大学物理答案09 问题
袁艳红主编大学物理学第九章课后习题答案

----------专业最好文档,专业为你服务,急你所急,供你所需-------------文档下载最佳的地方第9章 静电场习 题一 选择题9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ](A)4f (B) 8f (C) 38f (D) 16f答案:B解析:经过碰撞后,球A 、B 带电量为2q,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为8f。
9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。
因而正确答案(B )习题9-3图(B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 (C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。
O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式204q E rπε=,移动电荷后,由于OP =OT ,即r 没有变化,q 没有变化,因而电场强度大小不变。
因而正确答案(D )9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ](A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。
大学物理(肖剑荣主编)-习题答案-第9章

第九章 课后习题解答桂林理工大学 理学院 胡光辉(《大学物理·下册》主编:肖剑荣 梁业广 陈鼎汉 李明)9-1一个沿轴作简谐振动的弹簧振子,振幅为,周期为,其振动方程用余弦函数表示.如果时质点的状态分别是:(1);(2)过平衡位置向正向运动;(3)过处向负向运动; (4)过处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有 9-2一质点沿x 轴做简谐振动,振幅为0.12m ,周期为2s ,当t=0时,质点的位置在0.06m 处,且向x 轴正方向运动,求; (1)质点振动的运动方程;(2)t=0.5s 时,质点的位置、速度、加速度;(3)质点x=-0.06m 处,且向x 轴负方向运动,在回到平衡位置所需最短的时间。
解 (1)由题意可知:可求得(初速度为零),所以质点的运动方程为 x A T 0=t A x -=02A x =2Ax -=îíì-==0000sin cos f w f A v A x )2cos(1p p p f +==t T A x )232cos(232p p p f +==t T A x )32cos(33p p pf +==t T A x )452cos(454p p pf +==t T A x 0020.12,,cos A m x A Tp w p j ====03p j =-(2) 任意时刻的速度为所以 任意时刻的加速度为所以(3)根据题意画旋转矢量图。
由图可知,质点在x=-0.06m 处,且向x 轴负方向运动,再回到平衡位置相位的变化为所以9-3 质量为的小球与轻弹簧组成的系统,按的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?0.12cos 3x t p p æö=-ç÷èø0.50.12cos 0.50.1()3t x m p p =æö=-=ç÷èø0.12sin 3v t p p p æö=--ç÷èø10.50.12cos 0.50.19()3t v m s p p p -=æö=--=-•ç÷èø20.12cos 3a t p p p æö=--ç÷èø()220.50.12cos 0.5 1.03t a m s p p p -=æö=--=-•ç÷èø325236j p p p D =-=()50.8336t s jw D D ==»kg 10103-´)SI ()328cos(1.0p p +=x(3)与两个时刻的位相差;解:(1)设谐振动的标准方程为,则知:又(2)当时,有,即 ∴ (3)9-4 原长为0.50m 的弹簧,上端固定,下端挂一质量为0.1kg 的砝码。
09秋大气系09级普通物理(1-3)试题A卷参考答案

兰州大学2009 ~ 2010 学年第 1 学期期末考试试卷( A 卷)课程名称:普通物理(1/3)任课教师:学院:专业:年级:姓名:校园卡号:一.选择题(20分)1.一质点作直线运动,某时刻的瞬时速度为v=2m/s, 瞬时加速度为a= -2m/s2, 则一秒钟后质点的速度 A(A)等于零.(B) 等于-2m/s.(C) 等于2m/s.(D) 不能确定.2.质点作半径为R的变速圆周运动时,加速度大小为(v表示任一时刻质点的速率D(A)d v/d t.(B) v2/R.(C) d v/d t+ v2/R.(D) [(d v/d t)2+(v4/R2)]1/2.3.已知水星的半径是地球半径的0.4倍, 质量为地球的0.04倍, 设在地球上的重力加速度为g , 则水星表面上的重力加速度为 B(A)0.1g.(B) 0.25g.(C) 4 g.(D) 2.5g.4.对于一个物体系来说,在下列条件中,哪种情况下系统的机械能守恒?C(A)合外力为零.(B)合外力不作功.(C)外力和非保守内力都不作功.(D) 外力和保守内力都不作功.5.关于刚体对轴的转动惯量,下列说法中正确的是 C(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.6.有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度ω 0转动,此时有一质量为m的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为 A(A)Jω 0/(J+mR2) .(B) Jω 0/[(J+m)R2].(C) Jω 0/(mR2) .(D) ω 0.7.关于温度的意义,有下列几种说法:B(1) 气体的温度是分子平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度.上述说法中正确的是(A)(1)、(2)、(4) .(B)(1)、(2)、(3) .(C)(2)、(3)、(4) .(D) (1)、(3)、(4) .8.两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: A(A)两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等.9.把单摆摆球从平衡位置向位移正方向拉开, 使摆线与竖直方向成一微小角度θ, 然后由静止放手任其振动, 从放手时开始计时, 若用余弦函数表示其运动方程,则该单第1页第2页摆振动的初位相为 C (A) θ .(B) π. (C) 0 . (D) π/2.10.一机车汽笛频率为750 Hz , 机车以时速90公里远离静止的观察者,观察者听到声音的频率是(设空气中声速为340m/s) :B(A) 810 Hz . (B) 699 Hz . (C) 805 Hz .(D) 695 Hz . 二.填空题(20分) 1.悬挂在弹簧上的物体在竖直方向上振动,振动方程为y=A sin ω t ,其中A 、ω均为常量,则(1) 物体的速度与时间的函数关系为 v=A ωcos wt ; (2) 物体的速度与坐标的函数关系为 v 2 =A 2ω2 –y 2ω2. 2.一质点沿半径为R 的圆周运动, 在t = 0时经过P 点, 此后它的速率v 按v =A+B t (A 、B 为正的已知常量)变化, 则质点沿圆周运动一周再经过P 点时的切向加速度a t = B , 法向加速度a n = v 2/R+4πB . 3.半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动, 主动轮从静止开始作匀角加速转动. 在4s 内被动轮的角速度达到8πrad/s,则主动轮在这段时间内转过了 20 圈. 4.一飞轮以角速度ω 0绕轴旋转, 飞轮对轴的转动惯量为J 1;另一静止飞轮突然被同轴地啮合到转动的飞轮上,该飞轮对轴的转动惯量为前者的二倍,啮合后整个系统的角速度ω = ω0/3 . 5.在容积为10-2m 3的容器中,装有质量100g 的气体,若气体分子的方均根速率为200m/s ,则气体的压强为 Pa 51034⨯ . 6.若某种理想气体分子的方根速率2v =450m/s,气体压强为p =7×104Pa ,则该气体的密度为ρ= 1.04kg/m 3 .7.在相同的温度和压强下,各为单位体积的氢气(视为刚性双原子分子气体)与氦气的内能之比为 5/3 ,各为单位质量的氢气与氦气的内能之比为 10/3 . 8.一作简谐振动的振动系统,其质量为2kg,频率为1000Hz,振幅为0.5cm,则其振动能量为 1002πJ .9.一简谐波的频率为5×104Hz, 波速为1.5×103m/s,在传播路径上相距5×10-3m 的两点之间的振动相位差为 3/π .10.相对于空气为静止的声源振动频率为νs ,接收器R 以速率v R 远离声源,设声波在空气中传播速度为u , 那么接收器收到的声波频率νR = uv u v Rs - . 三.计算题(60分) 1.一质点在x 轴上作加速运动,开始x=x 0,v=v 0,求: (1)设a=kt,其中k 是任意常量,求任意时间的速度和位置。
大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角,如图所示,B ϖ的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φρρ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0ρρ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ垂直离开导线。
大学物理第九章习题答案

B
A
O
C O
B
(A)A 点比 B 点电势高。 (B)A 点与 B 点电势相等。 (C)A 点比 B 点电势低。 (D)有稳恒电流从 A 点流向 B 点。 3、一根长为 L 的铜棒,在均匀磁场 B 中以匀角速度 旋转着, B 的方向垂直铜棒转动的 平面,如图。设 t 0 时,铜棒与 Ob 成 角,则在任一时刻 t 这根铜棒两端之间的感应电动势是:[ (A) L B cos(t ) (B)
0 I I b ldx 0 In 2 x 2 a
0 I 2 x
2、如图所示,矩形导体框架置于通有电流 I 的长直导线旁,且两者共面, ad 边与长直导 线平行, dc 段可沿框架移平动。设导体框架的总电阻 R 始终保持不变,现 dc 以速度 v 沿 ,穿过 abcd 回路 框架向下作匀速运动,试求(1)当 dc 段运动到图示位置(与 ab 相距 x ) 的磁通量; (2)回路中的感应电流 I i ;
B a b
2
大学物理习题集
10、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内, 且线圈中两条边与导线平行, 当线圈以相同的速率作如图所示的三种不同方向的平动时, 线圈中的感应电流:[ B ]
是由通有电流 I 的线圈所产生,且 B KI ( K 为常量) ,则旋转线圈相对于产生磁场的线 圈最大互感系数为 6、 。
无限长密绕直螺线管通以电流 I 、内部充满均匀、各向同性的磁介质,磁导率为 。 , 磁能密度 。
设管内部的磁感应强度大小为 B ,则内部的磁场强度为 为 。 设螺线管体积为 V, 则存储在螺线管内部的总磁能为
大学物理第九章课后习题答案

题库
第九章 静电场的基本规律
一、 填空 1. 电荷分为 和 ,一般把用 摩擦过的玻璃棒上所带的电 荷称为 , 把用毛皮摩擦过的 上所带的电荷称为 。 2. 物体所带电荷的多寡程度的物理量称为 。 3. 物体所带的电荷量不是以连续值出现,而是以不连续的量值出现的,这称 为 。 4. 试探电荷满足的两个条件是 , 。 5. 穿过电场中某曲面的电场线条数称为电场对该曲面的 。 6. 静电场的电场线起始于, ,终止于 , 是 (填 “闭合” 或 “不闭合” ) 的曲线, 在没有电荷的空间里, 电场线既不会 , 也不会 。 7. 高斯定理的表达式是 。 8. 电场中电势相等的点所构成的曲面称为 。 点电荷的等势面是以点电 荷为球心的一系列 。 9. 沿等势面移动电荷,电场力做功为 ,等势面和电场线处处 。 10. 沿电场线方向,电势 (填“升高”或“降低” ) 。 二、 简答 1. 2. 3. 4. 5. 简述真空中点电荷满足的库仑定律的内容及矢量表达式。 简述研究电场性质时,试探电荷需满足的两个条件。 简述电场线怎样描述电场的性质,以及静电场的电场线的特点。 简述高斯定理。 简述等势面具有的性质。
s
q内
0
。
8. 等势面,同心球面。 9. 零,正交。 10. 降低。 二、 简答 1. 答:内容:真空中两个点电荷之间的相互作用力沿其连线方向,同号相斥, 异号相吸;作用力的大小与两电荷的电荷量的乘积成正比,与两电荷之间的距离 的平方成反比。 矢量表达式: F =
q1 q 2 r0 。 4πε 0 r 2
� q j 2π 2 ε 0 R 2
联立①②, 可得 Q = 3 q 3
① ②
∴在三角形的中心应放置一电量为 − 的合力为零. 5.
大学物理同步训练第09章热力学基础

第九章 热力学基础一、选择题1. 如图1所示,一定量的理想气体,由平衡状态A 变到平衡状态B (p A =p B ),则无论经过的是什么过程,系统必然(A )对外做正功(B )内能增加 (C )从外界吸热(D )向外界放热答案:B分析:功和热量为过程量,其大小、正负与过程有关,故A 、C 、D 选项错误;内能(温度)为状态量,与过程无关。
由图可知,B 点内能高于A 点(由内能公式E =ipV 2⁄可得,式中i 为气体分子自由度,见《气体动理论》选择题1)。
2. 对于室温下的单原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W Q ⁄等于(A )23⁄(B )12⁄ (C )25⁄ (D )27⁄ 答案:C分析:由等压过程公式∆Q:∆E:∆W =(i +2):i:2可得W Q ⁄=2(3+2)=25⁄⁄。
3. 压强、体积、温度都相等的常温下的氧气和氦气,分别在等压过程中吸收了相等的热量,它们对外做的功之比为(A )1:1(B )5:9 (C )5:7 (D )9:5 答案:C分析:(参考选择题2)可得∆W =2i +2∆Q → ∆W O 2∆W He =2∆Q (i O 2+2)⁄2∆Q (i He +2)⁄=3+25+2=57 关于自由度i 可参考《气体动理论》选择题1。
4. 在下列理想气体过程中,哪些过程可能发生?(A )等体积加热时,内能减少,同时压强升高(B )等温压缩时,压强升高,同时吸热(C )等压压缩时,内能增加,同时吸热(D )绝热压缩时,压强升高,同时内能增加答案:D分析:热力学第一定律∆Q =∆E +∆W (其中∆Q 为系统吸收的热量,∆E 为系统内能的增量,∆W 为系统对外所做的功)。
等体过程,∆W =0,吸收热量∆Q >0,则∆E >0,系统内能增加,故A 错误;等温压缩,∆W <0,温度不变即∆E =0,故∆Q <0,系统放热,故B 错误;等压压缩,∆W <0,由等压过程公式(见选择题2)可知∆E <0,∆Q <0,系统内能减小,且系统放热,故C 错误;绝热压缩时,∆Q =0,∆W <0,故∆E >0,系统内能增加,由绝热过程曲线可知压强升高,故D 正确。
大学物理 科学出版社 第9章 静电场 参考答案

第4篇电磁学第9章静电场9.1 基本要求1 掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌 握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
了解电场强度 与电势的微分关系。
2 理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和 方法。
3 了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质 中D和E之间的关系。
了解介质中的高斯定理。
4 了解电容和电能密度的概念。
9.2 基本概念1 电场强度E :试验电荷0q 所受到的电场力F 与0q 之比,即0q =F E 2 电位移D :电位移矢量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正比,即ε=D E 3 电场强度通量e Φ:e Sd Φ=⎰E S电位移通量:D Sd Φ=⎰D S4 电势能pa E :0pa aE q d ∞=⎰E l (设0p E ∞=)5 电势a V :0pa a aE V d q ∞==⎰ E l (设0V ∞=)电势差ab U :ab a b U V V =- 6 场强与电势的关系(1)积分关系 a aV d ∞=⎰E l(2)微分关系 = -V ∇=-E gradV7 电容C:描述导体或导体组(电容器)容纳电荷能力的物理量。
孤立导体的电容:Q C V =;电容器的电容:Q C U= 8 静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3 基本规律 1 库仑定律:12204rq q rπε=F e 2 叠加原理(1)电场强度叠加原理:在点电荷系产生的电场中任一点的场强等于每个点电荷单独 存在时在该点产生的场强的矢量和。
(2)电势叠加原理:在点电荷系产生的电场中,某点的电势等于每个点电荷单独存在时 在该点产生的电势的代数和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,在无限长载流导线附近作一球形闭合曲面
S 当面S 向长直导线靠近的过程中,穿过面S 的磁通量Φ及
面上任一点P 的磁感应强度B 大小的变化为[ ]。
A. Φ增大,B 不变
B. Φ不变, B 增大
C. Φ增大,B 增大
D. Φ不变, B 不变
答案:【B 】
解:由磁场的高斯定理0=⋅⎰⎰S S d B ,即穿过闭合曲面的磁通量为零,或者说,磁感应线为
闭合曲线,所以Φ不变;由于长直载流导线的磁场a I B πμ20=
,与距离成反比,所以,当闭合曲面靠近载流直导线时,闭合曲面上各点的磁感应强度增大。
2.一电子以速度ν→垂直地进入磁感应强度为B →
的均匀磁场中,此电子在磁场中运动的轨迹所围的面积内的磁通量将是[ ]。
A.反比于B ,正比于2ν
B. 反比于B ,正比于ν
C. 正比于B ,反比于2ν
D. 正比于B ,反比于ν 答案:【A 】
解:电子垂直于磁场进入磁场,将在洛伦兹力的作用下,在垂直于磁场的平面内作圆周运动。
S 垂直,
3. 通电流强度
为I 。
对套在螺线管轴线外的环路L (螺线管穿过环路)作积分=⋅⎰l B d 。
解:
4.两平行长直导线相距0.4m ,每条导线载有电流
10A (如图9-3所示),则通过图中矩形面积abcd 的
磁通量m Φ= 。
答案:Wb 101.16
-⨯
解:电流1I 和2I 大小相等,方向相反,由毕萨定律可以判知,它们在矩形面积内产生的电磁感应强度方向
均垂直于纸面向外。
由对称性可知,电流1I 和2I 产生
的电磁感应强度穿过矩形面积的磁通量大小相等,因
此只须计算一个电流产生磁场的磁通量。
x
I B πμ2101=
)(101.13ln 10103ln 26701Wb I ab --⨯≈⨯==Φ=Φπ
μ 5.有一很长的载流导体直圆管,内
半径为a ,外半径为b ,电流强度
为I ,电流沿轴线方向流动,并且
均匀地分布在管壁的横截面上,如
图9-4所示。
求空间各点的磁感应
强度,并画出B r -曲线(r 为场点
到轴线的垂直距离)。
解:以轴线为中心的同心圆各点场感应强度大小相等,方向沿圆周切
线。
取此同心圆为环路,由对称性可知,在积分环路上,感应强度大
小相等,方向均沿着环路。
应用安培环路定理, ∑⎰⎰===⋅002I rB Bdl l d B
L μπ
,00I =∑)(,0b r I I >=∑。
)(0a r B <=;)()
(2)(22220b r a a b r a r I B ≤≤--=πμ;)(20b r r I B >=πμ
沿圆周切线。
取此圆周为环路,应用安培环路定理,
NI rB Bdl l d B L L 02μπ===⋅⎰⎰ ,r NI B πμ20= ; (2)Bhdr d =Φ
2102/2/02/2/0
ln 2212
12D D NIh hdr r NI Bhdr N d D D D D πμπμ===Φ=Φ⎰⎰⎰Φ
7.在无电流的空间区域,如果磁感应线是平行直线,则磁场一定是均匀的,为什么? 证明: 用高斯定理,可以证明图中/2/1B B =; 用安培环路定理,可以证明图中21B B =
命题得证。