【高中数学必修四】专题1.3 三角函数的诱导公式

合集下载

1.3《三角函数的诱导公式》课件新人教必修4

1.3《三角函数的诱导公式》课件新人教必修4
) cot
cos(

2
) siபைடு நூலகம்
tan(

2
cot(

2
) tan
公式六:
2 cos( ) sin 2 tan( ) cot 2
sin(

) cos
诱导公式总结:
口诀:奇变偶不变,符号看象限 意义:k (k Z)的三角函数值





公式四:
cos cos
sin sin
诱导公式小结
公式一、二、三、四、都叫做诱导公式.
k 2 k Z , , , 概括如下:
的三角函数值,等于 的同名函数值, 前面加上一个把 看成锐角时原函数值的符号, 简化成“函数名不变,符号看象限”的口诀.
2、已知A、B、C是ABC的三个内角, 求证 (1)cos(2A+B+C)=-cosA A+B 3 +C (2)tan tan 4 4
1 3、已知 tan ,求值 3 sin 3 ( )cos(2 ) tan(2 ) 3 3 sin( 2 )cos( ) tan( ) tan( ) 2 2
1.3《三角函数的诱导公式》
制作人:豆猛刚
教学目标
• 1、知识目标: • (1)识记诱导公式。 • (2)理解和掌握公式的内涵及结构特征,会初步运 用诱导公式求三角函数的值,并进行简单三角函数 式的化简和证明。 • 2、能力目标: • (1)通过诱导公式的推导,培养学生的观察力、分 析归纳能力,领会数学的归纳转化思想方法。 • (2)通过诱导公式的推导、分析公式的结构特征, 使学生体验和理解从特殊到一般的数学归纳推理思 维方式。 • (3)通过基础训练题组和能力训练题组的练习,提 高学生分析问题和解决问题的实践能力。

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

sin
2
cos
,
cos
2
sin .
sin
2
cos
,
cos
2
sin
.
cos180 cos
原式=
cos
sin
sin cos
1
练习 利用公式求下列三角函数值:
1 cos 420 cos60 cos 60 1 2
2 sin
7 6
sin
5 6
sin
6
1 2
3sin 1300
4
cos
79 6
cos
5 6
cos
6
3 2
练习
化简 1sin 180 cos sin 180
4 tan 324 32 __ta_n__3_5_2_8_;
化简11scio原ns式52=cs2ions•22sin•2sin •c•osco2s
;
= sin • sin • cos
cos
= sin2
化简
2 cos2
tan 360
sin .
原式=cos2 tan sin
1.思考
给定一个角α (1)终边与角α的终边关于原点对称的角 与α有什么关系?它们的三角函数之间有 什么关系?
公式二
y
P(x,y)
sin(π+α)=-sinα cos(π+α)=-cosα
π +α α
O
x
tan(π+α)=tanα
P(-x,-y)
(2)终边与角α的终边关于x轴对称的角与α 有什么关系?它们的三角函数之间有什么 关系?
y
P(-x,y)
π-α P(x,y)

1.3《三角函数的诱导公式》课件

1.3《三角函数的诱导公式》课件




因 为s in 公 式4 s in 2 2
cos

公 式5 s in
2
sin( ) cos 2 cos( ) sin 2

诱导公式(六)
诱导公式二
sin( ) sin , cos( ) cos , tan( ) tan 。
诱导公式三
sin( ) sin , cos( ) cos , tan( ) tan 。
诱导公式四
sin( ) sin , cos( ) cos , tan( ) tan 。
α k 2π(k Z), α, α π 的三角函数值,等于α 的 同名函数值,前面加上 一 个把α看成锐角时原函 数 值的符号。
函数名不变,符号看象限。
诱导公式一
sin(2k ) sin , cos(2k ) cos , tan( 2k ) tan 。
2 2 3 3 cos( ) sin cos( ) sin 2 2 共同点:遇到 / 2 a 时候
函数名改变,函数名前面的+、-符号与前面的括号 里面角在第几象限来确定。
※记忆方法:
奇变偶不变,符号看象限.
说明:
奇偶指的是
k
2 符号指的是前面三角函数的符号(由象限决定)
-1
• 如上图我观察到的东东是如下:
• 第一:ɑ和π­ɑ的角的终边关于y轴对称
• 第二:所以这两个角的终边与单位圆的焦点 p' 和p两个点关于y轴对称
• 第三:这个两个点的横坐标互为相反数,纵坐标 相同

【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高

【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高

三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。

(word完整版)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

(word完整版)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

三角函数的诱导公式(一)【知识梳理】1. 诱导公式⑴角n+ a与角a的终边关于原点对称. 如图所示.10丿H(2)公式:sin( n+ a = —sin acos( n+ a) =—cos_ a.tan( n+ a = tan_ a2. 诱导公式三(1)角一a与角a的终边关于X轴对称. 如图所示.彳(2)公式:sin( —a = —sin _aCOs(— a) = COs_ atan(— a = —tan_ a3. 诱导公式四(1)角n— a与角a的终边关于y轴对称.如图所示.(2)公式:sin( n— a = sin __ acos( n— a = 一COS_a tan( n— a = —tan_ a.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:。

o 119 n⑴sin( — 1 200 °; (2)tan 945 ; (3)cos_^.[解](1)si n( — 1 200 )=— sin 1 200 =—°si n(3 x 360 牛 120 ) =— sin 120 =— sin(180 — 60 )3=—sin 60 =——; 2(2)tan 945 =tan(2 x 360 °+ 225 °= tan 225 = tan( 180 4 45 °)= tan 45 = 1;【类题通法】【对点训练】求 sin 585 cos 1 290 4 cos( — 30°)sin 210 4 tan 135 的值.解:sin 585 °s 1 290 C cos(— 30°)sin 210 ° tan 135 = sin(360 ° 225°)cos(3x 360° 4 210) 4 cos 30 gin 210 半 tan(180 —45 ° = sin 225 c6s 210 半 cos 30 s °n 210 — tan 45 = sin( 180 半 45 °)cos(180 4 30 °)4 cos 30 sin(180 4 30 °— tan 45 =sin 45 cbs 30 — cos 30 s i n 30 — tan 45 = 返 x ©_ ?/3x 1—1 乎-也-42 2 2 2 4题型二、化简求值问题cos — a tan 7 n4 asin n — a(2)化简曲:豊4 " * "—1需°cos — 180 — a sin — a — 180 (3)cos 譽 =cos 20 n — n = cos 6 6n =cos := 6 【例2】 (1)化简:cos — a tan 7 n4 a 解析]sin n— a cos d an n4 asin acos a tan asin a心=1sin a[答案]1•••a+ 125°= 180°+ ( a — 55°),sin 4X 360 °+ a c os 3 x 360 °— a sin a c os — a (2)[解]原式=—— cos 180 + a [ — sin 180 + a ] COS a = =—1. —cos a sin a — COs a 【类题通法】 利用诱导公式一〜四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 化简: tan 2 n — 0 sin 2 n — 0 cos 6 n —tan — 0s in — 0cos — 0—cos 0sin n+ 0 tan Osin 0cos 0cos 0sin 0 =tan 0 题型三、给角(或式)求值冋题【例3】 1 (1)已知 sin 3= 3, cos(a+ 3=— 1,贝U sin( a+ 2 3)的值为( ) 3 A . 1 B . — 11 Ci 1D 「11⑵已知cos( a — 55 °)=— 3,且a 为第四象限角,求 sin( a+ 125°)的值.(1)[解析] **cos( a+ 3) = — 1 ,• '•a+ 3= T H- 2k n, k , 1 •'sin( a+ 2 3) = sin [(a+ 3] = sin( n+ 3 = — sin 3= — 3.3[答案]D(2)[解]・.cos( a — 55 °)=— ]0,且a 是第四象限角.• a — 55°是第三象限角.sin( a — 55 °)= — i : 1 — COS ? a — 55 =— 2.23【对点训练】解:原式=••sin( a- 125° = sin[180 — (a — 55°)] = — sin( a — 55°)=警.【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间 的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】1 、sin( n+ a=— 3,求 cos(5n+ a 的值. 3由诱导公式得,sin( n- a = — sin a,当a 是第一象限角时,cos a= - ;1 — Sin 2 a=彳^2 2A /2 此时,cos(5 n — %)= cos( n+ a = —cos a=— 3 . 3当 a 是第二象限角时,cos a=— • :1— sin 2 a=— ^^2 ,2占 此时,cos(5 n — %)= cos( n+ a = — cos a= 3 .3 【练习反馈】1.如图所示,角0的终边与单位圆交于点 P ,晋,则cos(n — 的值为(B . — -5 52*5D. 50-五—5,送•'cos( n — ® = — cos 0= 5 .已知 解: 所以sin a= 3,所以a 是第一象限或第二象限角.解析: 选 C 行=1 ,「.cos答案:2 — 2n5.已知 cos 6"coS a+于的值.n —cos 6— a 2. 4 _ 已知 sin( n+%)= 5,且 a 是第四象限角,贝U COS ( a — 2冗)的值是( ) 3 B.5D.5 4 解析:选 B sin a =-4, 又a 是第四象限角, • 'COS ( a — 2 n )= COS a= \ -1- Sin 2 a= 5. sin a — 3 n + COS n — a 3.设 tan(5 n+ a) = m ,贝U sin — a — COS n+ a 解析: '•ta n(5n+ a = tan a= m , —sin a — cos a — tan a — 1 — m — 1 m + 1 • • •原式= = = = —sin a+ cos a — tan a+ 1 — m + 1 m — 1 答案:cos — 585 ° sin 495 + sin — 570的值是解析: 原式= cos 360 °+ 225 ° sin 360 °+ 135 ° — sin 210 °+ 360 cos 225 cos 180 °+ 45 ° sin 135 — sin 210 °sin 180 °— 45° — sin 180 ° + 30° —cos 45sin 45 + sin 30 —2 .2 1 + _ 2 2 2 — 2.解:cos n+ =— cos n —6 5 n a+E。

高一数学必修四知识点:三角函数诱导公式

高一数学必修四知识点:三角函数诱导公式

【导语】⼈⽣要敢于理解挑战,经受得起挑战的⼈才能够领悟⼈⽣⾮凡的真谛,才能够实现⾃我⽆限的超越,才能够创造魅⼒永恒的价值。

以下是©⽆忧考⽹⾼⼀频道为你整理的《⾼⼀数学必修四知识点:三⾓函数诱导公式》,希望你不负时光,努⼒向前,加油! 【公式⼀】 设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 【公式⼆】 设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 【公式三】 任意⾓α与-α的三⾓函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 【公式四】 利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 【公式五】 利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 【公式六】 π/2±α及3π/2±α与α的三⾓函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 【⾼⼀数学函数复习资料】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。

数学必修四1.3 三角函数的诱导公式


【解析】
π ∵cos2-α=sin
1 α= , 3
π ∴cos2+α=-sin
1 α=-3.
1 【答案】 -3
[ 小组合作型]
给角求值问题
求下列各三角函数值.
10π (1)sin- 3 ;(2)cos
29 π. 6
【精彩点拨】 先化负角为正角, 再将大于 360° 的角化为 0° 到 360° 内的角, 进而利用诱导公式求得结果.
1.3
三角函数的诱导公式
1.能借助单位圆中的三角函数线推导诱导公式二,并由此探究相关的其他 诱导公式.(难点) 2. 能运用有关诱导公式解决一些三角函数的求值、 化简与证明问题. (重点) 3.各种诱导公式的特征.(易混点)
[ 基础· 初探] 教材整理 1 诱导公式二~公式四 阅读教材 P23~P24 例 1 以上内容,完成下列问题. 1.诱导公式二 (1)对应角终边之间的对称关系
判断(正确的打“√”,错误的打“×”) 3 (1)tan 210° = 3 .( ) ) )
(2)对于诱导公式中的角 α 一定是锐角.( (3)由公式三知 cos[ -(α-β)] =-cos(α-β).( (4)在△ABC 中,sin(A+B)=s=tan 30° =3.
π =-cos6-α=-
3 , 3
sin
2
2 π 2 π 2 π α- =sin -α=1-cos -α= , 6 6 6 3 5π π 2 cos 6 +α-sin α-6=-
所以
2+ 3 3 2 3 -3=- 3 .
【解】 (1)tan(-855° )=-tan 855° =-tan(2×360° +135° ) =-tan 135° =-tan(180° -45° )=tan 45° =1.

人教版必修四1.3三角函数的诱导公式课件


探究与归纳
角 与角的三角函数关系?
y
终边关系
关于原点对称
点的关系 P(x, y)
P(x, y)
O
P(x, y)
x
三角函数 定义
sin y
cos x
tan y
x
sin( ) y
cos( ) x
tan( ) y
x
P(x, y)
三角函数 关系
(公式二)
sin( ) sin
cos( ) cos
(3)化为锐角的三角函数。 概括为:“负化正,正化小,化到锐角就终了。”
用框图表示为:
用公式一
任意角的三角函数
任意正角的三角函数
或公式三
公式一
用公式二
锐角三角函数
0~2的角的三角函数
或公式四
当堂检测
1、计算
(1) tan120 0 3
3/2 (2)sin(240 0 )
2、化简
sin( ) cos(2 sin(3 ) cos(

cos(-α)= cosα

tan(-α)= -tanα


公式(四) sin(π-α)= sinα cos(π-α)= -cosα
象 限
tan(π-α)= -tanα
这四组诱导公式的记忆口诀是“函数名不变,符号看象限”. 其含义是诱导公式两边的函数名称一致,符号则是将α看成锐 角时原角所在象限的三角函数值的符号.α看成锐角,只是公式 记忆的方便,实际上α可以是任意角.
cos( 2k ) cos
tan( 2k ) tan
(k Z)
终边相同角的同一三角函数的值相等
探要点·究所然
情境导学

高中数学人教A版必修4课件:1.3三角函数的诱导公式(一)


3
3
42 8
2.已知cos(α -75°)=- 1 ,且α 为第四象限角,求
3
sin(105°+α )的值. 【解题指南】由于105°+α =180°+(α -75°),故欲求 sin(105°+α ),需利用条件求出sin(α -75°).该三角函 数式只需用平方关系即可求得.
【解析】因为cos(α-75°)=- <1 0,且α为
(3)注意“1”的应用:1=sin2α +cos2α =tan .
4
【拓展延伸】三角函数式化简的思路以及含有kπ ±α 形式的处理方法 (1)总体思路是利用诱导公式将相应角向角α 的三角函 数转化. (2)含有kπ ±α 形式的化简时需对k分是偶数还是奇数 来确定选用的公式.
【变式训练】化简 scio n s(( 4 4 ))scio ns(2 5( ))cso in s2 2(( 3 )).
sin(2m )cos[2m 1 ] sin[2m 1 ]cos(2m )
sin()cos( ) sin(cos) 1. sin( )cos sincos
k为奇数时,设k=2m+1(m∈Z),
原式sin[s2im n(2m 2] c)cooss[ (2m 2m 1)]
提醒:设法消除已知式与所求式之间的种种差异是解决 问题的关键.
【补偿训练】1.已知 sin(-)=1,
3
2
求cos2(α - )·sin ( 2 + ) 的值.
3
3
【解析】cos2()sin(2+ )
33
=cos2[-(-)]sin[-(-)]
3
3

高中数学 第一章 三角函数 1.3 三角函数的诱导公式(第2课时)教学课件 新人教A版必修4


【多维探究】 (1)本例条件不变,如何求 cos56π-α的值?
(2)本例条件若变为“已知 sin23π+α=12”,其他不变,则 结果又如何?
(3)本例条件若不变,如何求 cos23π+α的值? (4)本例条件若不变,如何求 tanπ3-α的值?
解:(1)cos56π-α=cosπ2+π3-α=-sinπ3-α=-12. (2)cosπ6+α=cos23π+α-π2=cosπ2-23π+α =sin23π+α=12.
提示:因为
tanπ2+α

csoinsπ2π2++αα=-cossinαα=-cs1oins
α α


1 tan
α,所以
tanπ2+α=-tan1
α,即它们互为负倒数.
1.对诱导公式五、六的理解 (1)公式五、六中的角 α 是任意角. (2)公式五、六可以概括如下:π2±α 的正弦(余弦)函数值, 分别等于 α 的余弦(正弦)函数值,前面加上一个把 α 看成锐角 时原函数值的符号,可以简单地说成“函数名改变,符号看象 限”.
高中数学 第一章 三角函数 三角 的诱导公式(第 课时)教学课件
教 版必修
同学们,下课休息十分钟。现在是休息时间,你们休
睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对
哦~
1.sin 95°+cos 175°的值为( )
A.sin 5°
B.cos 5°
C.0
D.2sin 5°
解析:sin 95°+cos 175°=sin(90°+5°)+cos(180°
证明:∵左边=-2sin321π--2θsin-2 θsin θ-1
=-2sinπ+1-π2-2sθin2-θ sin θ-1=2sinπ2-1-θ2s-ins2inθ θ-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 三角函数1.3 三角函数的诱导公式1.诱导公式的内容公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α (k ∈Z ) cos (2k π+α)=cos α (k ∈Z ) tan (2k π+α)=tan α (k ∈Z )公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= –sin α cos (π+α)=–cos α tan (π+α)= tan α公式三: 任意角α与–α的三角函数值之间的关系(利用原函数奇偶性): sin (–α)=–sin α cos (–α)= cos α tan (–α)=–tan α公式四: 利用公式二和公式三可以得到π–α与α的三角函数值之间的关系: sin (π–α)= sin α cos (π–α)=–cos α tan (π–α)=–tan α 公式五:任意角α与2π–α的三角函数值之间的关系: sin (2π–α)=cos α cos (2π–α)=sin α 公式六: 任意角α与2π+α的三角函数值之间的关系: sin (2π+α)=cos αcos (2π+α)=–sin α 推算公式:23π±α与α的三角函数值之间的关系: sin (23π+α)=–cos α sin (23π–α)=–cos α cos (23π+α)=sin α cos (23π–α)=–sin α 2.诱导公式的规律三角函数的诱导公式可概括为:奇变偶不变,符号看象限.其中“奇变偶不变”中的奇、偶分别是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则正、余弦互变,正、余切互变;若是偶数倍,则函数名称________.“符号看象限”是把α当成________时,原三角函数式中的角⎝⎛⎭⎫如π2+α 所在象限________的符号.注意把α当成锐角是指α不一定是锐角,如sin (360°+120°)=sin120°,sin (270°+120°)=-cos120°,此时把120°当成了锐角来处理.“原三角函数”是指等号左边的函数.学!科网 3.诱导公式的作用诱导公式可以将任意角的三角函数转化为________三角函数,因此常用于化简和求值,其一般步骤是:任意负角的三角函数―――――――→去负(化负角为正角)任意正角的三角函数――→脱周脱去k ·360° 0°到360°的三角函数――――→化锐(把角化为锐角 )锐角三角函数K 知识参考答案:2.不变锐角原三角函数值3.锐角1.诱导公式的简单应用【例1】sin585°的值为A .-22B .22C .-32D .32【答案】A【解析】sin585°=sin (360°+180°+45°)=sin (180°+45°)=-sin45°=-22.故选A . 【名师点睛】①三角式的化简通常先用诱导公式,将角度统一后再用同角三角函数关系式,这可以避免交错使用公式时导致的混乱.②在运用公式时正确判断符号至关重要.③三角函数的化简、求值是三角函数中的基本问题,也是高考常考的问题,要予以重视. 【例2】已知21cos cos 2αα+=,若()3tan π4αα-=,是第二象限角,则1ππsin sin 22αα+-⋅=A .910B .5C .109D .10【答案】D【名师点睛】(1)化简三角函数式的结果要求所含三角函数名称最少,次数最低,含有特殊角的要写出出函数值.(2)对含有kπ±α(k∈Z)形式的角,要对k的奇偶性分类讨论.2.应用诱导公式的思路与技巧(1)应用诱导公式的一般思路①化大角为小角;②角中含有加减π2的整数倍时,用公式去掉π2的整数倍.(2)常见的互余和互补的角①常见的互余的角:π3–α与π6+α;π3+α与π6–α;π4+α与π4–α等.②常见的互补的角:π3+θ与2π3–θ;π4+θ与3π4–θ等.【例3】下列关系式中正确的是A.sin11°<cos10°<sin168°B.sin168°<sin11°<cos10°C.sin11°<sin168°<cos10°D.sin168°<cos10°<sin11°【答案】C【解析】∵cos10°=sin80°,sin168°=sin(180°–12°)=sin12°,∴sin11°<sin168°<cos10°.故选C.【例4】求证:()()()()()π11πsin2πcosπcos cos229πcosπsin3πsinπsin2αααααααα⎛⎫⎛⎫-++-⎪ ⎪⎝⎭⎝⎭⎛⎫----+⎪⎝⎭=–tanα【答案】答案详见解析【解析】左边=()()()()sin cos sin sincos sin sin cosαααααααα-⋅----⋅⋅⋅=–tanα=右边,∴等式成立.【名师点睛】解决恒等式的证明问题关键是灵活应用诱导公式,将各三角函数化成同角的三角函数,从一边向另一边推导,或证明两边都等于同一个式子.1.sin2012°=A .sin32°B .–sin32°C .sin58°D .–sin58°2.若sin (π–θ)<0,tan (π–θ)<0,则角θ的终边在A .第一象限B .第二象限C .第三象限D .第四象限3.27πlog cos 4⎛⎫ ⎪⎝⎭的值为A .–1B .12-C .12D 2 4.sin13π6等于 A .3 B .–12C .12D 3 5.sin330°=A .12B .–12C 3D .3 6.如果sin (π–α)=13,那么cos (π2+α)等于A .–13B .13C 22D .227.已知cos (π2+α)5,且|α|<π2,则tan α等于A .–2B .–12C .2D .128.计算:sin 2π3=A .3B 3C 2D .2 9.计算sin (π–α)+sin (π+α)=A .0B .1C .2sin αD .–2sin α10.8πtan3的值为 A 3 B .3 C 3 D .311.已知α为第二象限角,且3sin 5α=,则tan (π+α)的值是A.4 3B.34C.43-D.34-12.已知()1sinπ2α-=-,则sin(–2π–α)=____________.13.已知sin(π2+α)=35,α∈(0,π2),则sin(π+α)=____________.14.已知()3sin30α︒+=,则cos(60°–α)的值为A.12B.12-C3D.3 15.如果A为锐角,()()1sinπcosπ2A A+=--,那么=A.22B.22C3D.316.若()5cos2πα-且π2α⎛⎫∈- ⎪⎝⎭,,则sin(π–α)A.5B.23-C.13-D.23±17.已知π3tan44α⎛⎫+=⎪⎝⎭,则2cosπ4α⎛⎫-⎪⎝⎭=A.725B.925C.1625D.242518.已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线2x–y=0上,则()()3πsin cosπ2πsin sinπ2θθθθ⎛⎫++-⎪⎝⎭⎛⎫---⎪⎝⎭=A.–2 B.2C.0 D.2319.化简;(1)()()()()()sin πsin 2πcos π3πsin 3πcos πcos 2αααααα+---⎛⎫+-+ ⎪⎝⎭(2)cos20°+cos160°+sin1866°–sin (–606°)20.计算:sin 25π26πcos63++tan (25π4-)21.已知f (α)=()()()()3πsin 3πcos 2πsin 2cos πsin πααααα⎛⎫--- ⎪⎝⎭--- (1)化简f (α)(2)若α是第二象限角,且cos (π2+α)=–13,求f (α)的值.22.已知α为第三象限角,()()()()π3πsin cos tan π22tan πsin πf αααααα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=----(1)化简f(α)(2)若3π1 cos25α⎛⎫-=⎪⎝⎭,求f(α)的值.学-科网23.已知tan(π–α)=–3,求下列式子的值:(1)tanα;(2)()()()()sinπcosπsin2πcosπ3πsin cos22αααααα--+--+-⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭.24.(2016上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x–π3)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为A.1 B.2 C.3 D.425.(2017北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13,则sinβ=___________.26.(2017上海)设a 1、a 2∈R,且()121122sin 2sin 2a a +=++,则|10π–a 1–a 2|的最小值等于___________.27.(2016四川)sin750°=___________.1 2 3 4 5 6 7 8 9 10 B C B C B A A B A D 11 14 15 16 17 18 24 DCDBBBB1.【答案】B【解析】sin2012°=sin (5×360°+212°)=sin212°=sin (180°+32°)=–sin32°.故选B .4.【答案】C 【解析】sin 13π6=sin (2π+π6)=sin π162=.故选C . 5.【答案】B【解析】sin330°=sin (270°+60°)=–cos60°=–12.故选B . 6.【答案】A【解析】∵sin (π–α)=sin α=13,那么cos (π2+α)=–sin α=–13,故选A .7.【答案】A 【解析】由cos (π2+α)=5,得–sin α=5,即sin α=5,又|α|<π2,∴–π02α<<,则cos α2251sin α-,则tan α=5sin 15cos 225αα==-.故选A .8.【答案】B【解析】sin 2π3=sin(π–π3)=sinπ33=.故选B.9.【答案】A【解析】sin(π–α)+sin(π+α)=sinα–sinα=0.故选A.10.【答案】D【解析】∵tan 8π3=tan(3π–π3)=–tanπ3=–3.故选D.11.【答案】D【解析】∵α为第二象限角,sinα=35,∴cosα=–21sinα-=–45,∴tanα=sincosαα=–34,则tan(π+α)=tanα=–34.故选D.14.【答案】C【解析】cos(60°–α)=sin[90°–(60°–α)]=sin(30°+α)3,故选C.15.【答案】D【解析】∵sin(π+A)=–sin A=–12,∴sin A=12,又A为锐角,∴A=π6;∴cos(π–A)=–cos A=–cosπ6=3.故选D.16.【答案】B【解析】∵cos(2π–α)=cosα5,α∈(–π2,0),∴sinα=21cosα-=–23,则sin(π–α)=sinα=–23.故选B.17.【答案】B【解析】∵π3tan44α⎛⎫+=⎪⎝⎭,∴22ππcos sin 44αα⎛⎫⎛⎫-=+= ⎪⎪⎝⎭⎝⎭222πsin 4ππsin cos 44ααα⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭221πcos 41πsin 4αα=⎛⎫+ ⎪⎝⎭+⎛⎫+ ⎪⎝⎭21191162511π9tan 4α==++⎛⎫+ ⎪⎝⎭,故选B . 18.【答案】B【解析】由已知可得,tan θ=2,则原式=cos cos 2cos sin 1tan θθθθθ---=--=2.故选B .20.【答案】–1【解析】sin 25π26πcos 63++tan (25π4-) =π2ππsin 4πsin 8πtan 6π634⎛⎫⎛⎫⎛⎫+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =π2ππ11sin cos tan 1163422+-=--=-. 21.【答案】(1)f (α)=cos α;(2)()22f α=. 【解析】(1)f (α)=()()()()()3πsin 3πcos 2πsin sin cos cos 2cos πsin πcos sin αααααααααα⎛⎫--- ⎪⋅⋅-⎝⎭=----⋅=cos α. (2)α是第二象限角,且cos (π2+α)=–sin α=–13,∴sin α=13, ∵α是第二象限角,∴()222cos 1sin f ααα==--=.22.【答案】(1)f (α)=–cos α;(2)f (α). 【解析】(1)∵α为第三象限角,∴()()()()π3πsin cos tan π22tan πsin πf αααααα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---- =()()()cos sin tan tan sin ααααα---=–cos α. (2)∵3π1cos 25α⎛⎫-= ⎪⎝⎭, ∴–sin α=15,解得sin α=–15, ∴可得cos α=. ∴f (α)=–cos α. 23.【答案】(1)3;(2)–4.【解析】(1)∵tan (π–α)=–tan α=–3,∴tan α=3.(2)()()()()sin πcos πsin 2πcos π3πsin cos 22αααααα--+--+-⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭ sin cos sin cos cos sin αααααα+++=- 2sin 2cos cos sin αααα+=-2tan 21tan αα+=- 813=-=–4. 24.【答案】B【解析】∵对于任意实数x 都有sin (3x –π3)=sin (ax +b ),则a =±3.若a =3,此时sin (3x –π3)=sin (3x +b ),此时b =–π3+2π=5π3,若a =–3,则方程等价为sin (3x –π3)=sin (–3x +b )=–sin (3x –b )=sin (3x –b +π),则–π3=–b +π,则b =4π3,综上满足条件的有序实数组(a ,b )为(3,5π3),(–3,4π3),共有2组,故选B .25.【答案】13【解析】∵在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=13,∴sinβ=sin(π+2kπ–α)=sinα=13.故答案为:13.27.【答案】1 2【解析】sin750°=sin(2×360°+30°)=sin30°=12,故答案为:12.。

相关文档
最新文档