人教A版高中数学必修5数学导学案基本不等式 (2)

合集下载

人教A版高中数学必修5《基本不等式》精品教案

人教A版高中数学必修5《基本不等式》精品教案

人教A版高中数学必修5《基本不等式》精品教案课题: 基本不等式:2ba ab +≤(第一课时)教材:人教版高中课程标准实验教科书《数学·必修5》第三章第四节 1 教材分析本节书介绍了两个不等式定理:(1)、如果R b R a ∈∈,,那么ab b a 222≥+①;(2)、如果0,0>>b a ,那么2ba ab +≤②。

这两个定理是解决一些数学问题和实际应用问题的重要的数学方法。

本节书教学共需3课时,这是第一课时,主要是了解探索基本不等式的证明过程,熟悉基本不等式的结构,为下节基本不等式的应用做准备(以下用①②代替两个定理)。

2 学生分析有了前面“不等式性质”的学习,学生要理解这两个定理难度并不大。

针对学生求知欲旺盛的特点,在教学中,以思考、探索、讨论为主要方法,适当加以讲解,使学生自己收获结论、总结方法,动手解决实际问题,并且增强学习数学的的信心。

3 教学策略(1)、以“孔融选蛋糕”为例引入,课件辅助,引导学生探究①的证明,并总结证明方法;利用正方形和弦图让学生了解①的几何意义,同时介绍“国际数学家大会”,培养学生的民族自豪感和使命感。

(2)、利用①式,通过“换元法”练习引入定理②,引导学生从不同角度探究②的证明过程,利用“半径和半弦的关系”让学生了解②的几何意义,并强调①②的联系与区别。

(3)、巩固练习。

设置三道习题由浅到深让学生对基本不等式逐渐熟悉,应用它们去比较大小、解决生活常见问题,最后让学生通过替换定理中的字母发现更多②式有趣的变形式,为下一节课铺垫。

4 教学目标(1)、知识目标了解不等式①②的证明过程和方法;了解不等式①②的几何意义;初步应用基本不等式比较大小,熟悉其变形式。

(2)、能力目标通过探究结果的汇报以及讨论活动,提高学生语言表达能力;在对不等式①②的证明过程中培养学生发现、比较、论证、转化等分析问题和解决问题的能力;通过掌握不等式①②的结构特点和运用不等式①②的适当变形,培养学生的思维能力和创新精神。

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A版必修5

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A版必修5

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A 版必修5【学习目标】1学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.通过实例探究抽象基本不等式;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣【自主学习】阅读教材P97—98,找出疑惑之处。

问题1: 对于任意实数 a 、b ,我们有22b a + ab 2,当且仅当 时,等号成立。

你能给出它的证明吗?问题2:对于任意正实数 a 、b ,我们有b a + ab 2,当且仅当 时,等号成立。

(的算术平均数,为正数称b a b a ,2+ . , 的几何平均数为正数b a ab ) 你能给出它不同的证明方法吗?问题3:0x >时,当x 取何值时,1x x+的值最小?最小值是多少?【合作探究】例1、(1)用篱笆围一个面积为1002m 的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。

最大面积是多少?【目标检测】(A 级、全体学生做)1、已知x >0,若xx 81+的值最小,则x 为 2、若实数a 、b 满足,2=+b a 则b a 33+的最小值为3、已知直角三角形的面积等于50,两条直角边各为多少时,两条直角边的和最小,最小是多少?4、用20cm 长的铁丝折成一积个面最大的矩形,应当怎样折?(B 级选做题)当1->x 时,求函数113)(2++-=x x x x f 的值域。

学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些没学懂?3.4基本不等式2b a ab +≤(第二课时) 【学习目标】1 、会应用基本不等式求某些函数的最值,能够解决一些简单的实际问题;2 、能综合运用函数关系,不等式知识解决一些实际问题.【自主学习】)0,0(>>b a ,当 时等号成立。

四川省成都市石室中学高中数学 3.4 基本不等式2教案

四川省成都市石室中学高中数学 3.4 基本不等式2教案

四川省成都市石室中学高中数学 3.4 基本不等式2教案 新人教A版必修5以培养学生探究精神为出发点,着眼于知识的生成和发展,着眼于学生的学习体验,设置问题,由浅入深、循序渐进,给不同层次的学生提供思考、创造和成功的机会。

特进行如下教学设计:(一)设问激疑,创设情景展示北京召开的第24届国际数学家大会的会标,让学生思考, 图案由哪些几何图形拼凑而成,由此你能否找到一些相等或不等关系?接着通过三个问题问题1:设CG=a,DG=b,正方形ABCD 的面积为S= ;问题2:四个全等直角三角形的面积之和为'S = ;问题3:S 与'S 有什么样的大小关系?引导学生通过面积关系得到重要不等式222a b ab +≥,进一步启发学生什么时候这两部分面积相等。

设计意图: 充分体现学生的主体地位,给学生创造联想的空间。

三个问题的设置引导学生逐步探索,最终通过自己的发现而得到重要不等式,并且明确等号成立时的情形。

分步设问有效排除了障碍,又显得水到渠成。

接着提出问题:当,a b 为任意实数时,222a b ab +≥成立吗?若成立,请给出证明. 设计意图:让学生利用前面学过的比较法结合初中学习的完全平方公式给出代数证明。

让学生由直观感觉上升到理性证明,既体现数学的严谨性,又巩固了比较法的应用。

(二)乘胜追击,得出结论提出新的问题:若0,0a b >>用b a ,分别代替222a b ab +≥中的,a b 又能得到什么结果?设计意图:让学生亲自完成代换过程,亲身体验知识的生成过程,既在无形中渗透了代换的思想,又拓展了学生的思维。

通过代换得到2a b ab +≥后,强调常写成2a b ab +≤种形式,为后面两个概念埋下伏笔,继而引导学生挖掘该式适用的范围及等号成立的条件。

(三)多法证明,趣味无穷(1)继续让学生思考该式的证明方法,再次巩固前面学过的比较法和初中学习的完全平方公式,让学生体会证明前后两个不等式方法上的类比思想。

高中数学人教版A版必修五学案:§3.4 基本不等式:√ab≤(a+b)2 (二)

高中数学人教版A版必修五学案:§3.4 基本不等式:√ab≤(a+b)2 (二)

[学习目标]1.熟练掌握基本不等式及其变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点一基本不等式求最值1.理论依据:(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值,且这个值为s 24. (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值,且这个值为2p .2.基本不等式求最值的条件:(1)x ,y 必须是正数;(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.3.利用基本不等式求最值需注意的问题:(1)各数(或式)均为正.(2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性.知识点二基本不等式在实际中的应用基本不等式在实际中的应用是指利用基本不等式解决生产、科研和日常生活中的问题.解答不等式的应用题一般可分为四步:(1)阅读并理解材料;(2)建立数学模型;(3)讨论不等关系;(4)作出结论.题型一利用基本不等式求最值例1(1)已知x ≥52,则f (x )=x 2-4x +52x -4有() A .最大值54B .最小值54C .最大值1D .最小值1(2)已知t >0,则函数y =t 2-4t +1t的最小值为____. (3)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为____. 答案(1)D(2)-2(3)3解析(1)f (x )=x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎡⎦⎤(x -2)+1x -2≥1. 当且仅当x -2=1x -2,即x =3时,等号成立. (2)y =t 2+1-4t t =t +1t-4≥2-4=-2, 当且仅当t =1t,即t =1或t =-1(舍)时,等号成立, ∴y 的最小值为-2.(3)xy =12·⎝⎛⎭⎫x 3·y 4≤12·⎝ ⎛⎭⎪⎫x 3+y 422 =12·⎝⎛⎭⎫122=3, 当且仅当x 3=y 4=12,即x =32,y =2时,等号成立, ∴xy 的最大值为3.反思与感悟在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.跟踪训练1(1)设a >b >0,则a 2+1ab +1a (a -b )的最小值是() A .1B .2C .3D .4(2)已知x ,y 为正数,且2x +y =1,则1x +1y的最小值为________. 答案(1)D(2)3+2 2解析(1)a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2+2=4.当且仅当a (a -b )=1且ab =1,即a =2,b =22时取“=”. (2)由2x +y =1,得1x +1y =2x +y x +2x +y y=3+y x +2x y≥3+2y x ·2x y=3+22, 当且仅当y x =2x y, 即x =2-22,y =2-1时,等号成立. 题型二基本不等式的综合应用例2(1)已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy () A .有最大值eB .有最大值 eC .有最小值eD .有最小值 e答案C 解析由题意得⎝⎛⎭⎫142=14ln x ln y , ∴ln x ln y =14, ∵x >1,y >1,∴ln x ln y >0,又ln(xy )=ln x ln y ≥2ln x ln y =1,∴xy ≥e ,即xy 有最小值为e.(2)若对任意x >0,x x 2+3x +1≤a 恒成立,求a 的取值范围. 解设f (x )=x x 2+3x +1=1x +1x +3, ∵x >0,∴x +1x≥2,∴f (x )≤15,即f (x )max =15, ∴a ≥15. 反思与感悟将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有:(1)f (x )>a 恒成立⇔a <f (x )min .(2)f (x )<a 恒成立⇔a >f (x )max .跟踪训练2(1)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为() A .2B .4C .1D.12(2)函数y =kx +2k -1的图象恒过定点A ,若点A 又在直线mx +ny +1=0上,则mn 的最大值为________.答案(1)B(2)18解析(1)由题意得,3a ·3b =(3)2,即a +b =1,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·a b =4, 当且仅当b a =a b ,即a =b =12时,等号成立. (2)y =k (x +2)-1必经过(-2,-1),即点A (-2,-1),代入得-2m -n +1=0,∴2m +n =1,∴mn =12(2mn )≤12·⎝⎛⎭⎫2m +n 22=18, 当且仅当2m =n =12时,等号成立. 题型三基本不等式的实际应用例3要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,请确定广告的高与宽的尺寸(单位:cm),使矩形广告面积最小,并求出最小值.解设矩形栏目的高为a cm ,宽为b cm ,ab =9000.①广告的高为a +20,宽为2b +25,其中a >0,b >0.广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500=18500+25a +40b ≥18500+225a ×40b=18500+21000ab =24500.当且仅当25a =40b 时,等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24500,故广告的高为140cm ,宽为175cm 时,可使广告的面积最小,最小值为24500cm 2. 反思与感悟利用基本不等式解决实际问题的步骤(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数.(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题.(3)在定义域内,应用基本不等式求出函数的最大值或最小值.(4)正确写出答案.跟踪训练3一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝⎛⎭⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.答案8解析设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝⎛⎭⎫v 202v =400v +16v 400≥2400v ×16v 400=8(小时), 当且仅当400v =16v 400,即v =100时,等号成立, 此时t =8小时.1.下列函数中,最小值为4的函数是() A .y =x +4xB .y =sin x +4sin x(0<x <π) C .y =e x +4e -xD .y =log 3x +log x 81答案C解析A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C.2.函数y =x 2-x +1x -1(x >1)在x =t 处取得最小值,则t 等于() A .1+2B .2C .3D .4答案B解析y =x (x -1)+1x -1=x +1x -1=x -1+1x -1+1 ≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立. 3.将一根铁丝切割成三段做一个面积为2m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是()A .6.5mB .6.8mC .7mD .7.2m答案C解析设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C.4.函数f (x )=x (4-2x )的最大值为________.答案2解析①当x ∈(0,2)时,x ,4-2x >0,f (x )=x (4-2x )≤12⎣⎡⎦⎤2x +(4-2x )22=2,当且仅当2x =4-2x ,即x =1时,等号成立.②当x ≤0或x ≥2时,f (x )≤0,故f (x )max =2.5.当x <54时,函数y =4x -2+14x -5的最大值为________. 答案1解析∵x <54,∴4x -5<0, ∴y =4x -5+14x -5+3 =-⎣⎡⎦⎤(5-4x )+15-4x +3 ≤-2(5-4x )·15-4x+3=1 当且仅当5-4x =15-4x,即x =1时,等号成立.1.用基本不等式求最值(1)利用基本不等式求最值要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数y =x +p x(p >0)的单调性求得函数的最值.2.求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答.。

高中数学 第二章 一元二次函数、方程和不等式 2.2.2 利用基本不等式求最值学案 新人教A版必修第

高中数学 第二章 一元二次函数、方程和不等式 2.2.2 利用基本不等式求最值学案 新人教A版必修第

第2课时 利用基本不等式求最值1.会用基本不等式解决简单的最大(小)值问题. 2.能够运用基本不等式解决生活中的应用问题.基本不等式与最值 已知x ,y 都是正数,(1)如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.温馨提示:从上面可以看出,利用基本不等式求最值时,必须有:(1)x 、y >0,(2)和(积)为定值,(3)存在取等号的条件.判断正误(正确的打“√”,错误的打“×”) (1)若a >0,b >0,且a +b =16,则ab ≤64.( ) (2)若ab =2,则a +b 的最小值为2 2.( ) (3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2xx -1.( )(4)若x ∈R ,则x 2+2+1x 2+2≥2.( ) [答案] (1)√ (2)× (3)× (4)×题型一利用基本不等式求最值【典例1】 (1)若x >0,求y =4x +9x的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值; (4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[思路导引] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0, ∴由基本不等式得y =4x +9x≥24x ·9x=236=12,当且仅当4x =9x ,即x =32时,y =4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0, ∴x +4x -2=(x -2)+4x -2+2 ≥2(x -2)·4x -2+2=6. 当且仅当x -2=4x -2, 即x =4时,x +4x -2取最小值6. (4)∵x >0,y >0,1x +9y=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y =10+y x +9x y≥10+29=16.当且仅当y x =9x y 且1x +9y=1时等号成立, 即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.[变式] (1)本例(3)中,把“x >2”改为“x <2”,则x +4x -2的最值又如何? (2)本例(3)中,条件不变,改为求x 2-2x +4x -2的最小值.[解] (1)∵x <2,∴2-x >0, ∴x +4x -2=x -2+4x -2+2=-⎣⎢⎡⎦⎥⎤(2-x )+42-x +2≤-2 (2-x )·42-x+2=-2.当且仅当2-x =42-x,即x =0时,x +4x -2取最大值-2. (2)x 2-2x +4x -2=(x -2)2+2(x -2)+4x -2=x -2+4x -2+2≥2 (x -2)·4x -2+2=6 当且仅当x -2=4x -2,即x =4时,原式有最小值6.(1)若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形、合理拆分项或配凑因式.(2)若多次使用基本不等式,等号成立的条件应相同. [针对训练]1.已知x ,y >0,且满足x 3+y4=1,则xy 的最大值为________.[解析] ∵x ,y >0, ∴x 3+y 4=1≥2 xy12, 得xy ≤3,当且仅当x 3=y 4即x =32,y =2时,取“=”号,∴xy 的最大值为3.[答案] 32.已知x ,y >0,且x +y =4,则1x +3y的最小值为________.[解析] ∵x ,y >0,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x+3x y ≥4+23,当且仅当y x =3xy, 即x =2(3-1),y =2(3-3)时取“=”号, 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. [答案] 1+323.若x <3,则实数f (x )=4x -3+x 的最大值为________. [解析] ∵x <3,∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时取“=”号.∴f (x )的最大值为-1. [答案] -1题型二利用基本不等式解决实际问题【典例2】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围 36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?[思路导引] 设每间虎笼长x m ,宽y m ,则问题是在4x +6y =36的前提下求xy 的最大值.[解] (1)设每间虎笼长x m ,宽为y m ,则由条件知4x +6y =36,即2x +3y =18. 设每间虎笼面积为S ,则S =xy .解法一:由于2x +3y ≥22x ·3y =26xy , ∴26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3.故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 解法二:∵2x +3y =18,∴S =xy =16·(2x )·(3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=816=272.(以下同解法一)(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y . ∵2x +3y ≥22x ·3y =26xy =24,∴l =4x +6y =2(2x +3y )≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.解决实际问题时,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).[针对训练]4.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000 m 2的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)[解] 设将楼房建为x 层,则每平方米的平均购地费用为2160×1042000 x =10800x .于是每平方米的平均综合费用y =560+48x +10800x=560+48⎝ ⎛⎭⎪⎫x +225x (x ≥10),当x +225x取最小时,y 有最小值.∵x >0,∴x +225x≥2x ·225x=30,当且仅当x =225x,即x =15时,上式等号成立.∴当x =15时,y 有最小值2000元.因此该楼房建为15层时,每平方米的平均综合费用最小.课堂归纳小结1.利用基本不等式求最大值或最小值时应注意: (1)x ,y 一定要都是正数;(2)求积xy 最大值时,应看和x +y 是否为定值;求和x +y 最小值时,应看积xy 是否为定值;(3)等号是否能够成立.以上三点可简记为“一正、二定、三相等”.2.利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用.3.求解应用题的方法与步骤(1)审题;(2)建模(列式);(3)解模;(4)作答.1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( )A.13B.12C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.[解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.课后作业(十二)复习巩固一、选择题1.当x >0时,y =12x+4x 的最小值为( )A .4B .8C .8 3D .16 [解析] ∵x >0,∴12x >0,4x >0.∴y =12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,y 的最小值为8 3.[答案] C2.设x ,y 为正数,则(x +y )⎝⎛⎭⎪⎫1x +4y的最小值为( ) A .6 B .9 C .12D .15[解析] (x +y )⎝ ⎛⎭⎪⎫1x +4y =x ·1x +4x y +y x +y ·4y =1+4+4x y +y x ≥5+24x y ·yx=9.[答案] B3.若x >0,y >0,且2x +8y=1,则xy 有( )A .最大值64B .最小值164C .最小值12D .最小值64[解析] 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.[答案] D4.已知p >0,q >0,p +q =1,且x =p +1p ,y =q +1q,则x +y 的最小值为( )A .6B .5C .4D .3[解析] 由p +q =1,∴x +y =p +1p +q +1q =1+1p +1q=1+⎝ ⎛⎭⎪⎫1p +1q (p +q )=1+2+q p +p q ≥3+2q p ·pq=5,当且仅当q p =p q 即p =q =12时取等号,所以B 选项是正确的. [答案] B 5.若a <1,则a +1a -1有最________(填“大”或“小”)值,为________. [解析] ∵a <1, ∴a -1<0, ∴-⎝⎛⎭⎪⎫a -1+1a -1=(1-a )+11-a≥2, ∴a -1+1a -1≤-2, ∴a +1a -1≤-1. 当且仅当a =0时取等号. [答案] 大 -1 二、填空题6.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.[解析] 由x (3-3x )=13×3x (3-3x )≤13×⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时等号成立.[答案] 127.已知正数x ,y 满足x +2y =1,则1x +1y的最小值为________.[解析] ∵x ,y 为正数,且x +2y =1, ∴1x +1y=(x +2y )⎝ ⎛⎭⎪⎫1x +1y =3+2y x +x y≥3+22,当且仅当2y x =x y ,即当x =2-1,y =1-22时等号成立.∴1x +1y的最小值为3+2 2.[答案] 3+2 28.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.[解析] 每年购买次数为400x次.∴总费用=400x·4+4x ≥26400=160,当且仅当1600x=4x ,即x =20时等号成立.[答案] 20 三、解答题9.已知a ,b ,x ,y >0,x ,y 为变量,a ,b 为常数,且a +b =10,a x +by=1,x +y 的最小值为18,求a ,b .[解] x +y =(x +y )⎝⎛⎭⎪⎫a x +by=a +b +bx y +ay x≥a +b +2ab =(a +b )2, 当且仅当bx y =ayx时取等号. 故(x +y )min =(a +b )2=18, 即a +b +2ab =18,① 又a +b =10,②由①②可得{ a =2,b =8或{ a =8,b =2. 10.(1)已知x <3,求f (x )=4x -3+x 的最大值; (2)设x >0,y >0,且2x +8y =xy ,求x +y 的最小值. [解] (1)∵x <3,∴x -3<0. ∴f (x )=4x -3+x =4x -3+x -3+3 =-⎝⎛⎭⎪⎫43-x +3-x +3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时取等号,∴f (x )的最大值为-1.(2)解法一:由2x +8y -xy =0,得y (x -8)=2x ,∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2x x -8=x +(2x -16)+16x -8 =(x -8)+16x -8+10 ≥2(x -8)×16x -8+10 =18. 当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18.解法二:由2x +8y -xy =0及x >0,y >0,得8x +2y=1, ∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =8y x +2x y +10≥2 8y x ·2x y+10 =18.当且仅当8y x =2x y,即x =2y =12时等号成立, ∴x +y 的最小值是18.综合运用11.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( ) A.72 B .4 C.92D .5 [解析] ∵a +b =2,∴a +b2=1,∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝ ⎛⎭⎪⎫a +b 2=52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+22a b ·b 2a =92(当且仅当2a b =b 2a ,即b =2a 时,“=”成立),故y =1a +4b 的最小值为92. [答案] C12.若xy 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A .3 B.72 C .4 D.92[解析] ⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2 =x 2+y 2+14⎝ ⎛⎭⎪⎫1x 2+1y 2+x y +y x=⎝ ⎛⎭⎪⎫x 2+14x 2+⎝ ⎛⎭⎪⎫y 2+14y 2+⎝ ⎛⎭⎪⎫x y +y x ≥1+1+2=4.当且仅当x =y =22或x =y =-22时取等号. [答案] C13.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________. [解析] 因为x >0,所以x +1x≥2, 当且仅当x =1时取等号,所以有x x 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. [答案] ⎣⎢⎡⎭⎪⎫15,+∞ 14.设x >-1,则函数y =(x +5)(x +2)x +1的最小值是________. [解析] ∵x >-1,∴x +1>0,设x +1=t >0,则x =t -1,于是有y =(t +4)(t +1)t =t 2+5t +4t=t +4t +5≥2t ·4t +5=9, 当且仅当t =4t,即t =2时取等号,此时x =1, ∴当x =1时,函数y =(x +5)(x +2)x +1取得最小值9.[答案] 915.阳光蔬菜生产基地计划建造一个室内面积为800 m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?[解] 设矩形温室的一边长为x m ,则另一边长为800xm(2<x <200).依题意得种植面积:S =(x -2)⎝ ⎛⎭⎪⎫800x -4=800-1600x -4x +8 =808-⎝ ⎛⎭⎪⎫1600x +4x ≤808-21600x ·4x =648, 当且仅当1600x =4x ,即x =20时,等号成立.即当矩形温室的一边长为20 m ,另一边长为40 m 时种植面积最大,最大种植面积是648 m 2.。

2020高中数学 第三章 不等式 阶段复习课 第3课 不等式学案 新人教A版必修5

2020高中数学 第三章 不等式 阶段复习课 第3课 不等式学案 新人教A版必修5

第三课 不等式[核心速填]1.比较两实数a ,b 大小的依据a -b >0⇔a >b .a -b =0⇔a =b .a -b <0⇔a <b .2.不等式的性质3.Ax +By +C (B >0)⎩⎪⎨⎪⎧>0<0表示对应直线⎩⎪⎨⎪⎧上下方区域.4.二元一次不等式组表示的平面区域每个二元一次不等式所表示的平面区域的公共部分就是不等式组所表示的区域. 5.两个不等式[题型探究]一元二次不等式的解法[探究问题]1.当a >0时,若方程ax 2+bx +c =0有两个不等实根α,β且α<β,则 不等式ax 2+bx +c >0的解集是什么?提示:借助函数f (x )=ax 2+bx +c 的图象可知,不等式的解集为{x |x <α或x >β}.2.若[探究1]中的a <0,则不等式ax 2+bx +c >0的解集是什么? 提示:解集为{x |α<x <β}.3.若一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac <0,则ax 2+bx +c >0的解集是什么?提示:当a >0时,不等式的解集为R ;当a <0时,不等式的解集为∅.若不等式组⎩⎪⎨⎪⎧x 2-x -2>02x 2+2k +5x +5k <0的整数解只有-2,求k 的取值范围.【导学号:91432361】思路探究:不等式组的解集是各个不等式解集的交集,分别求解两个不 等式,取交集判断.[解] 由x 2-x -2>0,得x <-1或x >2.对于方程2x 2+(2k +5)x +5k =0有两个实数解x 1=-52,x 2=-k .(1)当-52>-k ,即k >52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-k <x <-52,显然-2∉ ⎝ ⎛⎭⎪⎫-k ,-52.(2)当-k =-52时,不等式2x 2+(2k +5)x +5k <0的解集为∅.(3)当-52<-k ,即k <52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52<x <-k. ∴不等式组的解集由⎩⎪⎨⎪⎧x <-1,-52<x <-k ,或⎩⎪⎨⎪⎧x >2,-52<x <-k 确定.∵原不等式组整数解只有-2, ∴-2<-k ≤3,故所求k 的范围是-3≤k <2.母题探究:.(变条件,变结论)若将例题改为“已知a ∈R ,解关于x 的不 等式ax 2-2x +a <0”.[解] (1)若a =0,则原不等式为-2x <0,故解集为{x |x >0}. (2)若a >0,Δ=4-4a 2.①当Δ>0,即0<a <1时,方程ax 2-2x +a =0的两根为x 1=1-1-a 2a ,x 2=1+1-a 2a,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a . ②当Δ=0,即a =1时,原不等式的解集为∅. ③当Δ<0,即a >1时,原不等式的解集为∅. (3)若a <0,Δ=4-4a 2.①当Δ>0,即-1<a <0时,原不等式的解集为错误!. ②当Δ=0,即a =-1时,原不等式可化为(x +1)2>0, ∴原不等式的解集为{x |x ∈R 且x ≠-1}. ③当Δ<0,即a <-1时,原不等式的解集为R . 综上所述,当a ≥1时,原不等式的解集为∅;当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a ; 当a =0时,原不等式的解集为{x |x >0};当-1<a <0时,原不等式的解集为错误!;当a =-1时,原不等式的解集 为{x |x ∈R 且x ≠-1};当a <-1时,原不等式的解集为R . [规律方法] 不等式的解法 (1)一元二次不等式的解法.①将不等式化为ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)的形式; ②求出相应的一元二次方程的根或利用二次函数的图象与根的判别式确 定一元二次不等式的解集.,(2)含参数的一元二次不等式.,解题时应先看二次项系数的正负,其次考 虑判别式,最后分析两根的大小,此种情况讨论是必不可少的.不等式恒成立问题已知不等式mx 2-mx -1<0.(1)若x ∈R 时不等式恒成立,求实数m 的取值范围; (2)若x ∈[1,3]时不等式恒成立,求实数m 的取值范围;(3)若满足|m |≤2的一切m 的值能使不等式恒成立,求实数x 的取值范围.【导学号:91432362】思路探究:先讨论二次项系数,再灵活的选择方法解决恒成立问题. [解] (1)①若m =0,原不等式可化为-1<0,显然恒成立;②若m ≠0,则不等式mx 2-mx -1<0 恒成立⇔⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0.综上可知,实数m 的取值范围是(-4,0]. (2)令f (x )=mx 2-mx -1,①当m =0时,f (x )=-1<0显然恒成立; ②当m >0时,若对于x ∈[1,3]不等式恒成立,只需⎩⎪⎨⎪⎧f 1<0,f3<0即可,∴⎩⎪⎨⎪⎧f 1=-1<0,f3=9m -3m -1<0,解得m <16,∴0<m <16.③当m <0时,函数f (x )的图象开口向下,对称轴为x =12,若x ∈[1,3]时不等式恒成立,结合函数图象(图略)知只需f (1)<0即可,解得m ∈R ,∴m <0符合题意.综上所述,实数m 的取值范围是⎝ ⎛⎭⎪⎫-∞,16. (3)令g (m )=mx 2-mx -1=(x 2-x )m -1,若对满足|m |≤2的一切m 的值不等式恒成立,则只需⎩⎪⎨⎪⎧g-2<0,g 2<0,即⎩⎪⎨⎪⎧-2x 2-x -1<0,2x 2-x -1<0,解得1-32<x <1+32.∴实数x 的取值范围是⎝⎛⎭⎪⎫1-32,1+32.[规律方法] 对于恒成立不等式求参数范围的问题常见的类型及解法有以下几种: 1.变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看做主元. 2.分离参数法若f (a )<g (x )恒成立,则f (a )<g (x )min . 若f (a )>g (x )恒成立,则f (a )>g (x )max . 3.数形结合法利用不等式与函数的关系将恒成立问题通过函数图象直观化. 1.设f (x )=mx 2-mx -6+m ,(1)若对于m ∈[-2,2],f (x )<0恒成立,求实数x 的取值范围; (2)若对于x ∈[1,3],f (x )<0恒成立,求实数m 的取值范围. [解] (1)依题意,设g (m )=(x 2-x +1)m -6,则g (m )为关于m 的一次函数,且一次项系数x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,所以g (m )在[-2,2]上递增, 所以欲使f (x )<0恒成立,需g (m )max =g (2)=2(x 2-x +1)-6<0, 解得-1<x <2.(2)法一:要使f (x )=m (x 2-x +1)-6<0在[1,3]上恒成立, 则有m <6x 2-x +1在[1,3]上恒成立,而当x ∈[1,3]时, 6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34≥69-3+1=67, 所以m <⎝⎛⎭⎪⎫6x 2-x +1min =67,因此m 的取值范围是⎝⎛⎭⎪⎫-∞,67. 法二:①当m =0时,f (x )=-6<0对x ∈[1,3]恒成立,所以m =0. ②当m ≠0时f (x )的图象的对称轴为x =12,若m >0,则f (x )在[1,3]上单调递增, 要使f (x )<0对x ∈[1,3]恒成立, 只需f (3)<0即7m -6<0, 所以0<m <67.若m <0,则f (x )在[1,3]上单调递减, 要使f (x )<0对x ∈[1,3]恒成立, 只需f (1)<0即m <6, 所以m <0.综上可知m 的取值范围是⎝⎛⎭⎪⎫-∞,67.线性规划问题已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤0,2y -x +1≥0,x +y -4≥0,且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【导学号:91432363】思路探究:先画出可行域,再研究目标函数,由于目标函数中含有参数m ,故需讨论m 的值,再结合可行域,数形结合确定满足题意的m 的值.1 [作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,目标函数z =x +my 可看作动直线y =-1m x +zm,若m <0,则-1m>0,数形结合知使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1.] [规律方法]1.线性规划在实际中的类型主要有:(1)给定一定数量的人力、物力资源,如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少.2.解答线性规划应用题的步骤:(1)列:设出未知数,列出约束条件,确定目标函数.(2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解.(5)答:作出答案.[跟踪训练]2.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?[解]设投资人分别用x万元、y万元投资甲、乙两个项目.由题意,知⎩⎪⎨⎪⎧x+y≤10,0.3x+0.1y≤1.8,x≥0,y≥0,目标函数z=x+0.5y.画出可行域如图中阴影部分.作直线l0:x+0.5y=0,并作平行于l0的一组直线x+0.5y=z,z∈R,与可行域相交,其中有一条直线经过可行域上的点M时,z取得最大值.由⎩⎪⎨⎪⎧x+y=10,0.3x+0.1y=1.8,得⎩⎪⎨⎪⎧x=4,y=6,即M(4,6).此时z=4+0.5×6=7(万元).∴当x=4,y=6时,z取得最大值,即投资人用4万元投资甲项目,6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.利用基本不等式求最值设函数f(x)=x+ax+1,x∈[0,+∞).(1)当a=2时,求函数f(x)的最小值;(2)当0<a<1时,求函数f(x)的最小值.【导学号:91432364】思路探究:(1)将原函数变形,利用基本不等式求解. (2)利用函数的单调性求解. [解] (1)把a =2代入f (x )=x +ax +1,得f (x )=x +2x +1=(x +1)+2x +1-1, ∵x ∈[0,+∞), ∴x +1>0,2x +1>0, ∴x +1+2x +1≥22,当且仅当x +1=2x +1, 即x =2-1时,f (x )取等号,此时f (x )min =22-1. (2)当0<a <1时,f (x )=x +1+ax +1-1若x +1+ax +1≥2a ,则当且仅当x +1=ax +1时取等号,此时x =a -1<0(不合题意), 因此,上式等号取不到.f (x )在[0,+∞)上单调递增.∴f (x )min =f (0)=a .3.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元,公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.[解] (1)设每件定价为t 元,依题意,有[8-(t -25)×0.2]t ≥25×8, 整理得t 2-65t +1 000≤0, 解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2150x ·16x =10(当且仅当x =30时,等号成立), ∴a ≥10.2.因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的定价为每件30元.。

高中数学《3.2一元二次不等式及其解法》导学案2 新人教A版必修5

课题:3.2一元二次不等式及其解法(2)班级: 组名: 姓名: 设计人:赵帅军 审核人:魏帅举 领导审批:一.:自主学习,明确目标 1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;教学重点:熟练掌握一元二次不等式的解法教学难点:理解一元二次不等式与一元二次方程、二次函数的关系教学方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;二.研讨互动,问题生成1.一元二次方程、一元二次不等式与二次函数的关系2.一元二次不等式的解法步骤——课本第77页的表格三.合作探究,问题解决例1某种牌号的汽车在水泥路面上的刹车距离s m 和汽车的速度 x km/h 有如下的关系:21120180s x x =+在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )例2、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (辆)与创造的价值y (元)之间有如下的关系:22220y x x =-+若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?改:设2280x x a -+-≤对于一切(1,3)x ∈都成立,求a 的范围.改:若方程2280x x a -+-=有两个实根12,x x ,且13x ≥,21x ≤,求a 的范围.1、已知二次不等式20ax bx c ++<的解集为1132{|}x x x <>或,求关于x 的不等式20cx bx a -+>的解集.2、若关于m 的不等式2(21)10mx m x m -++-≥的解集为空集,求m 的取值范围.改1:解集非空改2:解集为一切实数自我评价同伴评价 小组长评价。

人教A版高中数学必修五《基本不等式》精品教案

《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。

②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。

③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。

让学生享受学习数学带来的情感体验和成功喜悦。

二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。

教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。

三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。

以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。

以多媒体作为教学辅助手段,加深学生对基本不等式的理解。

四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。

2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。

教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。

2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。

)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。

五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

3.4 基本不等式:ab≤a+b 2[目标] 1.了解基本不等式的代数式和几何背景;2.会用基本不等式进行代数式大小的比较及证明不等式;3.会用基本不等式求最值和解决简单的实际问题.[重点] 基本不等式的简单应用.[难点] 基本不等式的理解与应用.知识点一 两个不等式[填一填]1.重要不等式:对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b2,当且仅当a =b 时,等号成立.其中a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.知识点二 基本不等式与最值[填一填]已知x ,y 都是正数,(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.[答一答]2.利用基本不等式求最值时,我们应注意哪些问题?提示:(1)在利用基本不等式具体求最值时,必须满足三个条件:①各项均为正数;②含变数的各项的和(或积)必须是常数;③当含变数的各项均相等时取得最值.三个条件可简记为:一正、二定、三相等.这三个条件极易遗漏而导致解题失误,应引起足够的重视.(2)记忆口诀:和定积最大,积定和最小.3.在多次使用基本不等式求最值时,我们应注意什么问题?提示:在连续多次应用基本不等式时,我们要注意各次应用时不等式取等号的条件是否一致,若不能同时取等号,则需换用其他方法求出最值.4.两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如sin x 与4sin x ,x ∈(0,π2),两个都是正数,乘积为定值.但是由0<sin x <1,且sin x +4sin x 在(0,1)上为减函数,所以sin x +4sin x >1+41=5,等号不成立,取不到最小值.类型一 利用基本不等式证明不等式[例1] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手.[证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ),即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .(2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 ≥2bc a ·2ac b ·2ab c=8.当且仅当a =b =c =13时,等号成立.1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练1] 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.证明:因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号. 类型二 利用基本不等式求最值[例2] (1)若x >0,求f (x )=4x +9x 的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[分析] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0,∴由基本不等式得 f (x )=4x +9x≥24x ·9x=236=12, 当且仅当4x =9x,即x =32时,f (x )=4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92. 当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.当且仅当x -2=4x -2,即x =4时,x +4x -2取最小值6.(4)∵x >0,y >0,1x +9y =1,∴x +y =(x +y )⎝⎛⎭⎫1x +9y =10+y x +9x y ≥10+29=16.当且仅当y x =9x y 且1x +9y =1时等号成立.即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.求最值问题第一步就是“找”定值,观察、分析、构造定值是问题的突破口.找到定值后还要看“=”是否成立,不管题目是否要求写出符号成立的条件,都要验证“=”是否成立.[变式训练2] (1)已知lg a +lg b =2,求a +b 的最小值; (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. 解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100=20, 当且仅当a =b =10时,a +b 取到最小值20.(2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,且2x +3y =6时等号成立, 即x =32,y =1时,xy 取到最大值32.类型三 基本不等式的实际应用[例3] 特殊运货卡车以每小时x 千米的速度匀速行驶130千米,按规定限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而送货卡车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时140元.(1)求这次行车总费用y 关于x 的表达式.(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(小时),y =130x ×6×⎝⎛⎭⎫2+x 2360+140×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×152x +13x 6,x ∈[50,100].(2)y =130×152x +13x 6≥525703,当且仅当130×152x =13x6,即x =4570∈[50,100]时,等号成立.故当x =4570千米/时,这次行车的总费用最低,最低费用的值为525703元.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.[变式训练3] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的总造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ×10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元).1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab ≥2,故只须a 、b 同号即可.所以①、③、④均可以.2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b >2abD .b a +ab≥2解析:∵a ,b ∈R ,且ab >0, ∴b a >0,ab>0,∴b a +a b ≥2b a ×a b=2. 当且仅当b a =ab,即a =b 时取等号.3.设a ,b 为实数,且a +b =3,则2a +2b 的最小值为( B ) A .6 B .4 2 C .2 2 D .8解析:2a +2b ≥22a +b =223=4 2.4.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解析:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.5.已知a >0,b >0,c >0,求证: (1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abc abc=8(当且仅当a =b =c 时取“=”).——本课须掌握的两大问题1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 2.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即(1)一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;(2)二定:化不等式的一边为定值;(3)三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.。

【数学】3.4《基本不等式》教案(新人教A版必修5)(3课时)

课题: §3.4基本不等式2a b ab +≤第1课时授课类型:新授课 【教学目标】1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b ab +≤的证明过程;【教学难点】 基本不等式2a b ab +≤等号成立条件【教学过程】1.课题导入基本不等式2a b ab +≤的几何背景:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。

这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。

当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.1)从几何图形的面积关系认识基本不等式2a b ab +≤特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b ab +≤2)从不等式的性质推导基本不等式2a b ab +≤用分析法证明:要证2a b ab +≥ (1)只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.4基本不等式ab≤a+b(2)
2
班级姓名学号
学习目标
通过例题的研究,进一步掌握基本不等式ab≤
最小值.
学习过程
一、课前准备
a+b
2,并会用此定理求某些函数的最大、复习1:已知m>0,求证:
24
m+6m≥24.
复习2:若x>0,求f(x)=4x+
9
x的最小值
二、新课导学
※学习探究
探究1:若x<0,求f(x)=4x+
9
x
的最大值.
探究2:求f(x)=4x+
9
x-5
(x>5)的最小值.
※典型例题
例1某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是
多少元?
例2已知x>0,y>0,满足x+2y=1,求+的最小值..
.
评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件
归纳:用均值不等式解决此类问题时,应按如下步骤进行:
(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;
(3)在定义域内,求出函数的最大值或最小值;
(4)正确写出答案.
11
x y
总结:注意“1”妙用.
※动手试试
练1.已知a,b,c,d都是正数,求证:
(ab+cd)(ac+bd)≥4abcd.
练 2. 若 x > 0 , y > 0 ,且 2 + = 1 ,求 xy 的最小值.
a 2 +
b 2 _____ )2 ____ )2 ;(a + b )2 ____ 4ab
;( ;ab ___ ;ab ___( . 2. 一般地,对于 n 个正数 a , a , , a (n ≥ 2) ,都有, 1 n
A .若 a, b ∈ R ,则 + ≥ 2 ⨯ = 2
C .若 x ∈ R -
,则 x + 2
2. 已知 x < ,则函数 y = 4x - 2 +
的最大值是( ).
3. 若 x, y ∈ R +,且 x + y = 1 ,则 + 的取值范围是(
).
8
x y
总结提升
规律技巧总结:利用基本不等式求最值时,各项必须为正数,若为负数,则添负号变正 ※知识拓展
1. 基本不等式的变形:
(a + b )2 a + b a 2 + b 2 a 2 + b 2 a + b
2 2 2 2 2
a + a + a
2 n ≥ n a 1 2 n 1 a = a = = a 时取等号) 1
2
n
3. a 2
+ b 2
+ c 2
≥ ab + ac + bc(a, b , c ∈ R) 当且仅当 a = b = c 时取等号)
学习评价
1. 在下列不等式的证明过程中,正确的是(
).
a b a b
b a b a
B .若 a, b ∈ R + ,则 lg a + lg b ≥ 2 lg a lg b
2 ≥ -2 x = -2 2
x x
D .若 x ∈ R - ,则 3x + 3- x ≥ 2 3x 3- x = 2
5 1
4 4x - 5
1
A .2
B .3
C .1
D .
2 1 1
x y
A . (2, +∞)
B . [2, +∞)
a 2 a (当且仅当
n
4. 若 x, y ∈ R +,则 ( x + y) ( + ) 的最小值为
. 5. 已知 x > 3 ,则 f ( x ) = x +
的最小值为 .
C . (4, +∞)
D . [4, +∞)
1 4
x y
1
x - 3
课后作业
1. 已知矩形的周长为 36,矩形绕它的一条边旋转形成一个圆柱,矩形长、宽各为多少时,旋 转形成的圆柱的侧面积最大?
2. 某单位建造一间背面靠墙的小房,地面面积为 12 m 2,房屋正面每平方米的造价为 1200 元, 房屋侧面每平方米的造价为 800 元,屋顶的造价为 5800 元. 如果墙高为 3 m ,且不计房屋背 面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价。

相关文档
最新文档