离散数学(高教)概念整理
离散的数学定义

离散的数学定义
离散数学是数学的一个分支,主要研究离散对象和离散结构之间的关系,重点关注离散的整数值、集合和图论等。
以下是离散数学的一些主要概念和定义:
1. 集合论:
- 集合是离散数学中最基本的概念之一,表示一组独立对象的总体。
集合论研究集合之间的关系、运算和性质。
2. 逻辑:
- 逻辑是研究命题和推理的学科,离散数学中的逻辑主要包括命题逻辑和谓词逻辑,用于研究命题的真假和推理规则。
3. 图论:
- 图论是离散数学的一个重要分支,研究图(vertices 和edges组成的结构)之间的关系和性质,包括图的遍历、连通性、最短路径等问题。
4. 离散结构:
- 离散结构指的是离散对象之间的关系和结构,如排列组合、树、图等。
离散数学研究这些结构的性质和应用。
5. 组合数学:
- 组合数学是离散数学的一个重要分支,研究离散对象的排列组合方式,包括排列、组合、二项式定理等。
6. 概率论:
- 离散概率论研究离散随机变量的概率分布和性质,包
括概率空间、随机变量、概率分布等。
7. 离散数学的应用:
- 离散数学在计算机科学、信息技术、密码学、通信等领域有着广泛的应用,如算法设计、数据结构、网络设计等。
总的来说,离散数学是研究离散对象和结构的数学分支,涉及集合论、逻辑、图论、组合数学等内容,在计算机科学和信息技术等领域具有重要的理论和实际应用。
离散数学必备知识点总结资料

离散数学必备知识点总结资料离散数学是指离散的数学概念和结构,独立于连续的数学。
它是在计算机科学、信息科学、数学基础研究、工程技术等领域中的基础课程之一。
以下是离散数学必备的一些知识点总结。
一、逻辑与集合1. 命题与谓词:命题是一个陈述,可以被判断为真或假,而谓词是一种用来描述命题所涉及实体之间关系的语句。
2. 命题逻辑:重点关注命题真假和与或非等运算关系,包括真值表和主范式。
3. 一阶谓词逻辑:注意包含全称量词和存在量词,也包括a|b, a//b等符号的理解。
4. 集合与运算:集合是指不同元素组成的一个整体。
基本的集合运算包括并、交、差等。
5. 关系与函数:关系是一种元素之间的对应关系,而函数是一种具有确定性的关系,即每一个自变量都对应唯一的函数值。
6. 等价关系与划分:等价关系是指满足自反性、对称性和传递性的关系。
划分是指将一个集合分成若干个不相交的子集,每个子集称为一个等价类。
二、图论1. 图的定义和基本概念:图由节点和边构成,节点间的连线称为边。
包括度、路径、连通性等概念。
2. 图的表示方法:邻接矩阵和邻接表。
3. 欧拉图与哈密顿图:欧拉图是指能够一笔画出的图,哈密顿图是指含有一条经过每个节点恰好一次的路径的图。
4. 最短路径与最小生成树:最短路径问题是指在图中找出从一个节点到另一个节点的最短路径。
最小生成树问题是指在图中找出一棵覆盖所有节点的树,使得边权之和最小。
三、代数系统1. 代数结构:包括群、环、域等概念。
2. 群的定义和基本概念:群是在一个集合中定义一种二元运算满足结合律、单位元存在和逆元存在的代数结构。
四、组合数学1. 排列、组合和二项式系数:排列是指从n个元素中任选r个进行排序,组合是指从n个元素中任选r个但不考虑排序,二项式系数是指组合数。
2. 生成函数:将组合数与多项式联系起来的一种工具,用于求出某种算法或结构的某些特定函数。
3. 容斥原理:一个集合的容斥原理指在集合的并、交、补之间的关系。
离散数学第一章知识点总结

离散数学第一章知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
第一章通常是对离散数学的基础概念和预备知识进行介绍,为后续的学习打下坚实的基础。
以下是对离散数学第一章知识点的详细总结。
一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。
集合中的对象称为元素。
我们通常用大写字母来表示集合,用小写字母表示元素。
如果一个元素 a 属于集合 A,记作 a ∈ A;如果一个元素 b 不属于集合 A,记作 b ∉ A。
集合有两种常见的表示方法:列举法和描述法。
列举法是将集合中的元素一一列举出来,例如 A ={1, 2, 3, 4, 5}。
描述法是通过描述元素的共同特征来表示集合,例如 B ={x | x 是大于 0 小于 10 的整数}。
集合之间的关系包括子集、真子集和相等。
如果集合 A 中的所有元素都属于集合 B,那么 A 是 B 的子集,记作 A ⊆ B。
如果 A 是 B 的子集,且 B 中存在元素不属于 A,那么 A 是 B 的真子集,记作 A ⊂ B。
如果 A 和 B 包含相同的元素,那么 A 和 B 相等,记作 A = B。
二、集合的运算集合的基本运算有并集、交集和差集。
集合 A 和集合 B 的并集,记作 A ∪ B,是由属于 A 或者属于 B 的所有元素组成的集合。
集合 A 和集合 B 的交集,记作A ∩ B,是由同时属于 A 和 B 的所有元素组成的集合。
集合 A 与集合 B 的差集,记作 A B,是由属于 A 但不属于 B 的所有元素组成的集合。
此外,还有补集的概念。
如果给定一个全集 U,集合 A 的补集记作A,是由属于 U 但不属于 A 的所有元素组成的集合。
集合运算满足一些重要的定律,如交换律、结合律、分配律等。
例如,A ∪ B = B ∪ A(并集的交换律),A ∩ B =B ∩ A(交集的交换律),(A ∪ B) ∪ C = A ∪(B ∪ C)(并集的结合律),(A ∩B) ∩ C =A ∩ (B ∩ C)(交集的结合律)等。
离散数学复习提纲

离散数学复习提纲离散数学是一门关于离散对象的数学分支,它主要研究离散结构及其性质,广泛应用于计算机科学、信息技术、密码学等领域。
下面是一个离散数学的复习提纲,包括离散数学的基本概念、离散结构、图论、关系、逻辑以及集合论等内容。
一、离散数学的基本概念1.数学基础:集合、函数、关系、证明方法(数学归纳法、反证法、递归法等);2.命题逻辑:命题、命题连接词、真值表、逻辑运算、逻辑等价、推理规则等;3.谓词逻辑:谓词、量词、公式、合取范式和析取范式、蕴含、等价、量词的否定规则等;4.证明方法:直接证明、间接证明、归谬证明、证明策略等。
二、离散结构1.图论:图的基本概念、图的表示方法、连通性、路径和回路、图的着色、最小生成树等;2.代数结构:群、环、域的定义、性质及基本例子;3.组合数学:组合基本原理、二项式系数、排列组合、生成函数、递归关系、容斥原理等;4.有限状态自动机:确定性有限状态自动机、非确定性有限状态自动机、正则表达式等。
1.图的基本概念:顶点、边、路径、回路、度等;2.图的表示:邻接矩阵、邻接表、关联矩阵等;3.图的遍历:深度优先、广度优先;4. 最短路径问题:Dijkstra算法、Floyd-Warshall算法;5. 最小生成树问题:Prim算法、Kruskal算法;6.匹配问题:最大匹配、二分图匹配等。
四、关系1.关系的基本概念:关系矩阵、关系的性质(反自反性、对称性、传递性等);2.等价关系:等价关系的性质、等价类等;3.偏序关系:偏序关系的性质、偏序集合、哈斯图等;4.传递闭包:传递闭包的定义、传递闭包的计算方法等。
五、逻辑1.命题逻辑:命题的定义、逻辑运算、真值表、逻辑等价、推理规则等;2.谓词逻辑:量词的定义、公式的定义、量词的否定规则、等价变换等;3.命题逻辑与谓词逻辑的转换;4.形式化推理:前向链式推理、后向链式推理、消解法等。
1.集合的基本概念:子集、并集、交集、差集、补集等;2.集合运算:集合的并、交、差、补等运算的性质;3.集合的关系:包含关系、相等关系、等价关系等;4.集合的表示方法:列举法、描述法、元祖法等;5.集合的基数:有限集合的基数、无穷集合的基数、基数的性质。
高三离散数学知识点汇总

高三离散数学知识点汇总离散数学是计算机科学、信息技术以及其他相关领域中的重要基础学科,是高中阶段的数学课程之一。
下面将对高三离散数学的主要知识点进行汇总,以帮助学生更好地复习和掌握这门学科。
一、命题逻辑命题逻辑是离散数学的基础,它研究命题的逻辑关系及其合成。
以下是命题逻辑中常见的知识点:1. 命题与命题的合取(与)、析取(或)、非(非)运算;2. 命题的真值表与真值;3. 命题的等价、蕴含、互斥等逻辑关系;4. 命题的可满足性与有效性。
二、集合与关系集合论是离散数学中的另一重要组成部分,它研究集合及其间的关系。
以下是集合与关系中的主要知识点:1. 集合的表示方式与基本操作,如并集、交集、差集和补集;2. 笛卡尔积与关系的定义;3. 关系的性质,如自反性、对称性、传递性等;4. 等价关系与偏序关系的概念与判断;5. 关系的闭包与传递闭包。
三、图论图论是离散数学中的重要分支,它研究图及其相关的性质与算法。
以下是图论中的常见知识点:1. 图的基本概念与表示方式,如顶点、边、度、路径等;2. 树与森林的定义与性质,包括最小生成树与最短路径树等;3. 图的连通性与强连通性的判定;4. 图的着色与平面图的概念;5. 图的网络流与匹配等问题。
四、代数系统代数系统是离散数学的重要组成部分,它研究运算规则及其相应的结构。
以下是代数系统中的主要知识点:1. 半群、幺半群、群的概念与性质;2. 环、域的定义与性质;3. 线性方程组与矩阵的基本运算;4. 同余与剩余类的概念与应用。
五、概率与统计概率与统计是离散数学的重要应用领域,它研究随机事件及其规律性。
以下是概率与统计中的常见知识点:1. 随机事件的基本概念与性质;2. 概率的计算方法,包括古典概型、几何概型、条件概率等;3. 随机变量与概率分布的概念与应用;4. 抽样与统计推断,包括参数估计与假设检验等。
综上所述,高三离散数学的知识点涵盖了命题逻辑、集合与关系、图论、代数系统以及概率与统计等方面。
离散数学基础概念汇总

离散数学基础概念汇总离散数学是数学的一个分支领域,它研究离散化的数学对象和离散化的数学结构。
它与连续数学形成鲜明对比,涉及的内容包括集合论、图论、逻辑、数字逻辑、关系代数等。
在计算机科学、信息技术和其他领域中有广泛的应用。
一、集合论集合论是离散数学的基石之一,它研究集合及其元素之间的关系和操作。
以下是集合论中常见的基本概念:1. 集合:集合是一组具有共同特征的对象的总体。
例如,{1, 2, 3}就是一个集合,其中包含了元素1、2和3。
2. 元素:集合中的个体被称为元素。
在上述例子中,1、2和3是集合的元素。
3. 包含关系:如果一个集合的所有元素都同时也是另一个集合的元素,则称前者包含于后者。
用符号表示为A ⊆ B,读作“A包含于B”。
4. 并集:给定两个集合A和B,它们的并集是包含了A和B中所有元素的集合。
用符号表示为A ∪ B。
5. 交集:给定两个集合A和B,它们的交集是同时属于A和B的所有元素构成的集合。
用符号表示为A ∩ B。
6. 补集:给定一个集合A和它所在的全集U,除去A中所有元素后剩下的元素构成的集合称为A的补集。
用符号表示为A'。
二、图论图论是离散数学中的又一个重要分支,它研究图及其性质和应用。
以下是图论中常见的概念:1. 图:图由节点(顶点)和边组成。
节点表示对象,边表示对象之间的关系。
图可以分为有向图和无向图两种类型。
2. 顶点度:有向图中,顶点的度是指与该顶点相关联的边的数量。
无向图中,顶点的度是指与该顶点相连的边的数量。
3. 路径:路径是指图中一系列顶点和边的序列。
路径的长度是指路径中边的数量。
4. 连通图:在无向图中,若从任意一个顶点出发,都能到达图中的其他任意顶点,则称该图为连通图。
5. 强连通图:在有向图中,若从任意一个顶点出发,都能到达图中的其他任意顶点,并且逆向也成立,则称该图为强连通图。
三、逻辑逻辑是离散数学中研究命题、推理和证明的科学。
以下是逻辑中常见的概念:1. 命题:命题是陈述某个事实的句子,每个命题要么是真的,要么是假的。
高三离散数学知识点归纳
高三离散数学知识点归纳离散数学是一门重要的数学学科,它针对离散对象及其相互关系展开研究,对于培养学生的逻辑思维能力和抽象思维能力具有重要作用。
在高三阶段,学生需要系统学习离散数学的知识点,为高考备战做好准备。
本文将对高三离散数学知识点进行归纳,包括集合论、命题逻辑、组合数学等内容。
一、集合论1. 集合的基本概念集合是由确定的、无序的、互异的对象组成的总体。
集合的元素可以是数字、字母、符号等。
2. 集合的运算交集、并集、差集和补集是集合的四种基本运算,它们分别表示两个集合的共有元素、所有元素和剩余元素。
3. 集合的关系包含关系、相等关系和互斥关系是集合之间的三种常见关系,它们描述了集合之间的包含、相等和互斥的关系。
二、命题逻辑1. 命题与命题联结词命题是陈述句,它可以为真或者为假。
命题联结词包括非、与、或、蕴含和等价等,用于描述命题之间的逻辑关系。
2. 命题的真值表和逻辑运算真值表是描述命题与命题联结词之间关系的表格,通过真值表可以确定复合命题的真假性。
3. 命题的等价和蕴含两个命题等价表示它们具有相同的真值,而一个命题蕴含另一个命题表示当前者为真时,后者一定为真。
三、组合数学1. 排列与组合排列是从一组元素中取出若干元素进行排序,组合是从一组元素中取出若干元素不考虑排序。
排列和组合分别具有不同的计算公式。
2. 二项式定理二项式定理描述了两个数的幂展开的结果,它在组合数学中有重要应用。
四、图论1. 图的基本概念图由顶点和边组成,可以分为有向图和无向图。
顶点之间的边表示两个顶点之间的联系。
2. 图的遍历算法深度优先搜索和广度优先搜索是两种常见的图的遍历算法,用于查找图中的特定路径或者寻找与某个顶点相关的其他顶点。
五、数理逻辑1. 数理逻辑的基本概念数理逻辑是研究逻辑的形式系统化的学科,主要包括语言、公式、推理规则等内容。
2. 形式系统和推导规则形式系统是由一组公理和一组推导规则组成的,通过推导规则可以从公理出发推导出其他命题。
离散数学高等里离散数学课件-CHAP
图的基本概念
边
连接两个节点的线段称为边。
简单图与多重图
只含一条边的图称为简单图, 含有相同端点的多条边称为多 重边。
节点
图中的顶点称为节点。
定向图与无向图
如果边有方向,则称为定向图; 如果边无方向,则称为无向图。
有限图与无限图
节点和边都有限的图称为有限 图,节点或边至少有一个为无 限的图称为无限图。
发展
随着计算机科学的快速发展,离散数学也得到了迅速的发展 。许多新的分支如组合数学、离散概率论等不断涌现,并广 泛应用于计算机科学、工程学、物理学等领域。
离散数学的应用领域
计算机科学
离散数学在计算机科学中有着广泛的 应用,如算法设计、数据结构、计算 机图形学、数据库系统等。
工程学
离散数学在工程学中也有着广泛的应 用,如电子工程、通信工程、机械工 程等。
要点二
详细描述
集合可以用列举法、描述法、图示法等多种方法来表示。 列举法是将集合中的所有元素一一列举出来,适用于元素 数量较少的集合。描述法是用数学符号和逻辑表达式来描 述集合中的元素,适用于元素数量较多且具有共同特征的 集合。图示法则是用图形来表示集合,直观易懂,适用于 具有明显包含关系的集合。
03
如果图中任意两个节点之间都存在一 条路径,则称该图为连通图。
路径与回路
欧拉回路与哈密顿回路
如果一条回路恰好经过图中的每条边 一次,则称为欧拉回路;如果一条回 路恰好经过图中的每个节点一次,则 称为哈密顿回路。
连接两个节点的序列称为路径,如果 路径的起点和终点是同一点,则称为 回路。
04
离散概率论
离散概率的基本概念
图的表示方法
邻接矩阵
用矩阵表示图中节点之 间的关系,如果节点i与 节点j之间存在一条边, 则矩阵中第i行第j列的 元素为1,否则为0。
离散数学部分概念和公式总结(考试专用)
命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。
约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
离散数学知识点总结
离散数学知识点总结离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。
它包括了许多重要的概念和技术,是计算机科学、通信工程、数学和逻辑学等领域的基础。
本文将对离散数学的一些核心知识点进行总结,包括命题逻辑、一阶逻辑、图论、集合论和组合数学等内容。
1. 命题逻辑命题逻辑是离散数学的一个重要分支,研究命题之间的逻辑关系。
命题是一个陈述语句,要么为真,要么为假,而且不能同时为真和为假。
命题逻辑包括逻辑运算和逻辑推理等内容,是离散数学的基础之一。
1.1 逻辑运算逻辑运算包括与(∧)、或(∨)、非(¬)、蕴含(→)和双条件(↔)等运算。
与、或和非是三种基本的逻辑运算,蕴含和双条件则是基于这三种基本运算得到的复合运算。
1.2 逻辑等值式逻辑等值式是指在命题逻辑中具有相同真值的两个复合命题。
常见的逻辑等值式包括德摩根定律、双重否定定律、分配率等。
1.3 形式化证明形式化证明是命题逻辑的一个重要内容,研究如何利用逻辑规则和等值式来推导出给定命题的真值。
形式化证明包括直接证明、间接证明和反证法等方法,是离散数学中的常见技巧。
2. 一阶逻辑一阶逻辑是命题逻辑的延伸,研究命题中的量词和谓词等概念。
一阶逻辑包括量词、谓词逻辑和形式化证明等内容,是离散数学中的重要部分。
2.1 量词量词包括全称量词(∀)和存在量词(∃),用来对命题中的变量进行量化。
全称量词表示对所有元素都成立的命题,而存在量词表示至少存在一个元素使命题成立。
2.2 谓词逻辑谓词逻辑是一阶逻辑的核心内容,研究带有量词的语句和谓词的逻辑关系。
谓词是含有变量的函数,它可以表示一类对象的性质或关系。
2.3 形式化证明形式化证明在一阶逻辑中同样起着重要作用,通过逻辑规则和等值式来推导出给定命题的真值。
一阶逻辑的形式化证明和命题逻辑类似,但更复杂和抽象。
3. 图论图论是离散数学中的一个重要分支,研究图和图的性质。
图是由节点和边组成的数学对象,图论包括图的表示、图的遍历、最短路径、最小生成树等内容,是离散数学中的一大亮点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理逻辑命题逻辑命题p,q,r,s……非真即假的陈述句命题的真值0 1命题的陈述句所表达的判断结果原子命题(简单命题)不能被分解成更简单的命题简单命题通过联结词联结而成的命题,称为复合命题命题的符号化p:4是素数用小写英文字母(如p:4是素数)表示命题。
用小写英文字母(如p:4是素数)表示原子命题,用联结词联结原子命题表示复合命题。
联结词否定连接词¬否p为真当且仅当p为假合取联结词∧p合取q为真当且仅当p,q同时为真(复合命题“p并且q”称为p与q的合取式)析取联结词∨p析取q为假当且仅当p,q同时为假(复合命题“p或q”称为p与q的析取式)蕴含连接词→p蕴含q为假当且仅当p为真,q为假。
(复合命题“如果p,则q”(因为p所以q,除非q 才p)称为p与q的蕴含式,p是蕴含式的前件,q是蕴含式的后件)q是p的必要条件。
等价联结词↔p等价q当且仅当,同时为真或假。
(复合命题“p当且仅当q”称作p与q的等价式)真值表命题公式及其赋值命题常项原子命题(简单命题)的另一称呼,由于其真值确定命题变项真值可以变化的陈述句合式公式(命题公式)A,B……命题变项用联结词和圆括号用一定逻辑关系连接起来的符号串,简称公式赋值(解释)给公式A中的每个命题变项各指定一个真值。
这组值使A为1,则称为成真赋值。
含n个命题变项的公式有2的n次方个不同赋值。
含n个命题变项的公式有2的2的n次方个不同真值表情况。
重言式(永真式)命题公式A在各种赋值下取值均为真矛盾式(永假式)命题公式A在各种赋值下取值均为假可满足式命题公式A至少存在一个成真赋值哑元对公式A和B进行比较讨论,可知A和B共含有n个命题变项,其中A不含有的命题变项称为A的哑元,其取值不影响A的值命题逻辑等值演算等值式⇔如果命题A和B有相同的真值表,则有命题A↔B为重言式,这种情况下称A与B是等值的,记作A⇔B(重要)等值式模式常用的16条命题间的等值模式,书p18析取范式与合取范式文字命题变项及其否定的统称简单析取式,简单合取式由有限个文字构成的析取式,合取式析取范式,合取范式由有限个简单合取式的析取构成的命题公式,称为析取范式。
同理为合取范式。
命题公式的析取或合取范式一般不唯一极小项,极大项m i M i简单合取式中的命题变项及它的否定式恰好出现一次,并按照下标拍好,这样的简单合取式叫做极小项。
同理为极大项。
n个命题变项可以产生2的n次方个极小项,每个极小项都有且仅有一个成真赋值,这一组成真赋值(01组成)转化为对应的十进制数i,将这个极小项表示为m i类似的,极大项为M i主析取范式m0∨m1∨m3∨m7主合取范式所有简单合取式都是极小项的析取式,这是唯一的主析取范式。
同理。
联结词的完备集n元真值函数F函数F的自变量为n个命题变项,值域为{0,1},这样的函数叫n元真值函数。
n个命题变项一共可以构成2的2的n次方个不同的真值函数。
每个真值函数与唯一的一个主析取范式(主合取范式)等值,同时它们都等值于无穷多个等值的命题公式。
联结词完备集S={¬,∨}s是一个联结词集合,任何n元真值函数都可以仅用s中的联结词构成的公式表示.s就是联结词完备集。
命题逻辑的推理理论推理{A1,…A k}┠B是指从前提触发推出结论的思维过程。
前提是已知的命题公式集合,结论是推出的命题公式。
有效的结论命题集合A i的合取式有0和1两种取值,只要不出现某一种赋值情况下命题集合为假,结论B为真。
那么就称结论B是有效的结论。
称这一种推理是正确的。
证明是由一个描述推理过程的命题公式序列形式系统I书p46自然推理系统P数p47主要是用来在这个系统下构造推理的证明附加前提证明法结论为蕴含式时,可以把前件作为推理前提,使结论为后件归谬法使结论的否命题作为前提能退出矛盾,则证明一阶逻辑基本概念一阶命题符号化∀x(M(x)→F(x))1个体词a,b,x,y……研究对象中独立存在的客体。
取值范围叫做“个体域”。
默认个体域为“全总个体域”2谓词F(a)G(a,b)H……刻画个体词性质或关系的词。
比如说“是无理数”。
含有n个命题变项的谓词叫做n元谓词。
以个体域为定义域,{0,1}为值域的n元函数或关系。
3量词∀∃全称量词“任意”∀存在量词“存在”一阶语言(花体I)由抽象符号构成的用于一阶逻辑的形式语言。
项个体常项,个体变项,n元函数(自变量为项)是花体I的项。
指导变元量词的辖域例如∀xA,x就叫做指导变元,A是量词的辖域,在辖域中x的所有出现称为约束出现,其他变项叫自由出现合式公式(谓词公式)一阶语言下的合式公式。
闭式(封闭的公式)公式中不含自由出现的个体变项.解释I解释就是对抽象一阶语言的在I的具体含义,包括四个部分:①非空个体域D1②每一个个体常项在D1中的对应③每一个n元函数在D1上的对应④每一个谓词符号在D1上的对应永真式(逻辑有效式),永假式,可满足式同上文。
在任何解释下均为真的公式为永真式。
这里不存在重言式的说法。
代换实例用谓词公式A1,A2……代换命题公式A0中的命题变项p1,p2……得到的公式A叫做A0的代换实例。
重言式的代换实例都是永真式。
一阶逻辑等值验算等值式⇔这个等值式是一阶逻辑下的等值式。
定义同上。
当A等价B为永真式,称A⇔B是等值式。
等值式类型书p69比如说任意x有(A(x)→B)等价于存在x满足A(x)并且→B一阶逻辑前束范式就是要求把所有量词放到最前方。
去掉重名变量。
集合论集合基本概念A={}无序,唯一,确定幂集P(A)或花体pA,2AA的全体子集构成的集合集合的运算∪并集A∪B∩交集A∩B-相对补集A-Bx属于A但是不属于B的部分组成的集合⊕对称差集A⊕Bx属于A和x属于B的部分,不包括既属于A又属于B ~绝对补集~A给定全集中不属于A的部分∪A广义并A的元素(是个集合)的元素构成的集合∩A广义交A(非空)的所有元素的公共元素组成的集合有穷集的计数文氏图容斥定理p90集合恒等式p92有序对和笛卡尔积有序对<x,y>两个元素按一定顺序排列成的二元组,x叫第一元素,y叫第二元素笛卡尔积A×B集合A中的元素作为第一元素,集合B中的元素作为第二元素,构成有序对。
这样的有序对组成的集合叫做A和B的笛卡尔积笛卡尔积,对并和交运算满足分配率A包含于C并且B包含于D的时候可以推出,A×B包含于C×D二元关系R(关系)是个集合一个集合。
如果它是空集,或者他的元素都是有序对,则这个集合是一个二元关系,记作R。
如果<x,y>∈R,可记作xRy.从A到B的二元关系A×B(A和B的笛卡尔积)的任何子集定义的二元关系(子集不止一个,这个就不止一个)A=B时叫做A上的二元关系,A上有2的n平方次方个不同二元关系R为A上的二元关系即A的所有元素作第一元素组合A的所有元素作第二元素的有序对的集合. 空关系∅空集∅是A×A的子集,叫做A上的空关系全域关系E AE A=A×A={<x,y>|x∈A并且y∈A}恒等关系I AI A={<x,x>|x∈A}小于等于关系L A关系矩阵,关系图p105关系的运算R的定义域domRR中所有有序对的第一元素构成的集合R的值域ranRR中所有有序对的第二元素构成的集合R的域fldR定义域和值域的并集R的逆关系(R的逆)R−1这个集合的元素(有序对)为R中的有序对第一元素第二元素互换G对F的右复合F°G={<x,y>|存在t<x,t>∈F并且<t,y>∈G} F和G是二元关系右复合支持结合律A上的二元关系和恒等关系的符合为A上的二元关系R在A上的限制R↑A(半个箭头)R为二元关系,A为集合,“R在A上的限制”也是个二元关系(集合),其中有序对的第一元素也是A的元素A在R下的像R[A]R[A]是一个集合,元素是既是R中有序对的第一元素,又是A中元素的元素。
R的n次幂R n首先,R是A上的二元关系,不是随便什么二元关系。
R的0次幂是A的恒等关系IA,即第一元素=第二元素的有序对组成的集合R的第n+1次幂=R的n次幂°R并且,必有s,t使得R的s次幂=R的t次幂关系的性质(R为A上的关系)自反性I A⊆R任意x,如果x是A的元素可以推出<x,x>∈R对称性R=R−1任意x,y,如果x,y是A的元素并且<x,y>属于R可以推出<y,x>∈R传递性R°R⊆R任意x,y,z,如果x,y,z是A的元素并且<x,y>属于R并且<y,z>属于R可以推出<x,z>∈R关系的闭包R的自反闭包R’ r(R)在R中添加尽可能少的有序对,得到R’,使R’具有自反性对称闭包s(R)传递闭包t(R)等价关系与划分等价(=自反,对称,传递)关系~等价是一个对于关系的定语。
R为A上的关系,如果R是自反的,对称的,传递的,则称R 为A上的等价关系。
若<x,y>∈R,称x等价于y,记作x~yx与y模n相等x≡y(mod n)x除以n的余数与y除以n的余数相等在整数集上,模n是个等价关系。
x关于R的等价类[x]R([x]或x)R为A上的等价关系。
x关于R的等价类(简称x的等价类)是A中所有与x等价的元素构成的集合。
A关于R的商集A/RR为非空集合A上的等价关系,R的所有等价类作为元素的集合称为A关于R的商集,记作A/R,即={[x]|x∈A}。
也就是元素是集合的集合。
A的子集族ππ⊆P(A),A的某些子集构成的集合A的一个划分π子集族π满足下面三个条件时,π叫做A的一个划分,π中的元素(就是A的子集)叫做A 的划分块①空集不属于π②π中的任意两个元素(集合)交集为空③π的广义并(π中的元素(A的子集)的元素的并集)就是A商集就是一个划分偏序关系偏序(=自反,反对称,传递)关系≤如果<x,y>∈≤,记作x≤y,表示按照这个顺序x排在y的前边或者x就是y恒等关系,小于或等于关系,乘除关系,包含关系都是偏序关系x与y可比x与y可比等价于,x≤y或者y≤x全序关系(线序关系)设R是非空集合A上的偏序关系,如果任意x,y属于A,x与y都是可比的(也就是A的所有元素都出现在这个R中)则称R为A上的全序关系偏序集<A,≤>A和A上的偏序关系一起组成的集合,记作<A,≤>y覆盖x(y是x的后继)x<y且不存在z使得x<z<y,则称y覆盖x偏序集的哈斯图如果x<y,就把x画在y的下方,并且如果y还覆盖x,就用一条线段连接xy最小元,极小元,最大元,极大元偏序集<A,≤>,B包含于A,y是B的元素①对于任意B 中的元素x都有y小于等于x,y为最小元②对于任意B中的元素x并且x≤y使都推出x=y,y是极小元最小元存在时,要求最小元和B中的其他元素都可比,所以不一定存在,如果存在一定是唯一的。