基于CC2530及ZigBee协议栈设计无线网络传感器节点
[工学]基于CC2530的无线传感器网络节点设计
![[工学]基于CC2530的无线传感器网络节点设计](https://img.taocdn.com/s3/m/483e2ffe5022aaea998f0fb5.png)
针对以上弊端,我们采用集成MCU+射 频收发模块的SOC设计方式,而且这种设 计方式能实现节点的更微小化和极低的功 耗。拟采用TI公司的CC2530为核心来设计 传感器节点。之所以选用CC2530原因如下: (1)根据项目实际需求和矿井下实际情 况,采用ZigBee这种通信数据量不大、低 数据传输率、低成本、低功耗而且具有安 全可靠性的这种无线通信技术,做为该无 线传感器网络的组网通信方式最为合适。 (2)CC2530集成单片机、ADC、无线 通信模块于一体。与前述系列典型的节点 相比,大大提高了单片机与无线通信模块
物联网:物联网是新一代信息技术的重要组成部 分。其英文名称是“The Internet of things”。由 此,顾名思义,“物联网就是物物相连的互联 网”。这有两层意思:第一,物联网的核心和基 础仍然是互联网,是在互联网基础上的延伸和扩 展的网络;第二,其用户端延伸和扩展到了任何 物品与物品之间,进行信息交换和通信。因此, 物联网的定义是通过射频识别(RFID)、红外感 应器、全球定位系统、激光扫描器等信息传感设 备,按约定的协议,把任何物品与互联网相连接, 进行信息交换和通信,以实现对物品的智能化识 别、定位、跟踪、监控和管理的一种网络。
(4)CC2530相对于CC2430/CC2431来说 性能更优、价格更低。 价格:由于TI早已停产CC2430/CC2431 造成目前市场上的该类产品均为库存, “求大于供”每片CC2430有二十多元,每 片CC2431的价格更是高大一百元。而每片 CC2530的价格大概在十八元。 注:CC2431内部集成有硬件定位引擎而 CC2430内部没有。其他性能二者均相同。 性能:以下是CC2530与CC2430/CC2431 之间的性能比较:
基于CC2530的无线传感器网 络节点设计
基于CC2530的Zigbee无线传感网络的设计与实现

基于CC2530的Zigbee无线传感网络的设计与实现1. 引言1.1 基于CC2530的Zigbee无线传感网络的设计与实现概述Zigbee无线传感网络是一种低成本、低功耗、短距离的无线通信技术,适用于物联网领域。
本文基于CC2530芯片,对Zigbee无线传感网络的设计与实现进行了探讨和研究。
在传感网络中,节点之间通过无线通信实现信息传输和数据交换,构建起一个相互协作的网络体系。
CC2530芯片作为一种低功耗、高集成度的无线通信芯片,具有良好的性能和稳定性,非常适合用于Zigbee无线传感网络的设计。
本文将通过介绍Zigbee无线传感网络的原理与技术、CC2530芯片的特点,以及网络拓扑结构设计、节点通信协议设计和能量管理设计等方面的内容,来探讨基于CC2530的Zigbee无线传感网络的设计与实现方法。
通过对设计与实现结果进行分析,可以了解到该系统的性能和可靠性。
同时,也会探讨存在的问题,并展望未来的发展方向。
这将有助于进一步完善基于CC2530的Zigbee无线传感网络系统,提高其在物联网应用中的实际效果和应用前景。
2. 正文2.1 Zigbee无线传感网络原理与技术Zigbee无线传感网络是一种基于IEEE 802.15.4标准的低成本、低功耗、短距离无线通信技术。
它主要用于构建小型自组织的自动化控制系统,适用于各种物联网应用场景。
Zigbee网络采用星型、树状和网状等不同的拓扑结构,其中最常见的是网状结构,可以实现节点之间的多跳通信,提高网络覆盖范围和可靠性。
节点之间可以通过广播、单播和多播等方式进行通信,实现数据的传输和控制。
在Zigbee协议栈中,包括物理层、MAC层、网络层和应用层。
其中物理层负责传输数据,MAC层处理数据的接入控制,网络层负责路由和组网,应用层实现具体的应用功能。
通过这些协议层的配合,可以实现数据的可靠传输和快速响应。
Zigbee网络还支持多种不同的信道选择和能量管理机制,可以根据具体的应用场景来选择最适合的工作模式,以实现最佳的性能和功耗平衡。
面向智能安全物流应用的无线传感器网络设计

Techniques of Automation & Applications | 35面向智能安全物流应用的无线传感器网络设计*刘富春,王雯雯,黄华灿,谢海涛(华南理工大学 自动化科学与工程学院,广东 广州510640)摘 要:传感器节点主要由CC2530射频模块、温湿度传感器DHT21、GSM模块以及串口上位机组成。
以CC2530射频模块为系统的控制核心,在发送端模块负责采集温湿度传感器信号,通过RF射频端把现场的信息传送到接收端的CC2530模块,接收模块把接收到的温湿度数据通过串口通信把数据传送到上位机中,从而实现现场温湿度数据曲线的显示。
GSM模块通过串口直接与上位机通信,该模块能通过手机通信网络把温湿度以短信的形式发送到指定用户的手机中,从而实现物流货品信息的远程监控。
关键词:智能安全物流;无线网络;射频技术;传感器中图分类号:TP311 文献标识码:A 文章编号:1003-7241(2012)04-0035-04Design of Wireless Sensor Network for Intelligent and SecurityLogistics ApplicationsLIU Fu-chun, WANG Wen-wen, HUANG Hua-can, XIE Hai-tao( College of Automation Science and Engineering, South China University of Technology, Guangzhou 510640 China )Abstract: The sensor node includes mainly CC2530 Radio frequency (RF) module, temperature and humidity sensor DHT21, GSMmodule and the serial PC. The CC2530 RF module is the core component of the system. The module at the sending end collects the signals from temperature and humidity sensor, the temperature and humidity information are transmitted to the CC2530 module located at the receiving end by using RF module. Lastly, the measured signals are sent to the monitor PC through a serial communication channel, and displayed on the screen. The GSM module can directly communicate with the host computer via serial communication channel, and all the monitored data can be sent to the specified mobile phone through the mobile communication network. The system can monitor the state of containers remotely.Keywords: intelligent security logistics; wireless network; RF technique; sensor*基金项目:国家自然科学基金(编号61104083);教育部高等学校博士学科点专项科研基金(编号20100172120029);广东省自然科学基金(编号S2011040002782);中国博士后科学基金(编号20110490887)收稿日期:2011-12-201 引言集装箱是全球物流运输的核心装备,全球国际货运90%以上都是通过集装箱完成,集装箱主要包括普通货物集装箱、罐式集装箱和冷藏集装箱。
基于CC2530的ZigBee无线传感器网络的设计与实现

无线传感器网络是新一代的传感器网络,它的发展和应用将会给人们的生活 和生产带来较深远的影响。各国都很重视无线传感器网络的发展,电气电子工程
2
基于CC2530的ZigBee无线传感器网络的设计与实现
ofElectrical and Electronics
师协会(Institute
Engineers,IEEE)正在尽力推进无线传
西安电子科技大学 硕士学位论文 基于CC2530的ZigBee无线传感器网络的设计与实现 姓名:王风 申请学位级别:硕士 专业:通信与信息系统 指导教师:曾兴雯 201201
摘要
目前,无线传感器网络已成为世界各国的研究热点,ZigBee技术以其低复杂 度、低成本、低功耗等优点,被广泛地应用于无线传感器网络中。本文基于CC2530 和ZigBee协议栈实现了一个网状结构的无线传感器网络。 论文首先介绍了ZigBee技术的特点、网络拓扑结构、协议分析。其次从整体 上提出了系统的结构,并基于主芯片CC2530和射频芯片CC2591对ZigBee节点 进行了硬件设计。介绍了ZigBee协议栈,给出了协调器、路由节点和传感器节点 的软件流程图,并形成一个网状结构的传感器网络。最后,用串口测试工具对构 建的网络进行了测试,重点测试网络的建立、节点的入网和传感器节点数据传输 的过程。另外,为了检测网络性能,对节点之间的通信距离进行了测试。 结果表明,网络中的传感器节点能够将监测区域的信息传送到协调器中,实 现网状结构的无线传感器网络。
1.1无线传感器网络
无线传感器网络技术是具有交叉学科性质、军民两用的高科技技术,在军事、 国家安全、交通管理、医疗卫生和城市信息化建设等领域,它都有广泛的应用。 无线传感器网络是由许多传感器节点组成的,而每一个传感器节点又包括数据采 集模块(传感器、A/D转换器)、数据控制和处理模块(微处理器)、通信模块(无线收 发器RF,Radio Frequency)和电源模块(电池、DC/AC能量转换器)等。近年来微机 电系统(Micro
基于ZigBee 无线传感器网络停车检测系统

基于ZigBee 无线传感器网络的停车检测系统摘要:针对现有停车检测系统铺设地感线圈时作业量大与寿命短的问题,提出了一种基于zigbee无线传感器网络的停车检测系统的实现方案,并阐述了节点的硬件设计。
系统采用cc2530射频芯片及hmc5883l三轴磁阻传感器,在zigbee 2007协议栈的基础上进行应用开发。
实验测试表明,基于zigbee无线传感器网络的车辆检测系统具有低成本、低功耗、精度高、网络容量大的优点。
关键词:无线传感器网络;zigbee协议;地磁传感器;车辆检测中图分类号:tp393停车场管理中重要的数据信息是时刻掌握车位的状态,以此作为智能停车管理中的重要参考依据[1]。
目前识别停车场车位的主要技术有红外线检测车位状态、地感线圈感应车位状态、视频采集车位图像识别车位状态等。
其中红外线识别技术能够自动完成车位的识别,缺点是受到物体的遮挡后容易产生误判;地感线圈识别需要凿路,施工作业量大,工期长;视频图像识别能够通过图像处理技术来完成车位状态的检测,具有一定的优越性,但是对于地下车库或者在其他光照不理想的状态下识别精度不高。
采用zigbee无线网络[2]传输技术结合地磁传感器能够很好的解决网络布线问题,而且具有低功耗、低成本、自组网等优点,非常适用在停车场的车位探测。
1 系统框架设计zigbee无线传感器网络结合磁阻传感器可以实现对停车位、车流量、车速等进行实时监测。
zigbee无线传感器网络部署和维护方便,特别适合于部署在有线传输不能覆盖的路段。
在每个停车位上部署传感器节点,对停车位进行实时检测,信息通过无线自组织网络在网关节点汇聚。
网关节点利用gprs/3g网络将所采集到的数据发送到控制中心。
控制中心对停车检测信息进行融合,结合地理信息系统(geographic information system,gis),可以实现智能停车诱导及违规停车检测等应用。
2 系统硬件设计传感器节点由四部分组成:hmc5883磁阻传感器模块[3]、cc2530模块[4]、及能量供应模块。
基于CC2530的电流及温度监测系统的设计与实现

基于CC2530的电流及温度监测系统的设计与实现董建怀【摘要】为了实时监控分布广、数量多、工作时间长和工作电流大的设备的工作情况,设计了由线性电流传感器ACS712、温度传感器DS18B20以及片上系统CC2530组成的无线传感器节点,利用ZigBee技术组建的电流及温度无线监测系统.实验表明:系统具有检测精度高,可靠性高,成本低,使用方便等特点,可应用于工业环境的电流及温度在线监测领域.%A current and temperature monitoring system based on ZigBee technology is designed to real-timely monitor the work of the equipment,which is widely distributive,quantitive,capable of working long time and in large current.The wireless sensor node in this system consists of ACS712,DS18B20 and PSoC CC2530.The system which is featured with high precision,high reliability,low cost,easy installation and maintenance,and could be widely used in industry for on-line current and temperature monitoring.【期刊名称】《厦门理工学院学报》【年(卷),期】2011(019)003【总页数】6页(P59-63,73)【关键词】电流监测;ZigBee技术;片上系统;无线传感器节点【作者】董建怀【作者单位】福建师范大学协和学院信息技术系,福建福州350007【正文语种】中文【中图分类】TP274.5在广播发射机、电力、工业生产等领域中,存在许多工作时间长、功率大、电流大、分布范围广的设备,由于电路问题、接头松动或其它原因可能造成这些设备的工作电流过大、接头过热甚至出现烧毁设备的现象,给设备的正常工作和人身安全带来严重的威胁[1-2].实时监测这些设备关键点的电流和接头温度,对预防故障,准确判断故障点,及时进行故障处理等具有重要的意义.采用电流互感器检测大电流的传统方法,存在绝缘困难,成本高,体积大,重量重,测量精度不高,易受电磁干扰,输出端不能开路,突发性绝缘击穿等缺点,另外,由于这些领域中需要监测的电流点多、分布广,在实际使用时,需要在上位机与各检测点间铺设大量的通信电缆,存在成本高,安装调试不便,覆盖面受限等问题.针对这一情况,本文设计了一种利用ZigBee技术组建的电流及温度无线监测系统,实现对设备关键点电流及温度的实时监测.1 电流及温度监测系统1.1 ZigBee技术ZigBee技术是一组基于IEEE 802.15.4的有关组网、安全和应用软件方面的通信技术,使用了抗干扰能力极强的直序扩频和动态路由数据传输的通信方式,具有低功耗、低成本、低复杂度、近距离、低数据速率等特点[3],工作频段为全球通用频段2.4 GHz.ZigBee网络由一个协调器、多个路由器和多个终端设备组成,协调器是整个网络的中心,负责网络的维护和协调,路由设备负责网络中数据包的路由选择,并用来扩展网络范围,终端设备是实现具体功能的单元.ZigBee网络可以实现星型、树型和网状型拓扑结构[4].1.2 监测系统组成系统由上位机、协调器、路由节点和终端节点组成,系统总体结构如图1所示.基于ZigBee技术的路由节点和终端节点分布于不同的监测区域,执行电流和温度数据的采集、预处理和发送等工作,路由节点除检测电流及温度参数外,还具有路由功能,转发其他传感器节点的数据包.ZigBee协调器将接收到的各传感器节点检测的电流温度数据通过RS485接口传输到上位机,上位机将收到的各传感器数据进行处理和管理,并提供实时查询和越限报警等功能.系统的协调器、路由节点和终端节点均通过PSoC[5]芯片CC2530实现,路由节点和终端节点具有相同的硬件结构,为了叙述的方便,在下面的硬件设计中将这两者统称为检测节点.2 检测节点硬件设计2.1 检测节点结构检测节点是该系统的基本单元,负责获取电流、温度数据,并将数据进行预处理,传输到协调器,拥有子节点的路由节点还具有路由的功能,转发子节点的电流和温度数据.检测节点由PSoC芯片CC2530、线性电流传感器ACS712、单总线温度传感器DS18B20和电源模块组成,节点的结构示意图如图2所示.2.2 主控芯片主控芯片CC2530是IT公司推出的基于ZigBee/IEEE 802.15.4标准的新一代SoC芯片,CC2530集成了一个高性能的RF收发器和一个优化的低功耗8051微处理器,8 kB的RAM,多达256 kB的闪存,具有强大的外设,包括8路7~12位ADC、2个USART和21个通用I/O接口等,硬件支持CSMA/CA,6 mm×6 mm的QFN40封装,允许芯片无线下载,支持系统编程.2.3 电流温度检测模块节点中电流传感器采用Allegro公司的线性电流传感器ACS712ELCTR-30A-T,该器件工作电压为4.5~5.5 V,最大工作电流11 mA.图3为ACS712-30A输出电压与检测电流关系的特性曲线,在检测范围±30 A内,几乎不受温度的影响.图4为ACS712-30A检测灵敏度与电流关系的特性曲线,输出灵敏度约为66mV/A.图5为检测节点电原理图.图中仅给出一路电流和温度传感器,C1用于噪声管理,提高输出的精度,被检测的电流由ACS712芯片的1、2端输入,3、4端输出.VOUT输出模拟电压,该电压在指定的检测范围内和被检测的直流或交流电流IP成线性关系,若检测的是直流电流,则VOUT输出一个与被测电流成线性关系的直流电压,若检测的是交流电流,则VOUT将获得一个频率与被测电流相同、幅度与被测电流成线性关系的交流电压.电流传感器ACS712的输出信号先通过R1、R2分压,使输入A/D转换的电压和ADC的参考电压匹配,后经D1整流和C2滤波处理后输入CC2530的P0_0引脚进行A/D转换,由于CC2530的P0_0至P0_7引脚都可用作ADC输入,所以一个节点最多可带8路电流传感器.通过设置CC2530的ADCCON2.SCH位使节点的转换通道序列为AIN0~AIN7、单端输入,设置ADCCON2.SREF选择一个内部生成的电压 (1.8 V)作为A/D转换的正参考电压,设置ADCCON2.SDIV选择转换抽取率为256(10位有效数字),通过置位ADCCON1.ST开启转换,读取ADCCON1.EOC位可判断转换是否完成,读取ADCCON2.SCH位,将指示转换在哪个通道上进行,通过读取ADCH和ADCL两个寄存器可获得A/D转换的补码形式的结果.由于ADC采用256抽取率,量化单位Δ=1.76 mV,小于ACS712输出灵敏度66 mV,所以A/D转换不影响电流检测的精度.ADC采用256抽取率时,执行一个转换所需的时间TCONV=(抽取率+16) ×0.25 μs=68 μs,满足使用要求.图5中,DS18B20为Dallas公司的1-Wire总线温度传感器,采用外接电源的方法供电,其它路的DS18B20可直接与该温度传感器并接,DS18B20支持+3 V~+5.5 V的电压范围,温度测量范围-55~+125℃,测量精度±0.5℃,最大工作电流4 mA,静态电流3 μA.节点使用一个外部32MHz振荡器XTAL1,32.768 kHz晶振XTAL2主要为休眠状态和精确唤醒时间提供时钟信号.2.4 无线传输模块综合考虑各种天线的性能,节点设计使用鞭状天线,CC2530的射频信号是差分输出,而天线是单端输出[3],需要一个平衡-不平衡变换器,图5中C8,L2,C5和L1构成巴伦电路.射频部分的电路设计是节点设计的重点与难点,在射频部分布线时,合理的布局与布线及采用多层板是降低电磁干扰和提高抗干扰能力的有效手段,本设计在布线时采用以下方法:将外围器件紧密地分布在CC2530的四周,并使用较小的封装,以尽可能地减少串拢和分布参数的影响,CC2530暴露的衬垫可靠接地,敷铜板上没有布线的区域用铜填充并接地.2.5 电源模块电源模块采用MAXIM公司的升压型DC-DC芯片MAX1675,MAX1675采用μMAX封装,具有高达94%的转换效率,输入电压范围为0.7~5.5 V.设计中,检测节点采用锂电池供电,利用两片MAX1675分别输出+3.3 V和+5 V电压,其中+3.3 V电压为CC2530和 DS18B20提供电源,+5 V的电压为ACS712提供电源.图6为输出+3.3 V电压的原理图,电池电压通过L3输入MAX1675的LX引脚,FB引脚接OUT端,若将FB引脚接地时,在OUT端即可获得+5 V的电压.图6中电池电压经R6,R7分压后输入到内部的电压比较器,当LBI小于1.3 V即电池电压小于2.05 V时,输出低电平,否则输出高电平,MAX1675的引脚接至CC2530的P1_1引脚,用于对电池电压进行监控.3 系统软件设计软件部分采用TI公司提供的基于ZigBee标准的Z-Stack协议栈,它包含了ZigBee标准描述的各层次的功能组件模块,向开发人员提供了一系列的API接口,通过调用这些API可实现ZigBee标准中各层次的相应功能.模块的任务调度具体方式是为需要实现的功能建立任务,且每一个任务有不同的事件.运行时系统会不间断地轮询所有任务的标志位,若标志位有效,表明该任务有事件发生,调用任务事件处理函数,并在处理函数中根据标志位判断是什么事件发生,然后系统进行对应的操作并清标志位,如果同时有几个事件发生,先判断优先级,然后逐次处理事件.当没有任务事件发生时,系统进入低功耗模式,当有事件发生时,唤醒系统进入中断处理事件,结束后继续进入低功耗模式,这种软件构架可以极大地降低系统功耗.ZigBee协调器负责网络的组建,并对其它节点加入网络请示做出响应,负责通信链路及路由的建立以及数据包协议转换等[6].协调器软件流程图如图7所示.协调器成功组建ZigBee网络后,将接收到的数据包按源节点地址存储,并对数据进行处理后通过RS485接口发送至上位机.检测节点负责采集、处理和发送电流温度数据,同时还转发其他传感器节点的电流温度数据.由于采用了CSMA/CA技术,所以可以让终端节点定时检测电流、温度信息,并发送节点数据,终端节点大部分时间处于休眠状态,处于休眠状态时,节点关闭无线通信模块和传感器模块,只保留CPU内部定时器和中断,以减少功耗.路由节点仅是在终端节点的功能上增加了一个数据汇集和上传功能,当中断接收到数据后,提取路由信息,建立路由表,并转发数据.图8为电流温度路由节点的软件流程图.4 性能测试系统在福州某中波发射台进行测试,该台有两部发射功率为600 kW的DX型中波发射机,每部发射机均有5个分布在不同区域的天线调谐室 (1个统调室和4个分调室)、3个高压配电室和1个发射机冷凝设备,每部发射机有3个低压整流柜和224块功率模块,这些设备都是长时间工作的[1].测试中在各个天线调谐室、高压配电室、和发射机冷凝设备 (水泵)处,各放置一个温度检测节点,在发射机的低压整流柜和多个功率模块处放置电流及温度检测节点,协调器通过RS485接口与上位机通信.表1为室外温度20.2℃时一部发射机的若干检测节点的检测值与实测值的对比情况.其中,检测值是指通过电流及温度监测系统检测的结果,即系统的上位机显示的数据.实测值是指用专用仪器测得的数据,数据表明系统电流误差≤0.1 A,温度误差≤0.5℃,检测值与实测值之间的误差主要是传感器本身的误差,满足使用要求,此外测试还表明终端节点功耗低,系统可靠稳定,抗干扰能力强,能有力地保障安全播出.表1 系统测试结果(室外温度:20.2℃)Tab.1 System test results(out temperature:20.2 ℃)5 结语该系统结合现场应用条件,无线传感器节点以基于ZigBee技术的PSoC芯片CC2530为核心,采用线性电流传感器ACS712和温度传感器DS18B20获取数据,电路结构简单,检测精度高,节点功耗低,系统实现了分布式节点电流及温度的实时监测,具有工作稳定可靠,无线通信灵活,使用方便等特点,可广泛应用于工业环境的电流及温度在线监测领域.[参考文献][1]赵红艳.谈DX系列全固态发射机[J].内蒙古广播与电视技术,2009,26(4):57-59.[2]陆贵生,蔡声镇,苏伟达,等.高压开关触头温度实时无线监测系统的设计与实现[J].现代电子技术,2009,302(15):108-111.[3]赵海,赵杰,刘铮,等.一种无线传感器网络节点的设计与实现[J].东北大学学报:自然科学版,2009,30(6):809-812.[4]吕治安.ZigBee网络原理与应用开发[M].北京:北京航空航天大学出版社,2008.[5]王波,杨永明,汪金刚,等.基于PSoC的无线传感器网络节点设计[J].传感技术学报,2009,22(3):413-416.[6]贺玲玲.ZIGBEE传感网络CLUSTER-TREE改进路由算法研究[J].传感技术学报,2010,23(9):1303-1307.。
无线传感器网络汇聚节点的设计与实现

无线传感器网络汇聚节点的设计与实现作者:张周平来源:《科技创新与应用》2017年第15期摘要:由于传统的传感器采用的是电缆形式,它不仅使系统成本增加,而且也产生了许多不同信号之间的干扰。
文章采用无线传感器网络(WSN)方法,大大减少了连接的规模,而且安装更容易,信号更稳定。
与传统传感器相比,无线传感器网络具有预防性维护方便、成本低、适合恶劣环境应用等优点。
文章对无线传感器网络中汇聚节点的重要性进行了分析和讨论,并给出了硬件平台和软件平台的详细设计。
在硬件平台上,设计了LPC2214处理器和CC2530模块的无线通信装置。
为了确保传感器节点的网络灵活性,ZigBee作为无线通信协议。
通过μμC/OS-II实时操作系统提供设计软件系统。
该设计满足水槽节点的要求,并成功应用于大型油船温度监测系统关键词:无线传感器网络;ZigBee;sink节点;μc/OS-II;温度监测引言无线传感器网络的节点安装过程较为灵活,布线相对简单,通常情况下,通过电池等设备进行供电,对于远程设备可以实时监测,本文介绍了一种无线传感器网络汇聚节点的设计。
其采用ARM处理器和CC2530作为硬件平台,以Zigbee作为无线通信协议,μC/OS-II为操作系统,完成了汇聚节点应具备的功能,并成功运用于大型油船的温度监控系统。
1 无线传感器网络汇聚节点介绍无线传感器网络一般通过三个部分组合而成,分别是传感器节点、汇聚节点以及远程客户端三级网络系统,对特定环境的物理量进行检测和感知是通过传感节点完成的,通过把这些物理量转化成电量,以供整个系统进行判断和处理。
汇聚节点在整个网络中有两部分作用,其一是对传感器节点传输过来的数据进行处理,其二是把远程控制中心的命令发送到每一个传感器节点。
所以,汇聚节点同时和远程终端以及传感器节点进行通信。
2 汇聚节点的总体设计2.1 硬件平台的设计根据汇聚节点的工作特性,硬件平台选用LPC2214芯片作为中央处理器,其采用ARM7TDMI-S为内核,是ARM体系中的一款高端芯片。
一种低功耗的航空无线网络系统技术研究

一种低功耗的航空无线网络系统技术研究摘要:本文中航空无线网络系统是基于无线通信芯片CC2530,并以终端节点、协调器节点为主要框架来建立的;硬件主要基于目前不同电路功能单元CBB模块设计理念;软件设计基于Z-Stack协议栈,针对不同的传感器功能进行了具体设计,实现了无线网络系统的组建以及传感器数据的发送,后续对无线传感器网络系统进行分析测试验证。
关键词:低功耗、无线网络系统、传感器、Z-Stack协议栈1 概述在现代航空领域中,存在大量机载设备(传感器设备、导航设备、显示设备、飞行控制设备等)。
各设备之间的数据传输主要采用数据总线的方式来实现,但存在如下问题:一是中心节点失效导致网络瘫痪问题;二是电缆极为复杂,电缆数量较多时重量可达数吨,制造及敷设困难;三是随运行时间的增长,屏蔽线缆的脱焊会使得信号传输质量大大降低;四是系统改进升级灵活性受电缆的限制较大;五是设备测试技术装配过程中需要引入大量的现场连线和附加重量,导致系统维护越来越麻烦,测试效率低下。
基于有线传输存在的问题,对转变信号传输方式提出了新的要求,通过无线传感器网络对对信号进行采集、数据传输和系统测试提出了新的要求。
应用无线网络来替代现有线缆架构的机载传感器系统,将大量传感器网络节点部署在监测区域内对目标的温度、压力等信号进行测量,通过多节点协作以及无线信号发送,能够满足飞机日益增长的传感器数量和冗余度要求,大幅减轻飞机重量,将直接提高飞机的战斗生存性和总体系统的可靠性。
2设计方案无线网络系统主要包括架构设计、无线网络系统中的终端节点与协调器节点结构设计、功能模块硬件设计(电源管理单元、总线通信单元、信号采集单元、无线通讯单元等)、系统软件设计(无线通信协议、节点应用程序、无线网络系统传感器组网、多节点数据融合传感器信号采集处理、系统通信开发及设计)等。
2.1架构设计测量场景中分布的多类型无线传感器节点(终端节点)与协调器节点通过自组织方式构成了无线传感器网络系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于CC2530及ZigBee协议栈设计无线网络传感器节点
基于CC2530及ZigBee协议栈设计无线网络传感器节点
近年来,随着物联网技术的快速发展,无线传感器网络(WSN)应用正在不断增加。
无线传感器节点作为WSN的重要
组成部分,可以实时监测环境中的各种参数,并将数据传输到数据中心进行处理和分析。
本文将介绍基于CC2530芯片和ZigBee协议栈设计的无线网络传感器节点。
一、CC2530芯片介绍
CC2530芯片是德州仪器(Texas Instruments)公司推出
的一款低功耗、高性能的无线SoC芯片。
它集成了8051微控
制器核心和IEEE 802.15.4无线收发器,提供丰富的外设接口,并支持多种通信协议,如ZigBee、RF4CE、ZigBee RF4CE、
SP100和6LoWPAN。
其低功耗特性使其成为设计低功耗无线传
感器节点的理想选择。
二、ZigBee协议栈简介
ZigBee是一种低功耗、短距离无线通信技术,主要用于
自动化控制、智能家居和工业应用。
ZigBee协议栈分为应用层、网络层、MAC层和物理层。
应用层负责定义各种应用场景
下的数据交换格式和协议,网络层负责网络拓扑管理和路由选择,MAC层负责对数据进行处理和封装,物理层负责无线信号
的发送和接收。
三、无线网络传感器节点设计
基于CC2530芯片和ZigBee协议栈,设计了一种低功耗的无线网络传感器节点。
该节点由CC2530芯片、传感器模块、
电源管理模块和外设接口组成。
1. CC2530芯片:作为无线SoC芯片,CC2530芯片集成了
8051微控制器核心和无线收发器。
8051微控制器核心负责控
制节点的各种操作,如数据采集、数据处理和通信控制。
无线收发器负责与其他节点进行通信,通过ZigBee协议栈实现数
据的传输和接收。
2. 传感器模块:传感器模块负责实时监测环境中的各种
参数,如温度、湿度、光照等。
通过与CC2530芯片的接口进
行数据传输,将采集到的数据传送给CC2530芯片进行处理和
分析。
3. 电源管理模块:为了实现低功耗的设计目标,电源管
理模块负责对节点进行供电管理。
通过合理设计电源管理电路,实现对传感器节点的节能控制,延长节点的运行时间。
4. 外设接口:为了满足不同应用场景的需求,该无线网
络传感器节点还具备丰富的外设接口。
这些接口可以连接其他传感器、执行器和外界设备,实现更多功能的扩展。
四、无线网络传感器节点的应用
基于CC2530芯片和ZigBee协议栈设计的无线网络传感器节点在许多领域都有广泛的应用。
例如:
1. 环境监测:通过部署大量的无线传感器节点,可以实
时监测空气质量、温度、湿度等环境参数,以提供环境监测和预警服务。
2. 智能家居:无线网络传感器节点可以用于智能家居系统,实现对住宅中各种设备的远程控制和监测,提高生活质量和安全性。
3. 工业自动化:在工业自动化领域,无线网络传感器节
点可以用于实时监测和调节设备的运行状态,进行远程维护和管理,提高生产效率和节能效果。
5. 农业监测:农业领域的无线网络传感器节点可以用于
土壤湿度、光照强度、气象信息等的监测,提供精确的农业气象数据和精细化管理服务。
通过上述应用案例可以看出,基于CC2530芯片和ZigBee 协议栈设计的无线网络传感器节点具有很高的灵活性和可扩展性,能够满足不同领域的需求。
综上所述,基于CC2530芯片和ZigBee协议栈设计的无线网络传感器节点具有低功耗、高性能和灵活的特点,适用于各种应用场景。
随着物联网技术的不断发展,无线传感器网络将在更多领域发挥重要作用,为我们的生活和工作带来更多便利与安全
基于CC2530芯片和ZigBee协议栈设计的无线网络传感器节点在环境监测、智能家居、工业自动化和农业监测等领域有广泛的应用。
其低功耗、高性能和灵活的特点使其能够满足不同领域的需求。
随着物联网技术的发展,无线传感器网络将在更多领域发挥重要作用,为我们的生活和工作带来更多便利与安全。