离散数学复习要点

合集下载

离散数学复习要点

离散数学复习要点

离散数学复习要点第一章命题逻辑一、典型考查点1、命题的判断方法:陈述句真值唯一,特殊:反问句也是命题。

其它疑问句、祈使句、感叹句、悖论等皆不是。

详见教材P12、联结词运算定律┐∧∨→记住特殊的:1∧1⇔1,0∨0⇔0,1→0⇔0,11⇔1,00⇔1详见P53、命题符号化步骤:A划分原子命题,找准联结词。

特殊自然语言:不但而且,虽然但是用∧,只有P才Q,应为Q →P;除非P否则Q,应为┐P→Q。

B设出原子命题写出符号化公式。

详见P54、公式的分类判定(重言式、矛盾式、可满足式)方法:其一根据所有真值赋值情况,其二根据等价演算来判断。

详见P95、真值表的构造步骤:①命题变元按字典序排列,共有2n个真值赋值。

②对每个指派,以二进制数从小到大或从大到小顺序列出。

③若公式较复杂,可先列出各子公式的真值(若有括号,则应从里层向外层展开),最后列出所求公式的真值。

详见P8。

6、基本概念:置换规则,P规则,T规则,详见P24;合取范式,析取范式,详见P15;小项详见P16;大项详见P18,最小联结词组详见P15,7、等价式详见P22表1.6.2 证明方法:①真值表完全相同②用等价演算③利用A B的充要条件是A B且B A。

主要等价式:(1)双否定:A A。

(2)交换律:A∧B B∧A,A∨B B∨A,A B B A。

3)结合律:(A∧B)∧C A ∧(B∧C),(A∨B)∨C A∨(B∨C),(A B)C A(B C)。

(4) 分配律:A∧(B∨C)(A∧B)∨(A∧C),A∨(B∧C)(A∨B)∧(A∨C)。

(5) 德·摩根律:(A∧B)A∨B,(A∨B)A∧B。

(6) 等幂律:A∧A A,A∨A A。

(7) 同一律:A∧T A,A∨F A。

(8) 零律:A∧F F,A∨T T。

(9) 吸收律:A∧(A∨B)A,A∨(A∧B)A。

(10) 互补律:A ∧A F,(矛盾律),A∨A T。

(排中律)(11) 条件式转化律:A→B A∨B,A→B B→A。

离散数学复习要点

离散数学复习要点

离散数学复习要点离散数学是数学的一个分支领域,主要研究离散的结构和离散情形下的数学对象及其相关性质。

它与连续数学不同,离散数学的对象是离散的,如集合、图、布尔代数等。

在计算机科学、信息科学、通信工程等领域中,离散数学的理论和方法被广泛应用。

以下是离散数学的一些重要的复习要点:1.集合论:集合是离散数学的基础,集合的基本运算如交、并、差等,以及集合的基本性质如并集和交集的结合律、分配律等,都是需要复习的内容。

此外,还需要了解集合的基数和幂集等概念。

2.命题逻辑:命题是一个可以判断真假的陈述句,命题逻辑是研究命题及其逻辑关系的数学体系。

需要复习的内容包括命题的逻辑运算,如非、与、或、异或等,以及逻辑等价、逻辑推理等。

3.谓词逻辑:谓词逻辑是对自然语言中的谓词进行形式化表示和推理的系统。

复习重点包括一阶谓词逻辑的基本概念,如谓词、量词、域、项等,以及谓词的合取、析取、全称量词和存在量词等逻辑联结词的语义。

4.图论:图论是研究图及其性质的数学分支。

需要复习的内容包括图的基本概念,如顶点、边、路径、圈等,以及图的表示方法、图的遍历算法、连通图、树等。

5. 网络流模型:网络流模型是研究流动网络的数学方法,主要包括最大流、最小割等问题。

需要复习的内容包括网络的基本概念,如容量、割、流等,以及Ford-Fulkerson算法等解决网络流问题的方法。

6.布尔代数:布尔代数是一种关于逻辑运算的代数系统,常用于电路设计和逻辑推理。

需要复习的内容包括布尔代数的基本运算,如与、或、非等,以及布尔函数的最小项与最大项表示、卡诺图等。

7.组合数学:组合数学是研究离散中的计数问题的数学分支。

需要复习的内容包括排列、组合、多元排列组合等的计数方法,如乘法原理、加法原理、排列组合的顺序问题等。

8.代数系统:代数系统是研究代数结构及其性质的数学分支,包括群、环、域等。

需要复习的内容包括群的基本概念和性质,如封闭性、结合律、单位元、逆元等。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结 一、各章复习要求与重点第一章 集 合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(V enn )图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。

2、掌握集合的表示法和集合的交、并、差、补等基本运算。

3、掌握集合运算基本规律,证明集合等式的方法。

4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。

[本章重点习题]P5~6,4、6; P14~15,3、6、7; P20,5、7。

[疑难解析] 1、集合的概念因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。

2、集合恒等式的证明通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。

实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~⋂=-证明中的特殊作用。

[例题分析]例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。

解}}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A}}2,1{},2{},1{,{)(φρ=B于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ例2 设{}{}Φ=,,,,b a b a A ,试求:(1){}b a A ,-; (2)Φ-A ; (3){}Φ-A ; (4){}{}A b a -,; (5)A -Φ; (6){}A -Φ。

解 (1){}{}{}Φ=-,,,b a b a A (2)A A =Φ- (3){}{}{}b a b a A ,,,=Φ- (4){}{}Φ=-A b a , (5)Φ=-ΦA (6){}Φ=-ΦA 例3 试证明()()()()B A B A B A B A ~~~~⋂⋃⋂=⋃⋂⋃ 证明()()()()()()()()()()()()()()()()()()B A B A B A B A B B B A A B A A B B A A B A B A B A ~~~~~~~~~~~~~⋂⋃⋂=Φ⋃⋂⋃⋂⋃Φ=⋂⋃⋂⋃⋂⋃⋂=⋂⋃⋃⋂⋃=⋃⋂⋃第二章 二元关系[复习知识点]1、关系、关系矩阵与关系图2、复合关系与逆关系3、关系的性质(自反性、对称性、反对称性、传递性)4、关系的闭包(自反闭包、对称闭包、传递闭包)5、等价关系与等价类6、偏序关系与哈斯图(Hasse )、极大/小元、最大/小元、上/下界、最小上界、最大下界7、函数及其性质(单射、满射、双射)8、复合函数与反函数本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念 [复习要求]1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。

离散数学复习知识点

离散数学复习知识点

复习知识点: 第1章1. 命题、真命题、假命题 2. 命题符号化〔连接词〕设P :天下大雨,Q :他在室内运动,命题“除非天下大雨,否则他不在室内运动”可符合化为〔 D 〕A .Q P ∧⌝B .Q P →⌝C .Q P ⌝→⌝D .Q P ⌝→设P :只有你通过了大学英语六级考试,Q :你是英语专业的学生,R :你可以选修这门课程。

命题“只有你通过了大学英语六级考试而且不是英语专业的学生,才可以选修这门课程”( B )A .R Q)(P →∧B .R Q)(P →⌝∧C .R Q)(P ↔⌝∧D .R Q)(P ↔∧3. 什么是命题公式 4. 命题公式的等价式5. 利用逻辑等价关系证明下面的等价关系 Q P Q)(P P))(Q Q)((P ∨⇔∧→→∧→证明:6. 用真值表法求命题公式的主析取范式和主合取范式 7. 符号化以下语句,并推证结论的有效性。

有些学生相信所有的老师,任何一个学生都不相信骗子,所以老师都不是骗子。

解:设论述域为全总个体域,S(x):x 是学生,T(x):x 是老师,P(x):x 是骗子,L(x,y):x 相信y 。

将前提和结论符号化为P(x))x(T(x)y)))L(x,y(P(y)x(S (x)y))),L(x,y(T(y)x(S (x)⌝→∀⇒⌝→∀→∀→∀∧∃〔1〕y)))L(x,y(T(y)x(S (x)→∀∧∃ P 〔2〕y))L(a,y(T(y)S (a)→∀∧T1,ESQ)(P TQ)(P Q)Q (Q)(P Q Q)(P T)(Q Q)(P P))P ((Q Q)(P Q)(P P)(Q Q)(P Q)(P P)Q (Q)P (Q)(P P))Q (Q)P ((Q)(P P)Q (Q)P (Q)(P P))(Q Q)((P ∨⇔∧∨⇔∨⌝∧∨⇔∨⌝∧⇔∧∨⌝∧⇔∨⌝∧∨⌝∧⇔∧∨⌝∧∨⌝∧⇔∧∨∨⌝⌝∨∨⌝⌝⇔∧∨∨⌝∧∨⌝⌝⇔∧→∨⌝∧∨⌝⇔∧→→∧→〔3〕S(a) T2,I 〔4〕y))L(a,y(T(y)→∀ T2,I 〔5〕b)L(a,T(b)→T4,US 〔6〕y)))L(x,y(P(y)x(S (x)⌝→∀→∀ P 〔7〕y))L(a,y(P(y)S (a)⌝→∀→ T6,US 〔8〕y))L(a,y(P(y)⌝→∀ T3,7,I 〔9〕b)L(a,P(b)⌝→ T8,US 〔10〕P(b)b)L(a,⌝→ T9,E 〔11〕P(b)T(b)⌝→T5,10,I 〔12〕P(x))x(T(x)⌝→∀T11,UG侦查员在调查了某珠宝店的珠宝失窃案现场以及询问了认证之后,得到以下事实: (1) 是营业员甲或营业员乙作案。

离散数学复习资料

离散数学复习资料

离散数学复习资料离散数学是计算机科学与数学领域中的重要学科,它研究的是离散的数学结构和离散的数学对象。

在计算机科学领域,离散数学是构建算法和设计计算机系统的基础。

为了更好地复习离散数学,我们可以从以下几个方面入手。

一、集合论集合论是离散数学的基础,它研究的是集合及其运算。

在集合论中,我们需要了解集合的定义、基本运算和集合间的关系。

此外,还需要掌握集合的代数运算法则,如交、并、差和补集等。

复习时可以通过解题来加深理解,例如证明集合之间的等价关系、集合的幂集等。

二、逻辑与命题逻辑是离散数学中的重要分支,它研究的是推理和论证的规则。

在逻辑中,命题是最基本的逻辑单位。

复习时需要了解命题的定义和常见的逻辑运算符,如非、与、或、异或等。

此外,还需要熟悉命题的真值表和命题之间的逻辑等价关系。

通过解题和推理,可以提高对逻辑的理解和应用能力。

三、图论图论是离散数学中的一个重要分支,它研究的是图及其性质。

在图论中,我们需要了解图的基本概念,如顶点、边、路径、环等。

此外,还需要熟悉图的表示方法,如邻接矩阵和邻接表。

复习时可以通过解题来加深对图的理解,例如求最短路径、判断图的连通性等。

四、代数系统代数系统是离散数学中的一个重要内容,它研究的是代数结构及其性质。

在代数系统中,我们需要了解群、环、域等代数结构的定义和性质。

此外,还需要熟悉代数运算法则和代数结构之间的关系。

复习时可以通过解题来加深对代数系统的理解,例如证明一个集合构成一个群、判断一个环是否是域等。

五、概率论与统计学概率论与统计学是离散数学中的一个重要分支,它研究的是随机事件和随机变量的概率性质。

在概率论与统计学中,我们需要了解概率的定义和性质,掌握常见的概率分布和统计方法。

此外,还需要熟悉概率的运算法则和统计推断的基本原理。

复习时可以通过解题和实际问题的分析来加深对概率论与统计学的理解。

总之,离散数学作为计算机科学与数学领域中的重要学科,对于计算机科学专业的学生来说具有重要意义。

《离散数学》总复习上课讲义

《离散数学》总复习上课讲义
不是闭式的公式在某些解释下也可能是命题. 公式类型. 换名规则与代替规则
第3章 集合的基本概念和运算
3.1 集合的基本概念 3.2 集合的基本运算(重点) 3.3 集合中元素的计数(容斥原理是重点)
3.1 集合的基本概念
元素x与集合A的关系:属于xA,不属于xA 集合A与集合B的关系:习题3.2, 3.8, 3.12, 3.16
构造性二难
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC) 破坏性二难
习题1.18, 1.21, 1.17(2)。六1
注意事项1:命题
只有能确定真假(但不能可真可假)的陈述句才是 命题. 不管是正确的观点, 还是错误的观点, 都 是命题. 猜想和预言是命题, 如哥德巴赫猜想.
pq为假当且仅当 p 为真 q 为假,即 当p为假时,pq为真(不管q为真, 还是为假); 当q为真时,pq为真(不管p为真, 还是为假). 习题1.5(6)(7)
了解概念、掌握方法
真值表、命题公式类型 所有等值的含n个命题变项的公式对应同一
个n元真值函数F:{0,1}n{0,1};哑元 最小联结词组 对偶式与对偶原理 简单析取式、简单合取式 析取范式与合取范式 附加前提证明法、反证法
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B(x))xA(x)xB(x)
x(A(x)B(x))xA(x)xB(x)
注意事项1:前束范式(重点)
设A为一个一阶逻辑公式, 若A具有如下形式 Q(11xi1Qk2)x为2…或Qkx,kBB, 则为称不A含为量前词束的范公式式, 其. 中Qi
重要的推理定律 第一组 命题逻辑推理定律代换实例 第二组 由基本等值式生成(置换规则) 第三组 xA(x)xB(x)x(A(x)B(x))

离散数学知识汇总

离散数学知识汇总

离散数学笔记第一章命题逻辑合取析取定义 1. 1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义 1. 1.4条件联结词,表示“如果……那么……”形式的语句定义 1. 1.5双条件联结词,表示“当且仅当”形式的语句定义 1.2.1合式公式(1)单个命题变元、命题常元为合式公式,称为原子公式。

(2)若某个字符串A 是合式公式,则⌝A、(A)也是合式公式。

(3)若A、B 是合式公式,则A ∧B、A∨B、A→B、A↔B 是合式公式。

(4)有限次使用(2)~(3)形成的字符串均为合式公式。

1.3等值式1.4析取范式与合取范式将一个普通公式转换为范式的基本步骤1.6推理定义 1.6.1 设 A 与 C 是两个命题公式, 若 A → C 为永真式、 重言式,则称 C 是 A 的有 效结论,或称 A 可以逻辑推出 C ,记为 A => C 。

(用等值演算或真值表)第二章 谓词逻辑2.1、基本概念∀:全称量词 ∃:存在量词一般情况下, 如果个体变元的取值范围不做任何限制即为全总个体域时, 带 “全称量词”的谓词公式形如"∀x(H(x)→B(x)),即量词的后面为条件式,带“存在量词”的谓词公式形如∃x(H(x)∨WL(x)),即量词的后面为合取式 例题R(x)表示对象 x 是兔子,T(x)表示对象 x 是乌龟, H(x,y)表示 x 比 y 跑得快,L(x,y)表示x 与 y 一样快,则兔子比乌龟跑得快表示为: ∀x ∀y(R(x)∧T(y)→H(x,y))有的兔子比所有的乌龟跑得快表示为:∃x ∀y(R(x)∧T(y)→H(x,y))2.2、谓词公式及其解释定义 2.2.1、 非逻辑符号: 个体常元(如 a,b,c)、 函数常元(如表示22y x 的 f(x,y))、 谓词常元(如表示人类的 H(x))。

定义 2.2.2、逻辑符号:个体变元、量词(∀∃)、联结词(﹁∨∧→↔)、逗号、括号。

离散数学复习要点

离散数学复习要点

离散数学复习要点
题型:选择题、填空题、计算和证明题
(不用担心,考题不难,都是平时上课讲过的内容)
命题逻辑:
命题的判定和符号化(即命题的翻译).
会画命题公式的真值表.
理解成真赋值,小项.
含n个变元的不等价的命题公式有多少类.
求公式的主合取范式和主析取范式.
熟悉命题的等价公式(命题定律)和蕴涵公式(推理定律).
谓词逻辑:
命题的符号化,即带量词的谓词公式的翻译,包括一元谓词和二元谓词的翻译. 谓词公式中量词的作用域.
会求谓词公式的前束范式.
谓词逻辑中推理的证明(P,T规则 + EI,EG,UI,UG规则).
集合与关系:
子集概念,会求幂集,会求幂集中元素个数.
会求两个集合的笛卡尔积.
关系的性质:(反)自反性,(反)对称性,传递性。

弄清定义,会判断。

会求复合关系、逆关系.
会求自反/对称/传递闭包.
会证明等价关系.
等价关系与划分的相互转化.
图论:
基本概念: 简单图,多重图,零图,n阶完全图,结点的度.
握手定理及推论:图的度数之和=边数的两倍,边数=图的出度和=图的入度和.
无向图的连通性.
会判断有向图的强连通,单侧连通,弱连通性.
会求图(包括零图,完全图等)的点连通度、边连通度.
由邻接矩阵求结点的入度、出度,由邻接矩阵的幂求结点间长度为k的路的数目. 欧拉图的判定.
哈密顿图的判定: 理解必要条件;会证明充分条件.
好好复习! 预祝成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学复习要点第一章命题逻辑一、典型考查点1、命题的判断方法:陈述句真值唯一,特殊:反问句也是命题。

其它疑问句、祈使句、感叹句、悖论等皆不是。

详见教材P12、联结词运算定律┐∧∨→记住特殊的:1∧1⇔1,0∨0⇔0,1→0⇔0,11⇔1,00⇔1详见P53、命题符号化步骤:A划分原子命题,找准联结词。

特殊自然语言:不但而且,虽然但是用∧,只有P才Q,应为Q→P;除非P否则Q,应为┐P→Q。

B设出原子命题写出符号化公式。

详见P54、公式的分类判定(重言式、矛盾式、可满足式)方法:其一根据所有真值赋值情况,其二根据等价演算来判断。

详见P95、真值表的构造步骤:①命题变元按字典序排列,共有2n个真值赋值。

②对每个指派,以二进制数从小到大或从大到小顺序列出。

③若公式较复杂,可先列出各子公式的真值(若有括号,则应从里层向外层展开),最后列出所求公式的真值。

详见P8。

6、基本概念:置换规则,P规则,T规则,详见P24;合取范式,析取范式,详见P15;小项详见P16;大项详见P18,最小联结词组详见P157、等价式详见P22表1.6.2 证明方法:①真值表完全相同②用等价演算③利用A⇔B的充要条件是A⇒B且B⇒A。

主要等价式:(1)双否定:⎤⎤A⇔A。

(2)交换律:A∧B⇔B∧A,A∨B⇔B∨A,A↔B⇔B↔A。

3)结合律:(A∧B)∧C⇔A ∧(B∧C),(A∨B)∨C⇔A∨(B∨C),(A↔B)↔C⇔A↔(B↔C)。

(4) 分配律:A∧(B∨C)⇔(A∧B)∨(A∧C),A∨(B∧C)⇔(A∨B)∧(A∨C)。

(5) 德·摩根律:⎤(A∧B)⎤⇔A∨⎤B,⎤(A∨B)⎤⇔A∧⎤B。

(6) 等幂律:A∧A⇔A,A∨A⇔A。

(7) 同一律:A∧T⇔A,A∨F⇔A。

(8) 零律:A∧F⇔F,A∨T⇔T。

(9) 吸收律:A∧(A∨B)⇔A,A∨(A∧B)⇔A。

(10) 互补律:A∧⎤A⇔F,(矛盾律),A∨⎤A⇔T。

(排中律)(11) 条件式转化律:A→B⎤⇔A∨B,A→B⎤⇔B→⎤A。

(12) 双条件式转化律:A↔B⇔(A→B)∧(B→A)⇔(A∧B)∨(⎤A∧⎤B)8、蕴含式详见P23表1.6.3 证明方法:①前件真导后件真方法②后件假导前件假方法③真值表中,前件为真的行,后件也为真或者后件为假的行,前件也为假。

④用定义,证A⇒B,即证A→B是永真式。

9、范式求法步骤:①使用命题定律,消去公式中除∧、∨和⎤以外公式中出现的所有联结词;②使用⎤(⎤P)⇔P和德·摩根律,将公式中出现的联结词⎤都移到命题变元之前;③利用结合律、分配律等将公式化成析取范式或合取范式。

10、主范式的求法重点步骤:(a)把给定公式化成析取(合取)范式;(b)删除析取范式中所有为永假的简单合取(析取)式;(c)用等幂律化简简单合取(析取)式中同一命题变元的重复出现为一次出现,如P∧P⇔P。

(d)用同一律补进简单合取(析取)式中未出现的所有命题变元,如Q,则P⇔P∧(⎤Q∨Q)或P⇔P∨(⎤Q∧Q),并用分配律展开之,将相同的简单合取式的多次出现化为一次出现,这样得到了给定公式的主析取(合取)范式。

注意:主析取范式与主合取范式之间的联系。

例如:(P→Q)∧Q⇔m1∨m3⇔M0∧M2,即剩下的编码就是另一个主范式的编码,因此,求主范式,哪一个简单易求,就先求哪个,然后对应出所求结果。

详见P1611、推理证明:重点方法:演算、演绎法(常用的格式)、反证法、CP规则即附加前提等。

重点规则(主要蕴含式):(1) P∧Q⇒P化简(2) P∧Q⇒Q化简(3) P⇒P∨Q附加(4) ⎤P⇒P→Q变形附加(5)Q⇒P→Q变形附加(6) ⎤(P→Q)⇒P变形化简(7) ⎤(P→Q)⎤⇒Q变形化简(8) P,(P→Q)⇒Q假言推理(9) ⎤Q,(P→Q)⎤⇒P拒取式(10) ⎤P,(P∨Q)⇒Q析取三段论(11) (P→Q),(Q→R)⇒P→R条件三段论(12) (P↔Q),(Q↔R)⇒P↔R 双条件三段论文字证明推理三步:一命题符号化,二写出前提和结论,三进行证明。

详见P21二、强化练习1.命题的是( )A.走,看电影去B.x+y>0C.空集是任意集合的真子集D.你明天能来吗?2.下列式子为重言式的是( )A.P→P∨QB.(┐P∧Q)∧(P∨┐Q)C.┐ (P Q)D.(P∨Q) (P→Q)3.下列为两个命题变元P,Q的小项是()A.P∧Q∧⎤ P B.⎤ P∨Q C.⎤ P∧Q D.⎤ P∨P∨Q4.下列语句中是真命题的是()A.我正在说谎B.严禁吸烟C.如果1+2=3,那么雪是黑的D.如果1+2=5,那雪是黑的5.设P:我们划船,Q:我们跑步。

命题“我们不能既划船又跑步”符号化为()A.⎤ P∧⎤ Q B.⎤ P∨⎤ Q C.⎤(P↔Q) D.⎤(⎤ P∨⎤ Q)6.命题公式(P∧(P→Q))→Q是()A.矛盾式B.蕴含式C.重言式D.等价式7.命题公式⎤(P∧Q)→R的成真指派是()A.000,001,110,B.001,011,101,110,111 C.全体指派D.无8.设P:他聪明,Q:他用功,命题“他虽聪明但不用功”的符号化正确的是()A .⎤ P ∧QB .P ∧⎤ QC .P →⎤ QD .P ∨⎤ Q9.下面联结词运算不可交换的是( )A .∧ B .→ C .∨ D .10下列命题公式不是重言式的是( )A .Q →(P ∨Q )B .(P ∧Q )→PC .⎤(P ∧⎤ Q )∧(⎤ P ∨Q )D .(P →Q )(⎤ P ∨Q )11.设命题变元为P ,Q ,R ,则小项m100=________,大项M010=________。

12.置换规则:在证明的任何步骤上,命题公式中的任何子命题公式都可以________,记为________规则。

13.请用联结词┐,∧表示联结词∨和联结词 :________,________。

14.两个重言式的析取是________式,一个重言式与一个矛盾式的析取是________式。

15.命题公式(P ∧Q )→⎤ P 的成真指派为__________,成假指派为__________。

16.用等值演算求(P →Q)→R 的主合取范式。

17.列出(P →(Q ∨R)) (P →Q)的真值表。

19.构造命题公式((P ∧Q )→P )∨R 的真值表。

20.求下列公式的主合取范式和主析取范式:P ∨(⎤ P →(Q ∨(⎤ Q →R )))21.构造命题公式(R Q Q P ∧→∨)→P ∧⎤ R 的真值表。

22.求下列公式的主析取范式和主合取范式:(P →(Q ∧R ))∧(⎤ P →(⎤ Q →R ))。

23.用推理方法证明:P ∨Q ,P →R ,Q →S├R ∨S 。

24.构造下面推理的证明。

如果小张和小王去看电影,则小李也去看电影。

小赵不去看电影或小张去看电影。

小王去看电影。

所以,当小赵去看电影时,小李也去。

25.构造下面推理的证明。

只要A 曾到过受害者房间并且11点以前没离开,A 就犯了谋杀罪。

A 曾到过受害者房间。

如果在11点以前离开,看门人会看见他。

看门人没有看见他。

所以A 犯了谋杀罪。

离散数学复习要点 第二章谓词逻辑一、典型考查点1、基本概念:个体词、个体域、谓词、特性谓词、辖域,详见P27;前束范式详见P362、谓词符号化 步骤:①正确理解给定命题。

必要时把命题改叙,使其中每个原子命题、原子命题之间的关系能明显表达出来。

②把每个原子命题分解成个体、谓词和量词;在全总论域讨论时,要给出特性谓词。

③找出恰当量词。

应注意全称量词(∀x)后跟条件式,存在量词(∃x)后跟合取式。

④用恰当的联结词把给定命题表示出来。

详见P303、谓词公式类型的判定(永真式、永假式、可满足式) 方法:利用论域翻译成自然语言后进行判断。

详见P344、自由变元与约束变元的判定 方法:按定义,关键是要看它在A 中是约束出现,还是自由出现,若与量词的指导变元相同,就是约束出现,不同就是自由出现。

详见P31。

5、等价式 (1)量词否定等价式:(a)⎤(∀x)A ⇔(∃x)⎤A(b)⎤(∃x)A ⇔(∀x)⎤A(2) 量词辖域缩小或扩大等价式(a) (∀x)(A(x)∧B)⇔(∀x)A(x)∧B (b) (∀x)(A(x)∨B)⇔(∀x)A(x)∨B(c) (∀x)(A(x)→B)⇔(∃x)A(x)→B (d) (∀x)(B →A(x))⇔B →(∀x)A(x)(e) (∃x)(A(x)∧B)⇔(∃x)A(x)∧B (f) (∃x)(A(x)∨B)⇔(∃x)A(x)∨B(g) (∃x)(A(x)→B)⇔(∀x)A(x)→B (h) (∃x)(B →A(x))⇔B →(∃x)A(x)。

(3) 量词分配律等价式:(a) (∀x)(A(x)∧B(x))⇔(∀x)A(x)∧(∀x)B(x) (b)(∃x)(A(x)∨B(x))⇔(∃x)A(x)∨(∃x)B(x)其中,A(x),B(x)为有x 自由出现的任何公式。

详见P34356、蕴含式(a)(∀x)A(x)∨(∀x)B(x)⇒(∀x)(A(x)∨B(x))(b) (∃x)(A(x)∧B(x))⇒(∃x)A(x)∧(∃x)B(x)(c) (∀x)(A(x)→B(x))⇒(∀x)A(x)→(∀x)B(x)(d) (∀x)(A(x)→B(x))⇒(∃x)A(x)→(∃x)B(x)其中,A(x)和B(x)为含有x 自由出现的任意公式。

详见P356、前束范式 方法:①把量词全部通过等值演算化到整个谓词公式的前面②把量词前面的┐全部通过德摩根定律化到谓词公式的内部。

详见P367、推理:方法:演绎(常用格式)、反证法、CP 规则即附加前提等。

对于命题逻辑中的所有规则都可用。

特殊规则:(1)量词消去 (简称UI 或US 规则) (∀x)A(x)⇒A(c) (∀x)A(x)⇒A(y) (∃x)A(x)⇒A(c)量词产生规则(简称EG 或UG 规则) A(c)⇒(∃y)A(y) A(x)⇒(∀y)A(y) 详见P38二、强化练习1.下列式子不是谓词合式公式的是( )A.(∀x)(P(x)→(∃x)(Q(x) ∧A(x ,y)))B.(∀x)∧(∃y)∨P(x ,y)C.(∀x)P(x)→R(y)D.(∃x)P(x)∧Q(y ,z)2.设个体域为实数集,特定元素a=0,函数f(x ,y)=x-y ,特定谓词F(x ,y)为x<y ,下列公式真值为真的是( )A.(∀x)(∀y)F(x ,f(f(x ,y),y))B.(∀x)(∀y)(┐F(f(x ,y),x))C.(∀x)(∀y)(∀z)(F(x ,y)→F(f(x ,z),f(y ,z)))D.(∀x)F(f(a ,x),a)3.对于公式(∀x)(∀y)P(x ,y)∨Q(x ,z)∧(∃x)P(x ,y),下列说法正确的是( )A.x 是自由变元B.x 是约束变元C.( ∀x)的辖域是P(x ,y)∨Q(x ,z)D.(∀x)的辖域是P(x ,y)4.设论域为{1,2},与公式(∀x)┐A(X)等价的是( )A. ┐A(1) ∨┐A(2) B . ┐A(1)→┐(A2)C. ┐A(1) ∧┐A(2)D. A(1) →A(2)5.在公式(x ∀)F (x ,y )→(∃ y )G (x ,y )中变元x 是( )A .自由变元B .约束变元C .既是自由变元,又是约束变元D .既不是自由变元,又不是约束变元6.下列等价式不正确的是( )A .)(Q )(P ))(Q )(P (x x x x x x x ∀∨∀⇔∨∀B .)(Q )(P ))(Q )(P (x x x x x x x ∀∧∀⇔∧∀C .)(Q )(P ))(Q )(P (x x x x x x x ∃∨∃⇔∨∃D .Q )(P )Q )(P (∧∀⇔∧∀x x x x7.设A (x ):x 是人,B (x ):x 犯错误,命题“没有不犯错误的人”符号化为( )A .))(B )(A (x x x ∧∀ B .⎤→∃)(A (x x ⎤ B (x ))C .⎤))(B )(A (x x x ∧∃D .⎤∧∃)(A (x x ⎤ B(x))二、填空题8.一个公式,如果量词均在全式的________,其作用域延伸到整个公式的________,则该公式称为前束范式。

相关文档
最新文档