第2章测量误差及数据处理

合集下载

第二章 误差及分析数据的统计处理

第二章 误差及分析数据的统计处理

第二章误差及分析数据的统计处理§2-1 定量分析中的误差定量分析的任务是准确测定试样中组分的含量。

但是,即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。

这说明客观上存在着难以避免的误差。

因此,我们在进行定量测量时,不仅要得到被测组分的含量,而且还应对分析结果作出评价,判断其准确性(可靠程度),找出产生误差的原因,并采取有效的措施,减少误差。

一、误差的表示:从理论上说,样品中某一组分的含量必有一个客观存在的真实数据,称之为“真值”。

测定值(x)与真实值(T)之差称为误差(绝对误差)。

误差 E = X - T误差的大小反映了测定值与真实值之间的符合程度,也即测定结果的准确度。

测定值> 真实值误差为正测定值< 真实值误差为负分析结果的准确度也常用相对误差表示。

相对误差E r = E / T×100%= (X-T) / T×100%用相对误差表示测定结果的准确度更为确切。

二、误差的分类根据误差的性质与产生原因,可将误差分为:系统误差、随机误差和过失误差三类。

(一)系统误差系统误差也称可定误差、可测误差或恒定误差。

系统误差是由某种固定原因引起的误差。

1、产生的原因(1)方法误差:是由于某一分析方法本身不够完善而造成的。

如滴定分析中所选用的指示剂的变色点与化学计量点不相符;又如分析中干扰离子的影响未消除等,都系统的影响测定结果偏高或偏低。

(2)仪器误差:是由于所用仪器本身不准确而造成的。

如滴定管刻度不准(1ml刻度内只有9个分度值),天平两臂不等长等。

(3)试剂误差:是由于实验时所使用的试剂或蒸馏水不纯造成的。

例如配制标准溶液所用试剂的纯度要求在99.9%;再如:测定水的硬度时,若所用的蒸馏水含Ca2+、Mg2+等离子,将使测定结果系统偏高。

(4)操作误差:是由于操作人员一些主观上的原因而造成的。

比如,某些指示剂的颜色由黄色变到橙色即应停止滴定,而有的人由于视觉原因总是滴到偏红色才停止,从而造成误差。

测量误差分析与数据处理(1)

测量误差分析与数据处理(1)
量的准确度相同吗?
2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 1 、实际相对误差——绝对误差与实际值之比。
A
x A
100%
x
A 100% A
– 只具有大小、正负,但无量纲
– 接上例可得:
A1
1 100
100%
1%;
A2
1 5
100%
20%
– 相对误差可以表征测量的准确程度。
x x A0
• 重点:
– 误差的表示和分类 – 三种误差的特征及其处理方法 – 数据的处理 – 误差的合成
• 难点:
– 三种误差的特征及其处理方法
2.1 测量误差的基本原理
• 2.1.1 误差的定义 • 2.1.2 测量误差的表示方法 • 2.1.3 电子测量仪器误差的表示方法 • 2.1.4 一次直接测量时最大误差的估计
例1:
• 一个被测电压,真值U0=100V,用一只电压 表测量,指示值U为101V,则绝对误差:
U U U0 101100 1V
• 表明: 测得值比真值大1V,为正误差。
2.1.2 测量误差的表示方法(续)
• 2 、修正值(校正值)
C x A x
– 给出:通过校准由上一级标准以表格或曲线的形 式给出受检仪器的修正值。
– 等级度越低,仪器越准确。0.1、0.2是精密仪器 。
2.1.3 电子测量仪器的表示方法(续)
• (2)附加误差
– 是指仪器在超过规定的正常条件下所增加的误差, 与影响误差相似。例如:环境温度、电源电压等
– 例:MF-20型晶体管万用表。
• 基本误差: – 直流电压、电流为±2.5%
• 附加误差:
– 根据误差的性质,测量误差可分为系统误差、 随机误差、疏失(粗大)误差三类。

第2章 测量误差分析与数据处理习题课

第2章 测量误差分析与数据处理习题课

解 按题意,功率测量允许的系统误差为
ΔP= 300 mW×5%=15 mW
20
又ΔP=uΔI+IΔu=ΔP1+ΔP2
根据等作用分配,有
P1

P2

P
2
I P / 2 15 2.5mA
u 23

u P / 2 15 0.075mA 75mV
I 2 100
9 .在测量不确定度的评定前,要对测量数据进行异常数据
判别,一旦发现有异常数据应先剔除之。(对)
4
三、选择题:
1 .若马利科夫判据成立,则说明测量结构中含有d。 ( a )随机误差 (b) 粗大误差 (c) 恒值系差 (d) 累进性变值系差 2 .在使用连续刻度的仪表进行测量时,一般应使被测量的数值尽可能在仪表满刻度值
5 .被测量的真值是客观存在的,然而却是无法获得的。 (对)
6 .系统误差的绝对值和符号在任何测量条件下都保持恒定, 即不随测量条件的改变而改变。(错)
7 .不论随机误差服从何种分布规律,均可用莱特准则判定 粗大误差。(错)
8 . A 类标准不确定度对应随机误差, B 类标准不确定度 对应系统误差。(错)
则此表在 50 μ A 点是合格的。要判断该电流表是否合格,应该在整个量程内取足够多的点进行检定。
7
答案: 8
答案:
P15 讲过
9
4 .对某电感进行了 12 次精度测量,测得的数值( mH )为 20.46 , 20.52 , 20.50 , 20.52 , 20.48 , 20.47 , 20.50 , 20.49 , 20.47 , 20.49 , 20.51 , 20.51 ,若要求在 P=95% 的置信概率下,该电感 真值应在什么置信区间内?

第二章 误差和分析数据处理

第二章 误差和分析数据处理

课堂互动 下面是三位学生练习射击后的射击靶 图,请您用精密度或准确度的概念来评 价这三位学生的射击成绩。
二、系统误差和偶然误差
误差(error):测量值与真实值的差值
根据误差产生的原因及性质,可以将误差分为系统误 差和偶然误差。
1 系统误差 (systematic error) 又称可测误差,由某
§3 有效数字及计算规则
小问题:1与1.0和1.00相等吗? 答:在分析化学中1≠1.0≠1.00 一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字,除最后一 位为可疑数字,其余的数字都是确定的
如:分析天平称量:1.21 23 (g) 滴定管读数:23.20 (ml)
=0.17
S 0.17 RSD 100 % 100 % 1.1% 15.82 X
用标准偏差比用平均偏差更科学更准确。
例: 两组数据
(1) 0.11, -0.73, 0.24, 0.51, -0.14, 0.00, 0.30, -0.21,
n=8 n=8 d1=0.28 d2=0.28 s1>s2 s1=0.38 s2=0.29 (2) 0.18, 0.26, -0.25, -0.37, 0.32, -0.28, 0.31,-0.27
(1)绝对误差 (δ) : δ= x-μ (2) 相对误差(RE): R E= δ / μ× 100%
注:
注1:两种误差都有正、负值之分。
小问题1:
买猪肉1000斤少0.5斤和买1斤少0.5斤哪个误差大?
小问题2: 用分析天平称量两个样品,一个是0.0021克,另一 个是0.5432克,两个测量值的绝对误差都是0.0001 克,试通过计算相对误差来说明哪种表示法更好。

第二章测量数据处理及测量误差分析

第二章测量数据处理及测量误差分析

第二章测量数据处理及测量误差分析测量数据处理及测量误差分析是科学实验中非常重要的一个环节,它涉及到对实验数据进行整理、处理以及对测量误差进行分析、评估的过程。

本章主要包括数据的整理、数据处理的常用方法、误差分析和误差处理方法等内容。

一、数据的整理在进行数据整理之前,首先要明确实验的目的和要求,明确需要获得的数据类型和数据量,有针对性地进行数据测量和记录。

数据整理主要包括:1.数据记录:将实验过程中获得的原始数据按照一定的格式记录下来,包括数据名称、数据值、测量单位等。

2.数据清洗:对记录下来的数据进行初步的筛选和清理,去除明显的异常值和错误数据,保留有效和可靠的数据。

同时,要注意将数据转换为适当的统计量,如平均值、中位数、标准差等。

二、数据处理常用方法数据处理是对记录下来的数据进行统计、分析和加工的过程,常用的数据处理方法有:1.统计分析:包括计算数据的平均值、中位数、众数等统计量,分析数据的分布特征,进行图表的绘制和描述。

2.走势分析:通过时间序列数据的走势分析,观察数据的变化规律,判断数据是否存在趋势性、周期性等特征。

3.相关分析:用于研究两组或多组数据之间的相关性,包括相关系数的计算和相关关系的绘图等。

4.假设检验:通过已知的数据样本对一些假设的合理性进行检验,判断假设是否成立并进行统计推断。

三、误差分析误差是指测量结果与真实值之间的差异,它是不可避免的,但可以通过分析和处理来减小误差的影响。

误差分为系统误差和随机误差两种。

1.系统误差:主要源于测量仪器、测量方法和实验设计的不确定性,它会导致测量结果的整体偏移,常常是可检测和可纠正的。

调整测量仪器的零点、校正仪器的偏差、改进实验设计等方法可以减小系统误差的影响。

2.随机误差:主要源于测量过程中的各种随机因素,如环境的变化、测量操作的不精确等。

随机误差是不可避免的,通过多次重复测量可以获得多组数据,然后进行数据的平均处理和统计分析,可以减小随机误差的影响。

20第2章测量误差及数据处理

20第2章测量误差及数据处理
• 仪表的精度等级(精确度等级)是指仪表在规定的工作条 件下允许的最大相对百分误差。
• 按国家标准规定,用最大引用误差来定义和划分仪器仪表 的精度等级,将仪器仪表的精度等级分为: …… , 0.05, 0.1,0.25,0.35,0.5,1.0,1.5,2.5,4.0,5.0……(以前 只有七种)
• 当计算所得的与仪表精度等级的分档不等时,应取比稍大 的精度等级值。仪表的精度等级通常以S来表示。例如, S=1.0,说明该表的最大引用误差不超过±1.0%。

最大满度相对误差是仪表基本误差最大值 程之比的百分数,即:
xm与基 仪器仪表量
om量 xm基 程10% 0
• 最大引用误差是仪表的绝对误差最大值 xm与绝仪器仪表量程 之比的百分数,即:
量xm程 绝100%
• 当仪表是在标准条件下使用的,则:
最大满度相对误差=大 最引用误差
仪表精度等级的确定
即:
Axc
c) 可见,用修正值可以减小测量误差,得到更接近于被 测量真值的实际值。
d) 应该指出,使用修正值必须在仪表检定的有效期内。 修正值本身也有误差。
实际值相对误差
例 测量两个电压,实际值U1 100V,U2 5V,仪表的 示值分别为Ux1 101V,Ux2 6V。其绝对误差分别为:
c) 随机误差表征了测量结果的精密度,随机误差小,精 密度高,反之,精密度低。
服从正态分布规律的随机误差
d) 当测量次数足够多时,大多数随机误差是服从正态分布的。服从 正态分布规律的随机误差具有下列特点(如 图所示): ① 单峰性 绝对值小的误差比绝对值大的误差出现的概率大,
在误差 0处,出现的概率最大。
• 掌握随机误差、粗大误差和系统误差的估算、判断和减小方法

检测技术 第二章:误差分析与数据处理


可以得到精确的测量结果,否则还可能损坏仪器、设备、元器件等。
2.理论误差 理论误差是由于测量理论本身不够完善而采用近似公式或近似值计算测量 结果时所引起的误差。例如,传感器输入输出特性为非线性但简化为线性 特性,传感器内阻大而转换电路输入阻抗不够高,或是处理时采用略去高 次项的近似经验公式,以及简化的电路模 型等都会产生理论误差。
误差,周期性系统误差和按复杂规律变化的系统误差。如图2.1所示,其中1为定值系差,2 为
线性系统误差,3为周期系统误差,4为按复杂规律变化的系统误差。 系统误差的来源包括仪表制造、安装或使用方法不正确,
测量设备的基本误差、读数方法不正确以及环境误差等。
系统误差是一种有规律的误差,故可以通过理论分析采 用修正值或补偿校正等方法来减小或消除。
•理论真值又称为绝对真值,是指在严格的条件下,根据一定的理论,按定义确定的数值。 例如三角形的内角和恒为180°一般情况下,理论真值是未知的。 •约定真值是指用约定的办法确定的最高基准值,就给定的目的而言它被认为充分接近于 真值,因而可以代替真值来使用。如:基准米定义为“光在真空中1/299792458s的时间 间隔内行程的长度”。测量中,修正过的算术平均值也可作为约定真值。
表等级为0.2级。
r=
0.12 100% 100% 0.12 A 100
在选仪表时,为什么应根据被测值的大小,在满足被测量数值范围的前提下,尽可能 选择量程小的仪表,并使测量值大于所选仪表满刻度的三分之二。在满足使用 要求时,满量程要有余量,一般余量三分之一,为了装拆被测工件方便。 (同一精度,量程越大,误差越大,故量程要小,但留余量)
第二章 误差分析与数据处理
三.测量误差的来源
1.方法误差 方法误差是指由于测量方法不合理所引起的误差。如用电压表测量电压时,

第二章 误差和分析数据的处理

第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。

不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。

在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。

这说明客观存在着难于避免的误差。

因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。

分析结果与真实结果之间的差值称为误差。

分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。

一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。

(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。

根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。

(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。

例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。

(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。

例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。

(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。

(4)操作误差:由于操作人员的习惯与偏向而引起的误差。

例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。

第二章 误差及分析数据处理

3. 减免方法:增加平行测定次数
4.产生原因: 偶然因素 随机变化因素(环
境温度、湿度和气压 的微小波动)
三、误差的减免
1. 系统误差的减免 与标准试样的标准结果对照
(1) 对照实验: 与标准方法比较 回收实验 “内检”与“外检”
(2) 空白实验 (3) 校准仪器 (4)定期培训
•分析化学常用试验的方法检查系统误差的存在, 并对测定值加以校正,使之更接近真实值。常有 以下试验方法:
二、数字的修约规则 四舍六入五成双
注意: 1、要修约的数值小于等于4则舍;
2、要修约的数值大于等于6则进到前一位
3、要修约的数值为5时:如5后无数或为 零时,5前为奇数则进到前一位; 5前为偶数则 舍弃;但当5后有非零数字时,无论5前为奇数 还是偶数,都要进到前一位;
4、在对数字进行修约时,只能一次修约到 所需的位数,不能分步修约。
2.平均偏差 ( d )
为各次测定值的偏差的绝对值的平均值
特点:简单;
n
Xi X
d i1 n
缺点:大偏差得不到应有反映。
3.相对平均偏差:为平均偏差与平均值之 比,常用百分率表示:
Rd d 100 % X
4.标准偏差(standard deviation; S)
使用标准偏差是为了突出较大偏差的影
解:X =(15.67+15.69+16.03+15.89)/4=15.82
d = Xi-X =15.67-15.82=-0.15
RE% =-0.15/15.82×100%=-0.95%
n
Xi X
d i1
=(0.15+0.13+0.21+0.07)/4=0.14

第二章 测量误差和测量结果处理.ppt


实质上是相对误差的另一种表示形式,即是

用对数形式表示的一种误差,单位为分贝(

dB)。

xdB AdB dB
差 和
x xdB 20lg( A x) 20lg A(1 )

A

20lg A 20lg(1 x)

A

20lg A 20lg(1 A)

dB 20lg(1 A) 20lg(1 x)

大绝对误差Δxm与该量程的满刻度值(该量程的上限值

与下限值之差)Xm之比来表示的相对误差 。
量 结
m
x xm
100%

由上式可知,通过满度误差实际上给出了仪表各量程内

绝对误差的最大值。

第 二 章
最大引用相对误差

量 误
mm
xmax xm
100%

电工仪表就是按引用误差γmm之值进行分级的。我
和 测
2)实际相对误差
量 结
真值是不能确切得到的,通常用实际值A代替真值来 表示相对误差
果 处
A
x A
100 %




3)示值相对误差
误差较小、要求不太严格的场合,也可以用测量值x代
测 量
替实际值A
x
x 100% x
误 差
4)满度相对误差(引用相对误差) 实际中,也常用测量仪器在一个量程范围内出现的最

格?
差 和
解:mm xm 100% 1.4 100% 1.4%( 1.5%)
xm
100


所以:该电流表合格。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
2.2.1 随机误差的统计特性及减少方法
(2)测量误差的正态分布
为什么测量数据和随机误差 大多接近正态分布?
测量中的随机误差通常是多种相互独立的因素造 成的许多微小误差的总和。 中心极限定理:假设被研究的随机变量可以表示为大量
独立的随机变量的和,其中每一个随机变量对于总和只起 微小作用,则可认为这个随机变量服从正态分布。
s( x )
( x)
1.767 0.53( o C ) n 11
22
2.2.1 随机误差的统计特性及减少方法
3. 测量结果的置信问题
(1)置信概率与置信区间: 置信区间 x E ( x ) k 内包含真值的概率称为置信概率。 k k——置信系数(或置信因子) 置信限: 置信概率是图 中阴影部分面 积
23
2.2.1 随机误差的统计特性及减少方法
(2)正态分布的置信概率 当分布和k值确定之后,则置信概率可定
P[ x E ( x ) k ] P[ k ]
k

k
p( )d
正态分布,当k=3时
P ( 3 )

3
3
p( )d

3
3
有限次测量值的算术平均 值比测量值更接近真值?
19
2.2.1 随机误差的统计特性及减少方法
(2)算术平均值的标准偏差
*
2(x) 2(
1 n

i 1
n
xi )
1 n
2 ( 2

i 1
n
xi )
1 n
2 2 2 [ ( x ) ( x ) ( xn )] 1 2 2
各次测得值的绝对误差等于系统误差和随机误差 的代数和。 在任何一次测量中,系统误差和随机误差一般都 是同时存在的。 系差和随差之间在一定条件下是可以相互转化
7
2.1.3 测量误差的表示方法
测量值
x A | | | |
x 4 是粗大误差
8
2.1.3 测量误差的表示方法
准确度 表示系统误差的大小。系统误差越小,则准确度越 高,即测量值与实际值符合的程度越高。 精密度 表示随机误差的影响。精密度越高,表示随机误差 越小。随机因素使测量值呈现分散而不确定,但总是分布 在平均值附近。 精确度 用来反映系统误差和随机误差的综合影响。精确度 越高,表示正确度和精密度都高,意味着系统误差和随机 误差都小。 射击误差 示意图


1

2.2.1 随机误差的统计特性及减少方法
正态分布时概率密度曲线
随机误差和测量数据的分布形状相同,因为它们的标准偏 差相同,只是横坐标相差
p( )
p( x)
0
(a)随机误差

0
(b) 测量数据
x
图3-1 随机误差和测量数据的正态分布曲线
随机误差具有:①对称性 ② 单峰性 ③ 有界性 ④抵偿性
3
2.1.1 测量误差的概念及分类
1.随机误差
例:对一不变的电压在相同情况下,多次测量得到 1.235V, 1.237V,1.234V,1.236V,1.235V,1.237V。 单次测量的随差没有规律, 但多次测量的总体却服从统计规律。 可通过数理统计的方法来处理,即求算术平均值
x x2 x 1 n xn 1 n xi n i 1
2 exp( )d 0.997 2 2 2
1
置信因子k
置信概率Pc
1 2
3
0.683 0.955
0.997
区间越宽, 置信概率越大
24
2.2.1 随机误差的统计特性及减少方法
(3)t分布的置信限 t分布与测量次数有关。当n>20以后,t分布趋于 正态分布。正态分布是t分布的极限分布。 当n很小时,t分布的中心值比较小,分散度较大, 即对于相同的置信概率,t分布比正态分布有更大 的置信区间。
第2章 测量误差及数据处理
2.1 测量误差 2.2 测量数据的处理 2.3 测量不确定度
1
第2章 测量误差及数据处理
220V交流电压测量结果 序号 结果 1 220.1 2 220.3 3 219.8 4 220.2 5 219.6
测量结果表示?测量水平评价?
2
2.1 测量误差
2.1.1 测量误差的概念及分类 根据测量误差的性质,测量误差可分为随机误差、系统 误差、粗大误差三类。 1.随机误差 定义: 在同一测量条件下(指在测量环境、测量人员、 测量技术和测量仪器都相同的条件下),多次重复测量 同一量值时(等精度测量),每次测量误差的绝对值和 符号都以不可预知的方式变化的误差,称为随机误差或 偶然误差,简称随差。 随机误差主要由对测量值影响微小但却互不相关的大量 因素共同造成。这些因素主要是噪声干扰、电磁场微变、 零件的摩擦和配合间隙、热起伏、空气扰动、大地微震、 测量人员感官的无规律变化等。
给定置信概率和测量次数n,查表得置信因子kt。
定义自由度:v=n-1
25
2.2.1 随机误差的统计特性及减少方法
(3)t分布的置信限
26
2.2.1 随机误差的统计特性及减少方法
(4)非正态分布的置信因子
• 由于常见的非正态分布都是有限的,设其置信限为误差极 a 限 ,即误差的置信区间为 置信概率为100%。 k 例:均匀分布
k

a 3
P(x)
有 a k k
a 3
故: k 三角
3
-a 0 a
x
分布
均匀
反正弦
k (P=1)
6
3
2
27
【例2.2】 求例2.1中温度的测量结果,要求置信概率取 0.95。
x A0
5
2.1.1 测量误差的概念及分类
3.粗大误差
定义:粗大误差是一种显然与实际值不符的误差。 产生粗差的原因有: –①测量操作疏忽和失误 如测错、读错、记错以及实验 条件未达到预定的要求而匆忙实验等。 –②测量方法不当或错误 高内阻电源的开路电压 如用普通万用表电压档直接测
1 2 2 n ( X ) ( X ) n n
2
1
故:
(x)
(X)
n
算术平均值的标准偏差比总体或单次测量值的标准 偏差小 n 倍。原因是随机误差的抵偿性。
20
2.2.1 随机误差的统计特性及减少方法
(3)有限次测量数据的标准偏差的估计值
算术平均值: x
1 n
x
i 1
随机误差定义:测量结果与在重复性条件下,对同一被测量 进行无限多次测量所得结果的平均值之差
i xi x
( n )
4
2.1.1 测量误差的概念及分类
2.系统误差
定义:在同一测量条件下,多次重复测量同一量时,测量误 差的绝对值和符号都保持不变,或在测量条件改变时按一定 规律变化的误差,称为系统误差。例如仪器的刻度误差和零 位误差,或值随温度变化的误差。 产生的主要原因是仪器的制造、安装或使用方法不正确,环 境因素(温度、湿度、电源等)影响,测量原理中使用近似 计算公式,测量人员不良的读数习惯等。 系统误差表明了一个测量结果偏离真值或实际值的程度。系 差越小,测量就越准确。 系统误差定义:在重复性条件下,对同一被测量进行无限多 次测量所得结果的平均值与被测量的真值之差:
解:①平均值
1 x n

i 1
n
xi
1 (528 531 529 527 531 533 529 530 532 530 531) 530.1( o C ) 11
②用公式 i xi x 计算各测量值残差列于上表中 ③实验偏差 ④标准偏差
s( x )
n 1 2 o 1 . 767 ( C) i n 1 i 1
9
2.2 测量数据的处理
2.2.1 随机误差的统计特性及减少方法 在测量中,随机误差是不可避免的。
随机误差是由大量微小的没有确定规律的因素引 起的,比如外界条件(温度、湿度、气压、电源 电压等)的微小波动,电磁场的干扰,大地轻微 振动等。
可用数理统计的方法,处理测量数据,从而减少 随机误差对测量结果的影响。
求被测量的数字特征,理论上需无穷多次测量, 但在实际测量中只能进行有限次测量,怎么办? (1)有限次测量的数学期望的估计值——算术平均值 用事件发生的频度代替事件发生的概率,当 n 则:
E( X )
x p
i i i 1 i 1
m
m
ni xi n
令n个可相同的测试数据xi(i=1.2…,n)
10
多次测量,测量值和随机误差服从概率统计规律。
2.2.1 随机误差的统计特性及减少方法
1. 随机误差的分布规律 (1)随机变量的数字特征 ① 数学期望:反映其平均特性。其定义如下: X为离散型随机变量:
μ E(X) xi pi i 1
X为连续型随机变量:
E( X )
13
2.2.1 随机误差的统计特性及减少方法
正态分布的概率密度函数和统计特性 • 随机误差的概率密度函数为: p( )
p( x ) • 测量数据X的概率密度函数为:
2 exp( ) 2 2 2
1 1 2 exp[ ( x )2 2
2
]
• 随机误差的数学期望和方差为:
E ( )



p( )d
2 exp( )d 0 2 2 2
1



2 同样测量数据的数学期望E(X)= ,方差D(X)=
14
2 D( ) E ( 0) 2 2 p( )d 2 exp( 2 )d 2 2 2
相关文档
最新文档