的百分比测量值相对误差:绝对误差与测量值x的百分比[例1] 仪表的精度用额定相对误差(满度误差)表示。
额定相对误差:绝对误差与仪器满度值A0的百分比。
A0——表盘上的最大值(满度值)。
仪器工作在满度值2/3以上区域。
思考题2:用万用表测电池电压1.5V,选2V档?200V档?允许误差更小?3. 误差分类∙系统误差——多次测量同一被测量量过程中,误差的数值在一定条件下保持恒定或以可预知方式变化的测量误差的分量。
来源于测量仪器本身精度、操作流程、操作方式、环境条件。
∙随机误差——多次测量同一被测量量过程中,绝对值和符号以不可预知方式变化着的测量误差的分量。
具有随机变量特点,一定条件下服从统计规率的误差。
来源于测量中的随机因素:实验装置操作上的变动性、观测者本人的判断和估计读数上的变动性等。
2.2 随机误差1.随机误差的特点随机变量——依赖随机因素,以一定概率取值的变量,如:交通事故随机误差——随机变量的一种具体形式,2. 随机误差的正态分布(1)随机误差分布特点:等精度条件下,对一物理现象测量N 次,得x1……xN 个值(i=1, N )。
测量误差分析与数据处理(1)

2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 1 、实际相对误差——绝对误差与实际值之比。
A
x A
100%
x
A 100% A
– 只具有大小、正负,但无量纲
– 接上例可得:
A1
1 100
100%
1%;
A2
1 5
100%
20%
– 相对误差可以表征测量的准确程度。
x x A0
• 重点:
– 误差的表示和分类 – 三种误差的特征及其处理方法 – 数据的处理 – 误差的合成
• 难点:
– 三种误差的特征及其处理方法
2.1 测量误差的基本原理
• 2.1.1 误差的定义 • 2.1.2 测量误差的表示方法 • 2.1.3 电子测量仪器误差的表示方法 • 2.1.4 一次直接测量时最大误差的估计
例1:
• 一个被测电压,真值U0=100V,用一只电压 表测量,指示值U为101V,则绝对误差:
U U U0 101100 1V
• 表明: 测得值比真值大1V,为正误差。
2.1.2 测量误差的表示方法(续)
• 2 、修正值(校正值)
C x A x
– 给出:通过校准由上一级标准以表格或曲线的形 式给出受检仪器的修正值。
– 等级度越低,仪器越准确。0.1、0.2是精密仪器 。
2.1.3 电子测量仪器的表示方法(续)
• (2)附加误差
– 是指仪器在超过规定的正常条件下所增加的误差, 与影响误差相似。例如:环境温度、电源电压等
– 例:MF-20型晶体管万用表。
• 基本误差: – 直流电压、电流为±2.5%
• 附加误差:
– 根据误差的性质,测量误差可分为系统误差、 随机误差、疏失(粗大)误差三类。
误差分析和数据处理讲解

误差和分析数据处理1 数据的准确度和精度在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测定结果总不会是完全一样。
这说明在测定中有误差。
为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。
1.1 真实值、平均值与中位数(一)真实值真值是指某物理量客观存在的确定值。
通常一个物理量的真值是不知道的,是我们努力要求测到的。
严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。
科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。
故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。
(二)平均值然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值。
一般我们称这一最佳值为平均值。
常用的平均值有下列几种:(1)算术平均值这种平均值最常用。
凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。
n x n x x x x ni in ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察的次数。
(2)均方根平均值n x n x x x x n i in∑=++==1222221 均(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。
∑∑=++++++===n i i n i ii n n n w x w w w w x w x w x w w 11212211式中;n x x x 21、——各次观测值;n w w w 21、——各测量值的对应权重。
物理实验中的测量数据处理与误差分析

物理实验中的测量数据处理与误差分析在进行物理实验时,测量数据的处理和误差分析起着至关重要的作用。
正确的数据处理可以帮助我们获得准确的实验结果,而误差分析则能帮助我们评估测量结果的可靠性和精确度。
本文将介绍物理实验中常用的测量数据处理方法和误差分析技巧。
一、测量数据处理方法1. 平均值的计算在物理实验中,重复测量同一物理量可以帮助我们减小随机误差的影响。
求得多次测量结果的平均值可以减小个别测量数据的偶然误差,得到更加可靠的实验结果。
计算平均值的方法为将多次测量结果相加后除以总次数。
例如,我们对某物体的长度进行了5次测量,分别得到测量结果为10.2cm、10.0cm、10.1cm、9.9cm、10.3cm,那么这5次测量结果的平均值为:(10.2 + 10.0 + 10.1 + 9.9 + 10.3)/ 5 = 10.1cm2. 不确定度的计算在测量过程中,我们无法完全排除系统误差和随机误差的影响,因此需要通过计算不确定度来反映测量结果的精确度。
常见的不确定度计算方法有标准偏差法和最小二乘法。
标准偏差法是通过计算多次测量数据与其平均值之差的平方根来得到不确定度。
公式为:s = √[(Σ(xi- x)²) / (n-1)]其中,s代表标准偏差,xi代表第i次测量结果,x代表平均值,n代表测量次数。
最小二乘法则适用于实验数据存在线性关系的情况。
通过拟合直线,可以得到与测量数据最接近的直线方程,并据此计算不确定度。
最小二乘法的详细公式和方法超出本文范围,可在相关物理教材或专业书籍中深入学习。
3. 数据的图表展示将实验数据以图表形式展示可以更加直观地观察数据的分布和规律。
常见的图表有折线图、散点图和柱状图等。
选择合适的图表形式能够更好地表达测量结果和实验过程中的变化趋势。
二、误差分析技巧1. 系统误差的评估与修正系统误差是由于实验设备、环境和实验操作等因素引起的,会对测量结果产生恒定的偏差。
评估系统误差的方法常用的有零点校正和仪器校准等。
测量误差与数据处理实验报告

测量误差与数据处理实验报告实验报告格式:
标题:测量误差与数据处理实验报告
摘要:本实验旨在探究测量误差的来源及其处理方法,通过自己设计的实验进行数据采集与处理,最后得出结论并分析误差的影响。
实验结果表明,合理控制误差和精准处理数据非常重要。
1. 实验目的:
通过自己设计的实验了解测量误差的来源和处理方法,掌握精度等基本概念。
2. 实验步骤:
(1) 设计实验:以电容为例,设计了“通过变化距离来测量电容的实验”。
(2) 组装仪器:根据实验设计,组装了测量电容的仪器。
(3) 测量数据:对实验进行了多次测量,得到了电容的测量值。
(4) 数据处理:使用 Excel 等工具处理数据,计算出各项指标和
误差范围,并进行精度等级划分。
3. 实验结果:
(1) 根据数据处理结果,得到平均电容值为3.5μF,标准差为
0.2μF。
(2) 通过进行误差分析,可知测量误差来源主要包括仪器本身
误差、环境因素干扰和人为误差等多方面因素。
(3) 在误差控制和数据处理方面可采用实验平均法、精度等级
标准等方法。
4. 实验结论:
通过本实验的设计和数据处理,在实验中了解了测量误差的来源和处理方法,识别出了各方面因素影响到精度结果的准确性。
同时也提醒了我们在进行实验操作时需严格控制误差,避免产生干扰和误差现象,最终希望以此为基础,提高本人的实验操作、数据分析和综合思考能力。
第02讲 误差与分析数据的处理1

1.66 1.63 1.54 1.66 1.64 1.64 1.64 1.62 1.62 1.65
1.60 1.63 1.62 1.61 1.65 1.61 1.64 1.63 1.54 1.61 1.60 1.64 1.65 1.59 1.58 1.59 1.60 1.67 1.68 1.69 数据以1.62为中心,按上述规律分布。 小于1.62的数据39个,大于1.62的数据有44个,等于1.62的数据 有7个。
三、过失误差
杜绝过失误差
在分析测定过程中因操作者的失误而引起的分析误差,称为 过失误差。 例如: 损失试样;
加错试剂;
记录或计算错误等。 存在过失误差的数据,无论好坏,均无任何分析价值,应舍弃。
课堂练习
下列情况各引起什么误差?如何消除? 1.砝码腐蚀。 仪器误差,校正或更换新砝码。 2.称量时试样吸收了空气中的水分。 试剂误差。对照试验。 3.称量过程中,天平的零点稍有变动。 随机误差。增加平行测定次数。 4.读取滴定管读数时,最后一位估测不准。 随机误差。增加平行测定次数。 5.以含≈98%的金属锌作为基准物质,标定EDTA的浓度。 试剂误差。提纯或更换试剂。 6.试剂中含有微量被测组分。 试剂误差。更换试剂或做空白试验。
滴定分析的量器或仪表的刻度不准而又未校正。
(三)试剂误差 提纯试剂或对照试验 由于试剂不纯或使用的溶剂中含有微量杂质所引起分析误差, 称为试剂误差。
(四)操作误差
空白试验和对照试验
在正常操作情况下,由于分析工作者掌握的操作规程与正确 的控制条件稍有出入而引起的测量误差,称为操作误差。 例如: 使用缺乏代表性的试样; 试样分解不完全;
个可变的偏差。自由度也可以理解为:数据中可供对比的数目。
测量数据的误差分析与处理方法

测量数据的误差分析与处理方法引言测量是科学研究和工程实践中不可或缺的一环。
无论是实验研究、生产制造还是日常生活中,我们都需要进行测量来获得准确的数据。
然而,由于各种因素的干扰,测量过程中往往伴随着一定的误差。
本文将分析测量数据的误差来源和常见的处理方法,旨在提高数据的精确性和可靠性。
一、误差的来源误差可以来源于多个方面,如仪器的精度、操作者的技术水平、环境的影响等。
下面我们将重点讨论一些常见的误差来源。
1. 仪器误差仪器的精度是影响测量结果准确性的主要因素之一。
仪器误差包括系统误差和随机误差。
系统误差是由于仪器固有的缺陷或校准不准确导致的,它会引起测量结果整体偏离真实值的情况。
随机误差则是由于测量仪器的不稳定性或环境噪声等原因造成的,它在多次重复测量中会呈现出随机分布的特点。
2. 操作者误差操作者的技术水平和经验也会对测量结果产生重要影响。
不同的操作者在测量过程中可能存在不同的观察角度、力度或反应速度等差异,从而导致数据的不一致性。
而且,由于人的视觉、听觉以及手部协调能力等方面的局限性,操作者误差是很难完全避免的。
3. 环境误差环境因素对测量数据的准确性也有明显影响。
例如,温度、湿度、气压等环境因素都会导致仪器传感器的性能发生变化,从而引起误差。
此外,电磁辐射、电源干扰等外部因素也可能对测量结果产生干扰。
二、误差分析方法误差分析是对测量数据中的误差进行评估和处理的过程。
以下是一些常见的误差分析方法。
1. 极差和标准差极差是一种简单直观的误差评估方法,它可以反映测量数据的离散程度。
通过计算最大值与最小值之间的差异,我们可以初步了解数据的分布情况。
而标准差则是一种更精确的误差评估方法,它衡量了数据离散程度的平均度量。
通过计算每个数据点与平均值之间的差异,并取平方后求和再开根号,我们可以得到数据的标准差。
2. 加权平均当不同测量结果的权重不同时,加权平均可以更精确地计算出最终的测量结果。
通过乘以每个测量值的权重并求和,再除以权重之和,我们可以得到加权平均值。
误差和数据处理-1

有效数字不仅表示数值大小,也反映测量仪器的精度。 记录的有效数字必须与所用的分析方法和使用仪器的准确 度相适应。 例如: 分析天平称准0.5g记为:0.5000g 台秤称取0.5g记为: 0.50g 量筒量取20ml溶液记为: 20ml 滴定管放出20ml溶液记为:20.00ml
有效数字的位数:
例如:将下列值修约为四位有效数字
0.24684 → 0.57218 → 101.25 → 101.15 → 7.06253 → 0.2468 0.5722 101.2 101.2 7.063 0.57 0.5749 ×
禁止分次修约
0.575
0.58
有效数字的运算规则
1、加减法 以各数中小数点后位数最少者为准
按有效数字计算下列结果:
213.64 + 4.4 + 0.3244 = 218.4
0.0982 × (20.00 − 14.39) × 162.206 / 3 × 100 = 2.10 1.4182 × 1000
pH=12.20溶液的[H+]
− lg[H + ] = 12.20 [H + ] = 6.3 × 10−13
n −1
2
=
2
∑d
2 i
测定次数 n < 20时 无限次测量时
n −1
σ=
∑ ( xi − μ )
n
相对标准偏差—变异系数(CV)
s CV % = ×100% x
绝对误差: 测定值与真值之间的差值 绝对误差=测定值-真实值 相对误差: 绝对误差占真值的百分比 相对误差=[(测定值-真实值)/真实值]×100% 误差有正、负。 测定值大于真值,误差为正;测定值小于真值,误差为负 误差越小,准确度越高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A xC
– 实施:测量仪器定期送计量部门检定,获得修正 值,减少误差 。
2.1.2 测量误差的表示方法(续)
• 例2:
– 一台晶体管毫伏表的10mV档,用其测量时,示值 为8mV,检定时8mV处的修正值是-0.03mV,则 实际值是:
U x C 8 (0.03) 7.97mV
第2章 测量误差分析与数据处理
第2章 测量误差分析与数据处理
• 2.1 测量误差的基本原理 • 2.2 测量误差的分类 • 2.3 随机误差的统计特性及其估算方法 • 2.4 系统误差的特征及其减小的方法 • 2.5 疏失误差及其判断准则 • 2.6 测量数据的处理 • 2.7 误差的合成与分配
第2章 测量误差分析与数据处理
• 例4:测一放大器,已知 Ui=1.2mV,Uo=6000mV。
设Ui的误差忽略不计,而Uo的测量误差为±3% , 求放大倍数的绝对误差、相对误差及分贝误差。
– 放大倍数: A Uo 6000 5000 U I 1.2
– 绝对误差:
Gx 20 lg A 20 lg 5000 74dB
A Uo uU 3% 6000 150
2.1.3 电子测量仪器的表示方法(续)
• (4)稳定误差 – 稳定误差是仪器的标称值在其他影响量 和影响特性保持恒定的情况下,于规定 时间内产生的误差极限。 – 给出形式有两种:
• 以相对误差形式给出 • 注明最长连续工作时间
2.1.3 电子测量仪器的表示方法(续)
• 例:DS-33型交流数字电压表的误差标注:
• 二、相对误差
• 3 、分贝误差——用对数形式表示的误差。 dB 20 lg(1 A ) 20 lg(1 x )
– 具有大小、正负,及dB的单位 – A表实际相对误差, x 表示值相对误差 – 常用于表示增益或声强等传输函数的值 – 注意:若是功率增益,用10代替20
2.1.2 测量误差的表示方法(续)
– 工作误差(50Hz~1MHz, 10mV~1V) (±1.5%Ux± 0.5%Um)
– 固有误差(1KHz, 1V) (±0.4%Ux±1个字)
– 影响误差 温度影响误差(1KHz, 1V) :10-4/℃ 频率影响误差( 50Hz~1MHz ) : (±0.5%Ux± 0.1%Um )
– 稳定误差(-10 ~ +40℃,湿度≤80%,
2.1.1 误差的定义
• 测量误差—测量结果与实际值(真值)之差。包
括:
– 仪器不准确 – 方法不完善 – 环境不合要求 – 测量者的技术水平和责任心
• 认识
– 测量误差是不可避免的; – 寻找误差的来源,尽可能防止误差和减小误差; – 测量结果进行正确的处理,使测量结果接近被测量对象
的实际情况。
2.1.2 测量误差的表示方法
• 一、绝对误差
• 1 、定义——测量值与真值(实际值)之差。
x x A0
– 具有大小、正负和量纲 – 表示测得值偏离真值(实际值)程度和方向 – A0一般用实际值A代替, A的获取:
• 由高一级或数级的仪器测量得到 • 多次测量求平均值得到
2.1.2 测量误差的表示方法(续)
量的准确度相同吗?
2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 1 、实际相对误差——绝对误差与实际值之比。
A
x A
100%
x
A 100% A
– 只具有大小、正负,但无量纲
– 接上例可得:
A1
1 100
100%
1%;
A2
1 5
100%
20%
– 相对误差可以表征测量的准确程度。
x x A0
例1:
• 一个被测电压,真值U0=100V,用一只电压 表测量,指示值U为101V,则绝对误差:
U U U0 101100 1V
• 表明: 测得值比真值大1V,为正误差。
2.1.2 测量误差的表示方法(续)
• 2 、修正值(校正值)
C x A x
– 给出:通过校准由上一级标准以表格或曲线的形 式给出受检仪器的修正值。
– 工作误差是在额定工作条件下仪器的误差极限 – 优点:可直接估计误差的最大范围 – 缺点:用工作误差估计测量结果误差偏大 • (2)固有误差 – 固有误差在规定的基准条件下给出的误差 – 作用:反映仪器固有性能,便于同类仪器的比较和
校准
2.1.3 电子测量仪器的表示方法(续)
• (3)影响误差 – 影响误差是用来表明一个影响量对仪器测量误 差的影响。例如温度误差、频率误差。 – 它是当一个影响量在其额定使用范围内取任一 值,而其它影响量和影响特性均处于基准条件 下测得的误差。 – 只有当某一影响量在工作误差中起重要作用时 才给出,是一种误差极限。
• 重点:
– 误差的表示和分类 – 三种误差的特征及其处理方法 – 数据的处理 – 误差的合成
• 难点:
– 三种误差的特征及其处理方法
2.1 测量误差的基本原理
• 2.1.1 误差的定义 • 2.1.2 测量误差的表示方法 • 2.1.3 电子测量仪器误差的表示方法 • 2.1.4 一次直接测量时最大误差的估计
UI
UI
1.2
– 相对误差: – 分贝误差: – 测量结果:
x
A A
150 100% 5000
3%
dB 20 lg(1 x ) 20 lg(1 3%) 0.26dB
Gx 74 0.26(dB)
2.1.3 电子测量仪器的表示方法
一、我国部颁标准规定用以下误差表征其性能: • (1)工作误差
– 修正值可减少误差,但要注意: • 修正值本身也有误差 • 修正值具有有效期
2.1.2 测量误差的表示方法(续)
• 例3:
– 测两个电压,其实际值分为U1=100V , U2=5V;而测得值分别为101V和6V,则绝对误 差分别是: U1 101100 1V
U2 6 5 1V
绝对误差相同,但他们测 不同
2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 2 、示值相对误差——绝对误差与测得值之比。
有误差,适用于近似测量,只适用于误差
较小及要求不太严格的场合,多用于工程测量
– x 是由仪器的准确度等级定出的,一般表示
仪器在测量范围内最大的绝对误差。
2.1.2 测量误差的表示方法(续)