有理数的加减法练习题(有答案)

合集下载

有理数的加减法练习题及答案

有理数的加减法练习题及答案

有理数的加减法练习题及答案篇一:有理数加减法经典测七年级(上)有理数的加减法测验一.选择题(每题2分,共18分)1.相反数是它本身的数是()2、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数3、以下说法不正确的选项()A、有理数的绝对值一定是正数B、数轴上的两个有理数,绝对值大的离原点远C、一个有理数的绝对值一定不是负数D、两个互为相反数的绝对值相等4、已经明白a为有理数,以下式子一定正确的选项()A.︱a︱=aB.︱a︱≥a C.︱a︱=-a D.a>05、以下各式中,等号成立的是()A、-?6=6B、?(?6)=-6 C、-2 11226、在数轴上表示的数8与-2这两个点之间的间隔是()A、6 B、10 C、-10D-67、在-5,-1,-3.5,-0.01,-2,-212各数中,最大的数是()101A -12B -C -0.01D -5108、比-7.1大,而比1小的整数的个数是()A 6B 7C 8D 9 9、?357,?,?的大小顺序是()。

468753735A ????? B ?????,864846573357C ????? D ?????684468二、填空题(每空1分,共22分)1. |-4|-|-2.5|+|-10|=__________;|-24|÷|-3|×|-2|=_________ 2. 最大的负整数是_____________;最小的正整数是____________3. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个4. 4,0得相反数是,-(-4)的相反数是。

5. 绝对值最小的数是36.1的绝对值是。

312133.14?π= 2-3。

7. 20、假设零件的长度比标准多0.1cm记作0.1cm,那么—0.05cm表示____________. 8. 21、大于?411且小于1的整数有。

249. 19、x=y,那么x和y的关系10. 把以下各数填在相应的大括号里:+1124,-6,0.54,7,0,3.14,200%,3万,-,3.4365,-,-2.543。

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)

数 学 练 习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。

A .△同号两数相加,取___相同的符号_______________,并把__绝对值相加__________________________。

1、(–3)+(–9) 2、85+(+15) -12 100 3、(–361)+(–332) 4、(–3.5)+(–532)-665 -961△绝对值不相等的异号两数相加,取_绝对值较大的加数的符号________________________,并用________较大的绝对值减去较小的绝对值____________ _____________. 互为__________________的两个数相加得0。

1、(–45) +(+23)2、(–1.35)+6.355-22 3、412+(–2.25) 4、(–9)+7 0-2△ 一个数同0相加,仍得___这个数__________。

1、(–9)+ 0=___-9___________;2、0 +(+15)=____15_________。

B1、(–1.76)+(–19.15)+ (–8.24)2、23+(–17)+(+7)+(–13)-29.15 03、(+ 341)+(–253)+ 543+(–852)4、52+112+(–52)-2 112C.有理数的减法可以转化为__正数___来进行,转化的“桥梁”是____(正号可以省略)或是(有理数减法法则)。

_____。

△减法法则:减去一个数,等于______加上这个数的相反数_________________________。

1、(–3)–(–5)2、341–(–143) 3、0–(–7) 2 57D .加减混合运算可以统一为____加法___1、(–3)–(+5)+(–4)–(–10)2、341–(+5)–(–143)+(–5) -2-51、 1–4 + 3–52、–2.4 + 3.5–4.6 + 3.53、 381–253 + 587–852-5 0-2二、综合提高题。

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)

数学练习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。

A.△同号两数相加,取___相同的符号_______________,并把__绝对值相加__________________________。

1、(–3)+(–9)2、85+(+15)-12 1003、(–3)+(–3)4、(–3.5)+(–5)-6 -9△绝对值不相等的异号两数相加,取_绝对值较大的加数的符号________________________,并用________较大的绝对值减去较小的绝对值____________ _____________. 互为__________________的两个数相加得0。

1、(–45) +(+23)2、(–1.35)+6.355-223、+(–2.25)4、(–9)+70 -2一个数同0相加,仍得___这个数__________。

1、(–9)+ 0=___-9___________;2、0 +(+15)=____15_________。

B.加法交换律:a + b = ____b+a_______ 加法结合律:(a + b) + c = ____a+(b+c)___________1、(–1.76)+(–19.15)+ (–8.24)2、23+(–17)+(+7)+(–13)-29.15 03、(+ 3)+(–2)+ 5+(–8)4、++(–)-2C.有理数的减法可以转化为__正数___来进行,转化的“桥梁”是____(正号可以省略)或是(有理数减法法则)。

_____。

△减法法则:减去一个数,等于______加上这个数的相反数_________________________。

即a–b = a + ( -b )1、(–3)–(–5)2、3–(–1)3、0–(–7)2 5 7D.加减混合运算可以统一为____加法___运算。

即a + b–c = a + b + __(-c)___________。

专题 有理数的加减运算计算题(50题)(4大题型提分练)(解析版)

专题 有理数的加减运算计算题(50题)(4大题型提分练)(解析版)

七年级上册数学《第2章有理数及其运算》专题有理数加减运算计算题◎有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.①转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.◎有理数的加减混合运算常用的方法技★1、互为相反数的两数相结合★2、符号相同的数相结合★3、同分母的分数相结合★4、相加减得整数的相结合-- -凑整法★5、按加数的类型灵活结合★6、先把分数分离整数后再分组相结合-- -拆项法题型一 有理数的加法计算1.(2023秋•河东区校级月考)计算:(1)27+(﹣13);(2)(﹣19)+(﹣91);(3)(﹣2.4)+2.4;(4)53+(−23). 【分析】根据有理数的加法法则进行解题即可.【解答】解:(1)27+(﹣13)=14;(2)(﹣19)+(﹣91)=﹣110;(3)(﹣2.4)+2.4=0;(4)53+(−23)=1. 【点评】本题考查有理数的加法,掌握加法法则是解题的关键.2.计算:(1)(﹣3)+(﹣9);(2)6+(﹣9);(3)15+(﹣22);(4)0+(−25);(5)12+(﹣4);(6)﹣4.5+(﹣3.5).【分析】根据有理数加法的计算法则逐个进行计算即可.【解答】解:(1)(﹣3)+(﹣9)=﹣(3+9)=﹣12;(2)6+(﹣9)=﹣(9﹣6)=﹣3;(3)15+(﹣22)=﹣(22﹣15)=﹣7;(4)0+(−25)=−25;(5)12+(﹣4)=12﹣4=8;(6)﹣4.5+(﹣3.5)=﹣(4.5+3.5)=﹣8.【点评】本题考查有理数加法,掌握有理数加法的计算法则是正确计算的前提.3.(2023秋•南郑区校级月考)计算:(1)(+7)+(﹣6)+(﹣7);(2)(−32)+(−512)+52+(−712). 【分析】根据有理数的加减计算法则求解即可.【解答】解:(1)原式=7﹣6﹣7=﹣6;(2)原式=(−32)−512+52−712=(−32+52)−(512+712)=1﹣1=0.【点评】本题主要考查了有理数的加减混合计算,熟知相关计算法则是解题的关键.4.计算:(1)15+(﹣19)+18+(﹣12)+(﹣14);(2)2.75+(﹣234)+(+118)+(﹣1457)+(﹣5.125). 【分析】(1)去括号利用,再利用加法的交换律与结合律进行计算即可.(2)去括号利用,再利用加法的交换律与结合律进行计算即可.【解答】解:(1)原式=15﹣19+18﹣12﹣14=(15+18)+(﹣19﹣12﹣14)=33+(﹣45)=﹣12;(2)原式=234−234+118−1457−518 =(234−234)+(118−518)﹣1457 =﹣1857. 【点评】本题主要考查了有理数的加法,掌握运算法则,利用加法的交换律与结合律进行计算是解题关键.5.用合理的方法计算下列各题:(1)103+(−114)+56+(−712);(2)(−12)+(−25)+(+32)+185+395. 【分析】(1)把原式写成去掉括号的形式,分别计算正数和负数的和,即可得到答案;(2)应用加法的交换,结合律,即可计算.【解答】解:(1)103+(−114)+56+(−712) =103+56−114−712=256−206 =56;(2)(−12)+(−25)+(+32)+185+395 =(−12+32)+(−25+185+395)=1+11=12.【点评】本题考查有理数的加法,关键是掌握有理数的加法法则.6.(2023秋•桐柏县校级月考)提升计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)23+(﹣17)+6+(﹣22);(3)(+14)+(+18)+6+(−38)+(−38)+(−6).【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数的加法法则计算即可;(3)根据有理数的加法法则计算即可.【解答】解:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=[(﹣2.4)+(﹣4.6)]+[(﹣3.7)+5.7]=﹣7+2=﹣5;(2)23+(﹣17)+6+(﹣22)=(23+6)+[(﹣17)+(﹣22)]=29+(﹣39)=﹣10;(3)(+14)+(+18)+6+(−38)+(−38)+(−6)=[(+14)+(+18)+(−38)]+(−38)+[6+(−6)]=0+(−38)+0=−38.【点评】本题考查了有理数的加法,熟练掌握有理数的加法法则是解题的关键. 题型二 有理数的减法计算7.计算:(1)(﹣73)﹣41;(2)37﹣(﹣14);(3)(−13)−190; (4)37−12. 【分析】根据有理数减法法则进行计算即可.【解答】解:(1)原式=﹣73﹣41=﹣114;(2)原式=37+14=51;(3)原式=−3090−190=−3190; (4)原式=614−714=−114.【点评】本题考查有理数的减法,掌握有理数减法法则是解题的关键.8.计算:(1)(﹣14)﹣(+15);(2)(﹣14)﹣(﹣16);(3)(+12)﹣(﹣9);(4)12﹣(+17);(5)0﹣(+52);(6)108﹣(﹣11).【分析】根据有理数的减法法则进行计算即可.【解答】解:(1)原式=﹣14﹣15=﹣29;(2)原式=﹣14+16=2;(3)原式=12+9=21;(4)原式=12﹣17=﹣5;(5)原式=0﹣52=﹣52;(6)原式=108+11=119.【点评】本题考查有理数的减法,掌握有理数的减法法则是解题的关键.9.计算:(1)(﹣34)﹣(+56)﹣(﹣28);(2)(+25)﹣(−293)﹣(+472).【分析】根据有理数的减法法则,把减法化成加法,写成省略加号和的形式,再利用加法运算律进行简便计算即可.【解答】解:(1)原式=(﹣34)+(﹣56)+(+28)=﹣34﹣56+28=﹣90+28=﹣62;(2)原式=(+25)+(+293)+(−472)=25+293−472=25+586−1416=2086−1416=676.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.10.计算下列各题.(1)(5﹣8)﹣2;(2)(3﹣7)﹣(2﹣9);(3)(﹣3)﹣12﹣(﹣4);(4)0﹣(﹣7)﹣4.【分析】根据有理数的减法法则计算即可,有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:(1)(5﹣8)﹣2=﹣3+(﹣2)=﹣5;(2)(3﹣7)﹣(2﹣9)=(﹣4)﹣(﹣7)=﹣4+7=3;(3)(﹣3)﹣12﹣(﹣4)=﹣15+4=﹣11;(4)0﹣(﹣7)﹣4=0+7﹣4=3.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.11.计算:(1)﹣30﹣(﹣85);(2)﹣3﹣6﹣(﹣15)﹣(﹣10);(3)23−(−23)−34. 【分析】(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可.【解答】解:(1)﹣30﹣(﹣85)=﹣30+85=55;(2)﹣3﹣6﹣(﹣15)﹣(﹣10)=﹣3﹣6+15+10=16;(3)23−(−23)−34 =23+23−34=712.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.12.(2023秋•新城区校级月考)计算:0.47﹣4﹣(﹣1.53).【分析】原式根据有理数加减法法则进行计算即可得到答案.【解答】解:0.47﹣4﹣(﹣1.53)=0.47﹣4+1.53=(0.47+1.57)﹣4=2﹣4=﹣2.【点评】本题主要考查了有理数的加减,熟练掌握有理数加减法法则是解答本题的关键.13.(2023秋•皇姑区校级期中)计算:16﹣(﹣12)﹣24﹣(﹣18).【分析】将减法统一成加法,然后再计算.【解答】解:原式=16+12+(﹣24)+18=28+(﹣24)+18=4+18=22.【点评】本题考查有理数加减混合运算,掌握有理数加减法运算法则是解题关键.14.(2023秋•射洪市校级月考)计算:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2).【分析】减去一个数,等于加上这个数的相反数,由此计算即可.【解答】解:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2)=﹣7+10+8+2=13.【点评】本题考查了有理数的减法,熟记其运算法则是解题的关键.15.(2024春•闵行区期中)计算:0.125−(−234)−(318−0.25).【分析】按照有理数的减法法则,把减法化成加法,写成省略加号和的形式,然后进行简便计算即可.【解答】解:原式=18+234−318+14=234+14+18−318=3﹣3=0. 【点评】本题主要考查了有理数的减法运算,解题关键是熟练掌握有理数的加减法则.16.计算:4.73−[223−(145−2.63)]−13.【分析】根据有理数的减法法则进行求解即可,先算小括号,再算中括号,能用简便方法的用简便方法.【解答】解:原式=4.73﹣[223−(﹣0.83)]−13 =4.73﹣(83+0.83)−13 =4.73−83−0.83−13=0.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解题的基础. 题型三 运用加法运算律进行简便计算17.计算:16+(﹣25)+24+(﹣35).【分析】把括号去掉,用加法的交换律和结合律计算.【解答】解:16+(﹣25)+24+(﹣35),=16﹣25+24﹣35=(16+24)+(﹣25﹣35)=40+(﹣60)=﹣20.【点评】本题考查了有理数加法,掌握有理数加法法则,加法的交换律和结合律的熟练应用是解题关键.18.计算:(﹣34)+(+8)+(+5)+(﹣23)【分析】此题可以运用加法的交换律交换加数的位置,原式可变为[(﹣34)+(﹣23)]+(8+5),然后利用加法的结合律将两个加数相加.【解答】解:(﹣34)+(+8)+(+5)+(﹣23),=[(﹣34)+(﹣23)]+(8+5),=﹣57+13,=﹣44.【点评】本题考查了有理数的加法.解题关键是综合应用加法交换律和结合律,简化计算.19.计算:213+635+(−213)+(−525).【分析】原式1、3项结合,2、4项结合,计算即可得到结果.【解答】解:原式=(213−213)+(635−525)=115. 【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.计算:(﹣1.8)+(+0.7)+(﹣0.9)+1.3+(﹣0.2).【分析】利用有理数的加法法则及加法的运算律进行计算即可.【解答】解:原式=[﹣1.8+(﹣0.2)]+(0.7+1.3)+(﹣0.9)=﹣2+2+(﹣0.9)=﹣0.9.【点评】本题考查有理数的加法运算,熟练掌握相关运算法则是解题的关键.21.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.22.计算:−0.5+(−314)+(−2.75)+(+712).【分析】先用加法的交换律和结合律,再根据有理数加法法则进行计算.【解答】解:原式=[﹣0.5+(+712)]+[(﹣3.25)+(﹣2.75)] =7+(﹣6)=1.【点评】本题考查了有理数加法,掌握加法法则,用加法的交换律和结合律是解题关键.23.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.24.(2023秋•汉中期末)计算:12+(−23)+47+(−12)+(−13). 【分析】利用加法结合律变形后,相加即可得到结果.【解答】解:原式=[12+(−12)]+[(−23)+(−13)]+47 =0﹣1+47=−37.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.25.(2023春•普陀区期中)计算:(−357)+(+15.5)+(−1627)+(−512).【分析】先按照同分母结合,再算加法.【解答】解:原式=(﹣357−1627)+(15.5﹣5.5)=﹣20+10=﹣10. 【点评】本题考查了有理数的加法,掌握加法运算律是解题的关键.26.(2024春•普陀区期中)计算:−3.19+21921+(−6.81)−(−2221).【分析】将小数与小数结合,分数与分数结合后再运算即可.【解答】解:−3.19+21921+(−6.81)−(−2221) =(﹣3.19﹣6.81)+(21921+2221)=﹣10+5=﹣5. 【点评】本题考查了有理数加减混合运算,分组计算是关键.27.(2023春•浦东新区校级期中)(−2513)+(+15.5)+(−7813)+(−512). 【分析】先将小数化分数,利用加法交换律将分母相同的放一起进行计算.【解答】解:原式=(−2513)+(+1512)+(−7813)+(−512)=[1512+(−512)]+[(−2513)+(−7813)] =10﹣10=0.【点评】本题考查有理数的加法运算,利用加法交换律将分母相同的数放一起进行计算是解题的关键.28.(2023秋•惠城区月考)用适当的方法计算:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36).【分析】(1)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;(2)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;【解答】解:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14=(0.36+0.14+0.5)+[(﹣7.4)+(﹣0.6)]=1+(﹣8)=﹣7;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36)=[(﹣51)+(﹣7)+(﹣11)]+[(+12)+(+36)]=(﹣69)+48=﹣21.【点评】本题考查有理数的加法,利用运算定律可使计算简便.29.计算:(1)137+(﹣213)+247+(﹣123); (2)(﹣1.25)+2.25+7.75+(﹣8.75).【分析】根据有理数加法法则与运算律进行计算便可.【解答】解:(1)137+(﹣213)+247+(﹣123) =(137+247)+[(﹣213)+(﹣123)]=4+(﹣4)=0;(2)(﹣1.25)+2.25+7.75+(﹣8.75)=[(﹣1.25)+(﹣8.75)]+(2.25+7.75)=(﹣10)+10=0.【点评】本题考查有理数加法,加法运算律,关键是熟记有理数加法运算法则与运算律.30.(2023秋•齐河县校级月考)计算题.(1)5.6+4.4+(﹣8.1);(2)(﹣7)+(﹣4)+(+9)+(﹣5);(3)14+(−23)+56+(−14)+(−13); (4)(﹣9512)+1534+(﹣314)+(﹣22.5)+(﹣15712).【分析】(1)运用加法结合律简便计算即可求解;(2)运用加法交换律和结合律简便计算即可求解;(3)运用加法交换律和结合律简便计算即可求解;(4)运用加法交换律和结合律简便计算即可求解.【解答】解:(1)原式=10﹣8.1=1.9;(2)原式=(﹣7)+[(﹣4)+(﹣5)+(+9)]=﹣7+0=﹣7;(3)原式=[14+(−14)]+[(−23)+(−13)]+56=0+(﹣1)+56=−16;(4)原式=[(﹣9512)+(﹣15712)]+[1534+(﹣314)]+(﹣22.5) =﹣25+1212+(﹣2212) =﹣25+(﹣10)=﹣35.【点评】本题主要考查了有理数的加法,灵活运用加法交换律和结合律进行简便计算是解题的关键. 题型四 有理数的加减混合运算31.(2024春•浦东新区校级期中)计算:(−2513)−(−15.5)+(−7813)+(−512).【分析】根据加法交换律、加法结合律,求出算式的值即可.【解答】解:(−2513)−(−15.5)+(−7813)+(−512)=﹣2513+15.5﹣7813−512 =(﹣2513−7813)+(15.5﹣512)=﹣10+10=0.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.32.(2024春•崇明区期中)计算:414−1.5+(512)−(﹣2.75). 【分析】根据有理数加减混合运算法则运算即可.【解答】解:原式=4.25﹣1.5+5.5+2.75=(4.25+2.75)+(5.5﹣1.5)=7+4=11.【点评】本题考查了有理数加减混合运算,分数转化为小数后分组运算是关键.33.(2024春•黄浦区期中)计算:(−7.7)+(−656)+(−3.3)−(−116).【分析】根据有理数的加减混合运算法则进行计算.【解答】解:原式=﹣7.7−416−3.3+76=﹣11−346=−503.【点评】本题考查了有理数的加减混合运算,掌握有理数的加减混合运算法则是关键.34.(2022•南京模拟)计算:(﹣478)﹣(﹣512)+(﹣414)﹣318. 【分析】原式利用减法法则变形,结合后相加即可得到结果.【解答】解:(﹣478)﹣(﹣512)+(﹣414)﹣318 =−478−318+512−414=−8+114=−634.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.灵活运用加法结合律进行凑整运算可以简化计算.35.(2023秋•万柏林区校级月考)计算:−|−113|−(−225)−|−313|+(−125).【分析】利用绝对值的意义,加法交换律和有理数加减法运算法则计算即可.【解答】解:−|−113|−(−225)−|−313|+(−125)=−113+225−313−125=−113−313+225−125=−423+1=−323.【点评】本题考查有理数的加减运算,解答时涉及绝对值的意义,加法交换律,掌握有理数加减法运算法则是解题的关键,36.(2023秋•万柏林区校级月考)计算:(1)6﹣(﹣2)+(﹣3)﹣1;(2)−1.2+(−34)−(−1.75)−14.【分析】(1)(2)两个小题均按照有理数的减法法则,把减法化成加法,写成省略加号和括号的形式,进行简便计算即可.【解答】解:(1)原式=6+2﹣3﹣1=8﹣4=4;(2)原式=−1.2−34+1.75−14=−1.2+1.75−34−14=0.55﹣1=﹣0.45.【点评】本题主要考查了有理数的加减运算,解题关键是熟练掌握有理数的加减法则.37.(2023秋•泰兴市期末)计算:(1)(−49)+(−59)﹣(﹣9);(2)(56−12−712)+(−124). 【分析】(1)根据有理数的加减运算法则计算即可;(2)先算括号里面的,然后根据有理数的加法法则计算即可.【解答】解:(1)(−49)+(−59)﹣(﹣9)=−49+(−59)+9=﹣1+9=8;(2)(56−12−712)+(−124) =(1012−612−712)+(−124) =−14+(−124)=−724.【点评】本题考查了有理数的加减运算,熟练掌握有理数的加减运算法则是解题的关键.38.(2023秋•管城区校级月考)计算:(1)20+(﹣13)﹣|﹣9|+15;(2)﹣61﹣|﹣71|﹣9﹣(﹣3).【分析】(1)先根据绝对值的性质进行化简,再写成省略加号和的形式进行简便计算即可;(2)先根据绝对值的性质进行化简,然后进行简便计算即可.【解答】解:(1)原式=20+(﹣13)﹣9+15=20﹣13﹣9+15=20+15﹣13﹣9=35﹣22=13;(2)原式=﹣61﹣71﹣9+3=﹣141+3=﹣138.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减法则.39.(2023秋•珠海校级月考)计算:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6);(2)(−710)+(+23)+(−0.1)+(−2.2)+(+710)+(+3.5).【分析】根据有理数加减运算法则计算即可.【解答】解:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6)=4.1+8.9﹣7.4﹣6.6=13﹣14=﹣1;(2)(−710)+(+23)+(﹣0.1)+(﹣2.2)+(+710)+(+3.5)=−710+23﹣0.1﹣2.2+710+3.5=24.2.【点评】本题主要考查了有理数加减运算,掌握有理数加减运算法则是解决问题的关键.40.(2023秋•碑林区校级月考)计算:(1)(﹣2)+3+1+(﹣13)+2;(2)−(−2.5)−(+2.4)+(−312)−1.6.【分析】(1)从左向右依次计算即可;(2)根据加法交换律、加法结合律计算即可.【解答】解:(1)(﹣2)+3+1+(﹣13)+2=1+1﹣13+2=﹣9.(2)−(−2.5)−(+2.4)+(−312)−1.6=2.5﹣2.4﹣3.5﹣1.6=(2.5﹣3.5)+(﹣2.4﹣1.6)=﹣1+(﹣4)=﹣5.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.41.(2023秋•乌鲁木齐期末)计算:(1)﹣313+(−12)−(−13)+112; (2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8).【分析】先分别变有理数加减混合运算为有理数加法,再运用加法交换结合律进行求解.【解答】解:(1)−313+(−12)−(−13)+112=(﹣313+13)+(−12+112) =﹣3+1=﹣2;(2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8)=﹣5.3+2.5﹣3.2﹣4.8=2.5﹣(5.3+3.2+4.8)=2.5﹣13.3=﹣10.8.【点评】此题考查了有理数的混合运算能力,关键是能准确确定运算顺序和方法,并进行正确地计算.42.(2023秋•顺德区校级月考)计算:(1)(+13)﹣(+12)﹣(−34)+(−23).(2)(+478)﹣(﹣514)+(﹣414)﹣(+318). 【分析】利用有理数的加减法则计算各题即可.【解答】解:(1)原式=13−12+34−23=4−6+9−812=−112; (2)原式=478+514−414−318=(478−318)+(514−414) =134+1 =234.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.43.(2023秋•谯城区校级月考)计算题:(1)6﹣(+3)﹣(﹣7)+(﹣2);(2)103+(−114)﹣(−56)+(−712). 【分析】各个小题均把减法写成加法,然后省略加号和括号,进行简便计算即可.【解答】解:(1)原式=6+(﹣3)+7﹣2=6﹣3+7﹣2=6+7﹣3﹣2=13﹣5=8;(2)原式=103−114+56−712 =4012−3312+1012−712 =4012+1012−3312−712 =5012−4012=1012=56.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减运算法则.44.(2023秋•禅城区校级月考)计算:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)0−12−(−3.25)+234−|−712|.【分析】(1)根据有理数加减混合运算法则运算即可;(2)去绝对值后,根据有理数加减混合运算法则运算即可.【解答】解:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=4.3+4﹣2.3﹣4=2;(2)0−12−(−3.25)+234−|−712|=0−12+3.25+234−712 =﹣8+3.25+2.75=﹣8+6=﹣2.【点评】本题考查了有理数加减混合运算,熟练掌握运算法则是解答本题的关键.45.(2023秋•天桥区校级月考)简便运算:(1)31+(﹣28)+28+69;(2)﹣414+8.4﹣(﹣4.75)+335. 【分析】(1)根据有理数的加法交换律和结合律计算即可;(2)据有理数的加法交换律和结合律计算即可.【解答】解:(1)31+(﹣28)+28+69=(31+69)+[(﹣28)+28]=100+0=100;(2)﹣414+8.4﹣(﹣4.75)+335 =(﹣4.25+4.75)+(8.4+3.6)=0.5+12=12.5.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.46.(2023秋•宁阳县期中)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)(−13)+(−52)+(−23)+(+12);(3)−20.75−3.25+14+1934;(4)−|−23−(+32)|−|−15+(−25)|.【分析】(1)利用有理数的加减法则计算即可;(2)利用有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)先算绝对值,再算加减即可.【解答】解:(1)原式=﹣11﹣25+20=﹣36+20=﹣16;(2)原式=(−13−23)+(12−52) =﹣1﹣2=﹣3;(3)原式=(﹣20.75+1934)+(14−3.25) =﹣1﹣3=﹣4;(4)原式=﹣|−4+96|﹣|−35| =−136−35=−65+1830 =−8330. 【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.47.(2023秋•台儿庄区月考)计算题:(1)﹣32﹣(﹣17)﹣23+(﹣15);(2)(−323)−(−2.4)+(−13)−(+425);(3)(−13)﹣(﹣316)﹣(+223)+(﹣616); (4)(﹣45)﹣(+9)﹣(﹣45)+(+9).【分析】(1)先把算式写成省略加号、括号和的形式,再把负数与正数分别相加;(2)(3)先把算式写成省略加号、括号和的形式,再把分母相同的相加;(3)先把算式写成省略加号、括号和的形式,再把互为相反数的两数相加.【解答】解:(1)﹣32﹣(﹣17)﹣23+(﹣15)=﹣32+17﹣23﹣15=﹣70+17=﹣53;(2)(−323)−(−2.4)+(−13)−(+425)=﹣323+2.4−13−4.4 =﹣323−13+2.4﹣4.4=﹣4﹣2=﹣6; (3)(−13)﹣(﹣316)﹣(+223)+(﹣616) =−13+316−223−616 =−13−223+316−616=﹣3﹣3=﹣6;(4)(﹣45)﹣(+9)﹣(﹣45)+(+9)=﹣45﹣9+45+9=(45﹣45)+(9﹣9)=0.【点评】本题考查了有理数的加减法,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.48.(2023秋•临河区月考)(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2)−|−15|−(+45)−|−37|−|−47|;(3)513+(−423)+(−613);(4)−12+(−13)−(−14)+(−15)−(−16).【分析】(1)利用有理数的加减法则计算即可;(2)利用绝对值的性质及有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)利用有理数的加减法则计算即可.【解答】解:(1)原式=﹣4.3﹣5.8﹣3.2﹣3.5﹣2.7=﹣(4.3+5.8+3.2+3.5+2.7)=﹣19.5;(2)原式=−15−45−37−47=﹣1﹣1=﹣2;(3)原式=513−613−423 =﹣1﹣423 =﹣523; (4)原式=−12−13+14−15+16=−56+14−15+16=−56+16+14−15=−23+14−15=−40+15−1260=−3760.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.49.(2023秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312). 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(−54)=−54.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156. 【分析】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.【解答】解:原式=[(﹣2021)+(−56)+4043+23+(﹣2022)+(−23)]+(1+56)=[(﹣2011)+4043+(﹣2022)+1]+[(−56)+(−23)+23+(56)] =11+0=11.【点评】本题考查了有理数的加法,拆项法是解题关键.仿照上面的方法,请你计算:(−2022724)+(−202158)+(−116)+4044. 【分析】仿照上述拆项法解题即可.【解答】解:(−2022724)+(−202158)+(−116)+4044=[(﹣2022)+(−724)]+[(﹣2021)+(−58)]+[(﹣1)+(−16)]+4044 =[(﹣2022)+(﹣2021)+(﹣1)+4044]+[(−724)+(−58)+(−16)] 50.(2023秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(﹣114)=﹣114 启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235−(﹣212); (2)(﹣200056)+(﹣199923)+400023+(﹣112).【分析】原式根据阅读材料中的方法变形,计算即可得到结果.【解答】解:(1)(﹣3310)+(﹣112)+235−(﹣212) =(﹣3−310)+(﹣1−12)+(2+35)+(2+12)=(﹣3﹣1+2+2)+(−310−12+35+12)=0+310=310;(2)(﹣200056)+(﹣199923)+400023+(﹣112) =(﹣2000−56)+(﹣1999−23)+(4000+23)+(﹣1−12)=(﹣2000﹣1999+4000﹣1)+(−56−23+23−12)=0﹣113 =﹣113. 【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.。

有理数的加减法练习题及答案

有理数的加减法练习题及答案

三、计算:(每题 4 分,共 24 分)1、- 15+ 11 2、- 3-(- 4+2)
3、
4141+(- 1) 3、—- 1 3362 5、— 8-( 5- 10) 6、 3-[ (- 3)+10 ] 四、列式计算: (每题 4 分,共 12 分) 1、 1 与 - 2
2、- 1 减去 与— 的和,所得的差是多少?
3、什么数与 -8 的和等于 - 5? 五、计算: (每题 5 分,共 10 分)
131
的和的相反数。 2
-?)?41、 7 —(- 2)—(+ 4)+(- 4) 2. -3( 3、(- 2 131232( --1 ) 43
4
)-(- 4.7)+ (- 3.2) 3.2) 六、( 6 分)某天早晨的气温是- 了 3℃,求半夜的
5、 ( - 6)+( - 3)— (- 4) 写成省略加号的和的形式为________。 读作:__________。
6、- 3- 2— 5
7、运用加法交换律,式子 11-16 可以写成_____。
8、从海拔 12m 的地方乘电梯到海拔- 15m 的地方,一共下降了____ m。 9、__ __比 - 5 小 3。BBiblioteka 、— 6 或 0C、— 6
D、0
A 、— 6 或 6
5、- 6 的相反数与比 5 的相反数大 1 的数的差为( )
A 、 10
B 、— 2
C、— 12
D、0
6、若 a+ b> 0,且- (- a)< 0,则( )
A 、 a>0, b< 0 B 、 a< 0, b> 0
C、 a< 0, b> 0
D 、 a<0, b< 0
= 1 答:收工时距 A 地 1 千米。 ②解: 答:共耗油 12.3 升

有理数加减法练习题及答案

有理数加减法练习题及答案

有理数加减法练习题及答案一、填空题(每小题3分,共24分)1、+8与-12的和取___号,+4与-3的和取___号。

2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。

3、3与-2的和的倒数是____,-1与-7差的绝对值是____。

4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。

5、-0.25比-0.52大____,比-小2的数是____。

6、若一定是____(填“正数”或“负数”)7、已知,则式子_____。

8、把下列算式写成省略括号的形式:=____。

二、选择题(每小题3分,共24分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )A、 B、C、 D、2、下面是小华做的数学作业,其中算式中正确的是( )①;②;③;④A、①②B、①③C、①④D、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A、12.25元B、-12.25元C、12元D、-12元4、-2与的和的相反数加上等于( )A、-B、C、D、5、一个数加上-12得-5,那么这个数为( )A、17B、7C、-17D、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A、10米B、15米C、35米D、5米7、计算:所得结果正确的是( )A、 B、 C、 D、8、若,则的.值为( )A、 B、 C、 D、三、解答题(共52分)1、列式并计算:(1)什么数与的和等于?(2)-1减去的和,所得的差是多少?2、下列是我校七年级5名学生的体重情况,(1)试完成下表:姓名小颖小明小刚小京小宁体重(千克)3445体重与平均体重的差-7+3-40(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?3、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。

有理数加减法100道带答案

有理数加减法100道带答案

20200620手动选题组卷2(202006212130复制)副标题一、计算题(本大题共100小题,共600.0分)1. 计算下列各题:(1) (−20)+(+3)−(−5)−(+7)(2)(−1.8)+(+0.7)+(−0.9)+1.3+(−0.2) (3)(−23)+|0−526|+|−456|+(−913)(4)−32+16÷(−2)×12−(−1)2015 (5) (−5)×(−367)+(−7)×(−367)+12×(−367)(6) (−4)2−6×43+2×(−1)3+(−12)2. 计算(1)(−15)+(+9)(2)−6+(−12)−(−18)(3)(−6)÷(−2)×12(4)−22×7−(−3)×6+53. 计算(−357)+15.5−627+(−512)4. 计算下列各式:(1)(−27)+(−57)−(−2);(2)(a +2)(a −3)−a(a −1)5. 计算:(1)−3+5+4(2)8−(−10)−|−2|(3)(−6)×(−4)−(−56)÷8(4)−14−9÷(−3)2+2×112(简便运算)(5)(−60)×(34+56−1115)(6)−25×34−(−25)×12+25×(−14)6. 计算(1)−3−7+12(2)7−(−3)+(−5)−|−8|7. 计算:(1)434−(+3.85)−(314)+(−3.15) (2)−39−(+21)−(−76)+(−16). (3)(1112−76+34−1324)×(−48)(4)|13−14|+|14−15|+⋯+|119−120|.8. 计算(1)−2−1+(−16)−(−13) (2)(29−14+118)÷(−136)(3)−24−(−4)2×(−1)+(−3)2(4)(−1)2×2+(−2)3÷49. 计算:(1)3−(+63)−(−259)−(−41); (2)(+0.75)+(−2.8)+(−0.2)−1.25; (3)7.5+(−212)−(+22.5)+(−623).10. (1)14 − (−12) + (− 25) − 17(2) (−40)−(+28)−(−19)+(−24)−(32) (3)−14−56−12+414(4)0.125+314−18+5.6−0.25(5)(−36.35)+(−7.25)+26.35+(+714)+10(6)(−323)−(−234)−(−123)−(+1,75)11. (1)26−(−15)+(−52)−32(2)37−|16−23|+(−37)12. 计算:−(−4)÷(−2)+[3×(−8)−(−2)×7]÷(−5).13. 计算:(+2)−(−5)+(−9)−(−7)14. 计算:(1)−20+(−14)−(−18)(2)−534+(+237)+(−114)−(−47) (3)(−18)×(−19+23−16)15. 计算:(1)4×(−12−34+2.5)×3−∣−6∣;;(3)7.5+(−213)−(+22.5)+(−623); (4)−58×(−42)−(−3)3÷(−1)2009.16. 计算(1)−5+8−28+9(2)23− 18 −(−13) +(−138) (3)134+16−712(4) [1.4−(−3.5+5.2)−4.3]−(−1.8)17. 计算(1)214+(–2.25)+316+(−323) (2)|−1−(−53)|−|−116−76|(3) [413−(−13)+43]+(−6) (4)−556+(−923)+(−312)+173418.计算:(1)3+(−5)(2)−6−(−8)(3)35+(−13)−2+25(4)(−1)÷(−9)÷1319.计算:(1)27+0−﹙−3﹚−18(2)3+(−5)+7−(−3)(3)﹙−11.5﹚−﹙−4.5﹚−3(4)2−(−12)+(−3.4)—4 20.计算:(1)−5−(−4)+7(2)−34×(−8)+3÷(−35)(3)(−12+310−76)×(−60)(4)−1100−4×(−14)2+(−24)21.运用运算律计算:−34+338−(−0.75)+|−258|−512.22. 运用运算律计算:−34+338−(−0.75)+|−258|−512.23. 计算下列各式:(1)(−7)−(−10)+(−8); (2)(−1.2)+[1−(−0.3)];(3)|−0.75|+(−3)−(−0.25)+|−18|+78 ;(4)(−12−15+710)×(−30);(5)(−3.2)×310+6.8×(−310);(6)(−81)÷214+49÷(−16).24. 1356−(34)+56−(−712).25. 计算:(1)3.7−(−6.9)−9.5+(−5);(2)−513−434+756+214; (3)36+(−8)−(−2.5)−(−6)+(+1.5); (4)(−1)−(+313)−(−123).26. 计算下列各题:(1)−12+7−5;(2)√−643+√16−√(−2)2; (3)−22÷23×(1−13)2;(4)[−12020−12×(12−23−34)]÷(−16).27. 计算:(1)(−8)+10+2+(−5)(2)−32×(−2)+42÷(−2)3−|−22|28. 计算:(1)(−7)−(+5)+(−4)−(−10);(2)|−12|−(−2.5)−(−1)−|0−212|; (3)34−72+(−16)−(−23)−1; (4)−478−(−512)+(−412)−318; (5) (−201723)+201634+(−201556)+1612.(6) 1+2−3—4+5+6—7—8+9+10—11—12+⋯+2005+2006−2007—200829. 计算:12+(−18)−(−17)30. −20+(−14)−(−18)−1331. 计算:(1)43+(−77)(2)(−2)−(−3)(3)(−63)+17+(−23)+68 (4)312+(−13)+(−312)+21332. 计算:(1)(−314)+225+(−534)+835; (2)(−21)−(−9)+(−8)−(−12).33. 计算:(−12)−(−56)+(−8)−710.34. 计算:0.85+(+0.75)−(+234)+(−1.85)+(+3).35. 计算:1−2+3−4+5−6+⋯+2007−2008+2009−2010+2011.36. 计算,能简便要简便:(1)0−16+(−29)−(−7)−(+11)(2)(−123)−(−112)+714+(−213)−812(3)2−18÷2×13(4)9992425×(−5)37. 计算:(1)−6+10−(−9) (2)12×(−14−23)+35÷(−12)38. 计算:(1)23+(−48)(2)7.3−(−6.8)(3)(−16)+5+(−18)+0+(+26)(4)−20−(+14)+(−18)−(−13)(5)−234−(−18)+338+(−214)(6)−18+(+2535)−|−578|−(+25.6)39. 计算题。

有理数加减混合运算【含答案】(6年级数学)

有理数加减混合运算【含答案】(6年级数学)

有理数加减运算一、有理数加法.1、计算:(1)2+(-3);(2)(-5)+(-8);(3)6+(-4);(4)5+(-5);(5)0+(-2);(6)(-10)+(-1);(7))43(31-+;(8)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-3121;(9)()⎪⎭⎫⎝⎛++-5112.1;(10))432(413(-+-;(11)752(723(-+;(12)(—152)+8.0;(13)(—561)+0;(14)314+(—561).2、计算,能简便的要用简便算法:(1)(-25)+34+156+(-65);(2)(-64)+17+(-23)+68;上海初中数学六年级第二学期--有理数加减计算题上海初中数学六年级第二学期--有理数加减计算题(3)(-42)+57+(-84)+(-23);(4)63+72+(-96)+(-37);(5)(-301)+125+301+(-75);(6)(-52)+24+(-74)+12;(7)41+(-23)+(-31)+0;(8)(-26)+52+16+(-72).3、(综合)计算:127(65(411()310(-++-+;75.9)219()29()5.0(+-++-;539()518()23()52()21(++++-+-;37(75.027()43()34()5.3(-++++-+-+-二、有理数减法.4、计算:(1)9-(-5);(2)(-3)-1;(3)0-8;(4)(-5)-0;(5)3-5;(6)3-(-5);(7)(-3)-5(8)(-3)-(-5);(9)(-6)-(-6);(10)(-6)-6.(11)(-52)-(-53);(12)(-1)-211;(13)(-32)-52;(14)521-(-7.2);(15)0-(-74);(16)-64-丨-64丨(17)(-72)-(-37)-(-22)-17;(18)(-16)-(-12)-24-(-18);(19)(-32)-21-(-65)-(-31);(20)(-2112)-[-6.5-(-6.3)-516].三、有理数加减混合运算5、计算(1)-7+13-6+20;(2)-4.2+5.7-8.4+10;(3)(-53)+51-54;(4)(-5)-(-21)+7-37;(5)31+(-65)-(-21)-32;(6)-41+65+32-21;6、计算,能简便的要用简便算法:(1)4.7-3.4+(-8.3);(2)(-2.5)-21+(-51);(3)21-(-0.25)-61;(4)(-31)-15+(-32);(5)32+(-51)-1+31;(6)(-12)-(-56)+(-8)-1077、综合计算:(1)33.1-(-22.9)+(-10.5);(2)(-8)-(-15)+(-9)-(-12);(3)0.5+(-41)-(-2.75)+21;(4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21);(6)310+(-411)-(-65)+(-127)8、计算:(1)7+(-2)-3.4;(2)(-21.6)+3-7.4+(-52);(3)31+(-45)+0.25;(4)7-(-21)+1.5;(5)49-(-20.6)-53;(6)(-56)-7-(-3.2)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨;(8)(-9.9)+1098+9.9+(-1098)(9)-0.5+1.75+3.25+(-7.5)上海初中数学六年级第二学期--有理数加减计算题(10)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423;(11)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(12)-0.5-(-413)+2.75-(+217);53146767(13) 15-(+5)-(+3)+(-2)-(+61142(14) (-1.5)+(+3)+(+3.75)+(-421113434(15) (-5)-(+)+(+5)-(-1)上海初中数学六年级第二学期--有理数加减计算题有理数运算练习(一)答案1、【答案】(1)-1;(2)-13;(3)2;(4)0;(5)-2;(6)-11;(7)170;(8)-14;(9)-32;(10)-8;(11)-23;(12)0.2、【答案】(1)-17;(2)4;(3)13;(4)22;(5)-22;(6)-60;(7)-84;(8)9.3、【答案】(1)100;(2)-2;(3)-92;(4)2;(5)50;(6)-90;(7)-13;(8)-30.4、【答案】(1)125-;(2)65-;(3)0;(4)-6;(5)74;(6)32;(7)615-;(8)65-.5、【答案】(1)65(2)4.25(3)12(4)311-6、【答案】(1)14;(2)-4;(3)-8;(4)-5;(5)-2;(6)8;(7)-8;(8)2;(9)0;(10)-126.1、【答案】(1)51;(2)-25;(3)-1516;(4)4.1;(5)74;(6)0;(7)-2043(8)-1287、【答案】(1)28;(2)-116;(3)16;(4)168、【答案】(1)-30;(2)-10;(3)168;(4)-20;(5)0;(6)-6.1或-10169、【答案】(1)20;(2)3.1;(3)-56;(4)61;(5)-32;(6)4310、【答案】(1)-7;(2)-3.2;(3)127;(4)-16;(5)-51;(6)-23911、【答案】(1)45.5;(2)10;(3)27;(4)-1213;(5)152;(6)65;12、【答案】(1)1.6;(2)-26.4;(3)30;(4)9;(5)69;(6)-6;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的加减法练习题(有答案)第一篇:有理数的加减法练习题(有答案)导读:有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。

下面是有理数的加减法练习题(有答案),欢迎阅读!一、填空题(每小题3分,共24分)1、+8与-12的和取___号,+4与-3的和取___号。

2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。

3、3与-2的和的倒数是____,-1与-7差的绝对值是____。

4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。

5、-0.25比-0.52大____,比-小2的数是____。

6、若一定是____(填“正数”或“负数”)7、已知,则式子_____。

8、把下列算式写成省略括号的形式:=____。

二、选择题(每小题3分,共24分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为()A、B、C、D、2、下面是小华做的数学作业,其中算式中正确的是()①;②;③;④A、①②B、①③C、①④D、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了()A、12.25元B、-12.25元C、12元D、-12元4、-2与的和的相反数加上等于()A、-B、C、D、5、一个数加上-12得-5,那么这个数为()A、17B、7C、-17D、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高()A、10米B、15米C、35米D、5米7、计算:所得结果正确的是()A、B、C、D、8、若,则的值为()A、B、C、D、三、解答题(共52分)1、列式并计算:(1)什么数与的和等于?(2)-1减去的和,所得的差是多少?2、计算下列各式:(1)(2)(3)3、下列是我校七年级5名学生的体重情况,(1)试完成下表:姓名小颖小明小刚小京小宁体重(千克)3445体重与平均体重的差-7+3-40(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?4、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。

列式计算,小明和小红谁为胜者?5、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。

(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?参考答案:一、1、+,-2、-33、1,64、3405、0.27,6、正数7、8、+5-8-2+3+7二、1、A2、D3、A4、B5、B6、C7、B8、A第二篇:有理数加减法练习题有理数加减法练习题一、选择1.下列说法正确的个数是()①两数的和一定比其中任何一个加数都大;②两数的差一定比被减数小③较小的有理数减去较大的有理数一定是负数;④两个互为相反数的数的商是-1 ⑤任何有理数的偶次幂都是正数 A.1个 B.2个 C.3个 D.4个2.下列关于“一个正数与一个负数的和”的说法正确的是()A.可能是正数 B.可能是0 C.可能是负数 D.以上都有可能3.下列说法正确的是()A.两个有理数相加等于它们的绝对值相加;B.两个负数相加等于它们的绝对值相减C.正数加负数,和为正数;负数加正数,和为负数;D.两个正数相加,和为正数;两外负数相加,和为负数4.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数③两个有理数的和为正数时,这两个数都是正数④两个有理数的和为负数时,这两个数都是正数 A.1个 B.2个 C.3个 D.4个 5.两个数相加,如果和小于每一个加数,那么().A.这两个加数同为正数B.这两个加数同为负数 C.这两个加数的符号不同 D.这两个加数中有一个为零 6.下列计算正确的是()A.(+30)+(-40)=10 B.(-51)+(-30)=-21 C.(-10)+(+10)=0 D.(+3.9)+(3.1)=0.8 7.两个数相加,如果它们的和小于其中一个加数,而大于另一个加数,那么()A.这两个加数的符号都是负数B.这两个加数的符号不能相同C.这两个加数的符号都是正的D.这两个加数的符号不能确定8.下列说法不正确的是()A.一个数与零相加,仍得这个数;B.互为相反数的两个数相加,其和为零 C.两个数相加,交换加数的位置,和不变;D.异号两数相加,结果一定大于零9.不能使式子│-32.6+()│=│-32.6│+│()│成立的数是()A.任意一个数B.任意一个正数;C.任意一个负数 D.任意一个非负数10.两个数的差是负数,那么被减数一定是()A.正数或负数B.负数C.非负数D.以上答案都不对 11.下列说法正确的个数是()①较大的数减去较小的数的差一定是正数;②较小的数减去较大的数的差一定是负数③两个数的差一定小于被减数;④互为相反数的两个数的差不会是负数 A.1个 B.2个 C.3个 D.4个12.若x和y表示两个任意有理数,则下列式子正确的是()A.│x-y│=│y-x│;B.│x-y│=0;C.│x-y│=-(x-y);D.│x-y│=x-y13.225的相反数与绝对值为235的数的差为()A.-15;B.5;C.15或5;D.15或-514.下列说法不正确的个数是().①两数相减,差不一定比被减数小;②减去一个数,等于加上这个数③零减去一个数,仍然等于这个数;④互为相反数的两个数相减得零A.0个B.1个C.2个D.3个15.若a<0,那么a和它的相反数的差的绝对值等于()A.0 B.a C.2aD.-2a 16.若x<0,那么x-│x│的值为()A.零 B.正数 C.非正数 D.负数 17.下列说法正确的是()A.一个数减0,等于这个数的相反数B.一个数减0,其结果一定大于零C.一个数减0,等于这个数本身D.一个数减0,其结果一定小于零18.下列说法正确的是()A.若x+y=0,则x与y互为相反数B.若x-y>0,则xy19.如图所示,a,b,c表示数轴上的三个有理数,则下列各式不成立的是()A.a-b<0 B.b-c<0;C.c-a<0 D.a-(-c)<0(1)下列计算正确的是A.7-(-7)=0;B.0-3=-3;C.14-12=12;D.(-5)-(-6)=-1(2)如图2—11所示,a、b在数轴上的位置分别在原点的两旁,则|a-b|化简的结果是A.a-b B.b-a C.-(a-b)D.-(b-a)图2—11(3)如果a+b=c,且a>c则A.b一定是负数;B.a一定小于b;C.a一定是负数;D.b一定小于a(4)如果|a|-|b|=0,那么A.a=b B.a、b互为相反数;C.a和b都是0;D.a=b或a=-b(5)如果a的绝对值大于-5的绝对值,那么有A.a>-5 B.a<-5 C.|a-(-5)|=a-(-5)D.以上均不对(6)若3A.4 B.-4 C.10-2x D.2x-10(7)若a>0,b<0,|a|=4,|b|=a-2,则a-b的值是A.2 B.-2 C.6 D.-6(8)若有理数a满足a|a|=1时,那么a 是 A.正有理数 B.负有理数 C.非负有理数 D.非正有理数1、如果□+2=0,那么“□”内应填的实数是()(A)-(B)-12(C)12(D)22.若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为()(A)4-22=-18(B)22-4=18(C)22-(-4)=26(D)-4-22=-26 3.下列说法正确的是()A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差一定大于被减数D.0减去任何数,差都是负数4.下列交换加数的位置的变形中,正确的是()A、1-4+5-4=1-4+4-5B、-131113113+4-6-4=4+4-3-61-2+3-4=2-1+4-3 D、4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.75、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是()(A)20(B)119(C)120(D)3196、若x>0,y<0,且|x|<|y|,则x+y一定是()(A)负数(B)正数(C)0(D)无法确定符号7、.若a<0,b>0,且|a|>|b|,则a与b的和用|a|、|b|表示为()(A)|a|-|b|(B)-(|a|-|b|)(C)|a|+|b|(D)-(|a|+|b|)8、下列计算结果中等于3的是()A.-7++4B.(-7)+(+4)C.+7+-4D.(+7)-(-4)9、将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号的代数和的形式应是()A、6+3+7-2B、6-3-7-2C、6-3+7-2D、6-3-7+210、已知m是6的相反数,n比m的相反数小2,则m-n等于()A、-1B、3C、2D、-101.下列说法中正确的是()(A)两个数的和必定大于每一个加数;(B)如果两个数的和是正数,那么这两人数中至少有一个正数;(C)两个数的差一定小于被减数;(D)0减去任何数,仍得这个数.2.下列说法中正确的是()(A)两个有理数相加,等于它们的绝对值相加;(B)两个负数相加取负号并把绝对值相减;(C)两个相反数相减,差为0;(D)两个负数相加,和一定为负数.3.两个有理数的和为负数,那么这两个数一定()(A)都是负数;(B)至少有一个负数;(C)有一个是0;(D)绝对值不相等.4.-7和6的差为()(A)-13;(B)-1;(C)1;(D)13.1.下列说法正确的是()A.两个有理数相加,和一定大于每一个有理数B.两个非零有理数相加,和可能等于零C.两个有理数的和为负数,这两个有理数都是负数 D.两个负数相加,把绝对值相加2.两数相加,如果和小于任一加数,那么这两数()A.同为正数 B.同为负数C.一正数一负数D.一个为0,一个为负数3.已知有理数a,b,c在数轴上的位置如图2-1所示,则下列结论错误的是()A.a +b<0 B.b+c<0 C.a+b+c<0 D.|a+b|=a+b 4.一个数加-3.6,和为-0.36,那么这个数是()A.-2.24 B.-3.96 C.3.24 D.3.96 5.下列结论正确的是()A.有理数减法中,被减数不一字比减数大B.减去一个数,等于加上这个数C.零减一个数,仍得这个数D.两个相反数相减得0 6.-2的倒数与绝对值等于的数的差是()A. B.C.-1或0 D.0或1 7.下列计算正确的是()A.7-(-7)=0 B.C.0-4=-4 D.-6-5=-1 8.下列各式中,其和等于4的是()A. B. C. D. 9.如果|x|=4,|y|=3,则x-y的值是()A.±7 B.±1 C.±7或±1 D.7或1 10.已知:a<0,b>0,用|a|与|b|表示a与b的差是()A.|a|-|b| B.-(|a|-|b|)C.|a|+|b| D.-(|a|+|b|)11.如果a<0,那么a和它的相反数的差的绝对值等于()A.-2a B.-a C.0 D12.1997个不全相等的有理数之和为零,则这1997个有理数中()A.至少有一个为零 B.至少有998个正数C.至少有一个是负数 D.至少有1995个负数.a第三篇:1.3有理数的加减法练习题及答案新人教数学七年级上册第1.3有理数的加减法测试题一、填空题〔每题3分,共24分〕1、+8与-12的和取___号,+4与-3的和取___号。

相关文档
最新文档