求解离心率的范围问题

合集下载

求离心率的范围问题整理分类

求离心率的范围问题整理分类

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

高考数学复习:离心率范围(最值)模型

高考数学复习:离心率范围(最值)模型

解决离心率范围(最值)问题的基本思路是建立目标函数或构建不等关系:建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达离心率,利用求函数的值域(最值)的方法将离心率表示为其他变量的函数,求其值域(最值),从而确定离心率的取值范围;构建不等关系是根据试题本身给出的不等条件,或一些隐含条件或椭圆(双曲线)高考数学复习:离心率范围(最值)模型自身的性质构造不等关系,从而求解.【例题选讲】[例8] (41)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率e 的取值范围为( )A .[53,+∞)B .[54,+∞)C .(1,53] D .(1,54]答案 B 解析 将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,不妨取A (c ,b 2a ),B (c ,-b 2a ),所以|AB |=2b 2a.将x =c 代入双曲线的渐近线方程y =±ba x ,得y =±bc a ,不妨取C (c ,bc a ),D (c ,-bc a ),所以|CD |=2bca.因为|AB |≥35|CD |,所以2b 2a ≥35×2bc a ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54,故选B .(42)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( )A .(0,59] B .( C .( D .(13,答案 C 解析 如图所示,设F ′为椭圆的左焦点,连接AF ′,BF ′,则四边形AFBF ′是平行四边形,∴6=|AF |+|BF |=|AF ′|+|AF |=2a ,∴a =3.取P (0,b ),∵点P 到直线l ∶4x +3y =0的距离不小于65,|3b |≥65,解得b ≥2.∴c ∴0<c a ≤∴椭圆E 的离心率范围是(0.故选C .(43)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2且垂直于x 轴的直线与椭圆交于A ,B两点,若△ABF 1是锐角三角形,则该椭圆离心率e 的取值范围是( )A .1,+∞) B .(01) C .1,1) D .11)答案 C 解析 由题意可知,A ,B 的横坐标均为c ,且A ,B 都在椭圆上,所以c 2a 2+y 2b2=1,从而可得y =±b 2a,不妨令A (c ,b 2a ),B (c ,-b 2a ).由△ABF 1是锐角三角形知∠AF 1F 2<45°,所以tan ∠AF 1F 2<1,所以tan ∠AF 1F 2=AF 2F 1F 2=b 2a 2c <1,故a 2-c 22ac <1,即e 2+2e -1>0,解得e1或e <1,又因为椭圆中,0<e <11<e <1.故选C .(44)已知F 1,F 2分别是椭圆C :x 2m +y 24=1的上下两个焦点,若椭圆上存在四个不同点P ,使得△PF 1F 2C 的离心率的取值范围是( )A .(12,B .(12,1)C .1) D .1)答案 A 解析 F 1,F 2分别是椭圆C :x 2m +y 24=1的上下两个焦点,可得2c =P ,使得△PF 1F 2,可得12×2m 2-4m +3<0,解得m ∈(1,3),则椭圆C 的离心率为:e(12,.(45)已知椭圆22x a +22y b=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),若椭圆上存在一点P 使12sin a PF F Ð=21sin cPF F Ð,则该椭圆的离心率的取值范围为 .思路点拨 在△PF 1F 2中,使用正弦定理建立|PF 1|,|PF 2|之间的数量关系,再结合椭圆定义求出|PF 2|,利用a -c <|PF 2|<a +c 建立不等式确定所求范围.答案 1,1) 解析 根据已知条件∠PF 1F 2,∠PF 2F 1都不能等于0,即点P 不会是椭圆的左、右顶点,故P ,F 1,F 2构成三角形,在△PF 1F 2中,由正弦定理得212sin PF PF F Ð=121sin PF PF F Ð,则由已知,得2a PF =1cPF ,即|PF 1|=c a |PF 2|,①.根据椭圆定义,|PF 1|+|PF 2|=2a ,②.由①②解得,|PF 2|=21a c a+=22a a c +,因为a -c <|PF 2|<a +c ,所以a -c <22a a c+< a +c ,即b 2<2a 2<a 2+2ac +c 2,所以c 2+2ac -a 2>0,即e 2+2e -1>0,解得e <1或e 1,又e ∈(0,1),故椭圆的离心率e ∈1,1).(46)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),若存在过右焦点F 的直线与双曲线C 相交于A ,B 两点,且AF → =3BF →,则双曲线C 的离心率的最小值为________.答案 2 解析 因为过右焦点F 的直线与双曲线C 交于A ,B 两点,且AF → =3BF →,故点A 在双曲线的左支上,B 在双曲线的右支上,如图所示.设A (x 1,y 1),B (x 2,y 2),右焦点F (c ,0),因为AF →=3BF →,所以c -x 1=3(c -x 2),即3x 2-x 1=2c ,由图可知,x 1≤-a ,x 2≥a ,所以-x 1≥a ,3x 2≥3a ,故3x 2-x 1≥4a ,即2c ≥4a ,故e ≥2,所以双曲线C 的离心率的最小值为2.(47)已知双曲线方程为224x m +-22y b=1,若其过焦点的最短弦长为2,则该双曲线的离心率的取值范围是( )A .(1]B .,+∞)C .(1)D .,+∞)答案 A 解析 过焦点的最短弦长有可能是2a 或是过焦点且垂直于长轴所在直线的弦长为22b a=,a 2=m 2+4≥4,2a ≥4>2,所以过焦点的最短弦长为22b a ==2,即b 2=,e =c a ,0<21b ≤12,所以1<1+21b ≤32,,即e ∈(1].故选A .(48)椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆M 上任一点,且|PF 1|·|PF 2|的最大值的取值范围是[2b 2,3b 2],椭圆M 的离心率为e ,则e -1e的最小值是________.答案 解析 由椭圆的定义可知|PF 1|+|PF 2|=2a ,∴|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=a 2,∴2b 2≤a 2≤3b 2,即2a 2-2c 2≤a 2≤3a 2-3c 2,∴12≤c 2a 2≤23,e 令f (x )=x -1x ,则f (x )在23上是增函数,∴当e 2e -1e取得最小值22(49)已知点A (-1,0)和B (1,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A B C D 答案 A 解析 方法1 不妨设椭圆方程为x 2a 2+y 2a 2-1=1(a >1),与直线l 的方程联立{x 2a 2+y 2a 2-1=1,y =x +3,消去y 得(2a 2-1)x 2+6a 2x +10a 2-a 4=0,由题意易知Δ=36a 4-4(2a 2-1)(10a 2-a 4)≥0,解得a e=c a =1a ≤e 方法2 A (-1,0)关于直线l :y =x +3的对称点为A ′(-3,2),连接A ′B 交直线l 于点P ,则此时椭圆C 的长轴长最短,为|A ′B |=所以椭圆C 1故选A .(50)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=6|PF 2|,此双曲线的离心率e 的最大值为________.答案 75 解析 由定义,知|PF 1|-|PF 2|=2a .又|PF 1|=6|PF 2|,∴|PF 1|=125a ,|PF 2|=25a .当P ,F 1,F 2三点不共线时,在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=14425a 2+425a 2-4c 22·125a ·25a =3712-2512e 2,即e 2=3725-1225cos ∠F 1PF 2.∵cos ∠F 1PF 2∈(-1,1),∴e ∈(1,75).当P ,F 1,F 2三点共线时,∵|PF 1|=6|PF 2|,∴e =c a =75,综上,e 的最大值为75.还可用三角形两边之和大于第三边构造不等式.【对点训练】47.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )A .(14,34)B .(23,1)C .(12,23)D .(0,12)47.答案 C 解析 由题图可知,|AF |=a +c ,|BF |=a 2-c 2a,于是k =|BF ||AF |=a 2-c 2a (a +c ).又13<k <12,所以13<a 2-c 2a (a +c )<12,化简可得13<1-e <12,从而可得12<e <23,故选C .48.已知双曲线C :x 2a 2+1-y 2=1(a >0)的右顶点为A ,O 为坐标原点,若|OA |<2,则双曲线C 的离心率的取值范围是( )A .∞) B .(1,52) C . D .(148.答案 C 解析 双曲线C :x 2a 2+1-y 2=1(a >0)中,右顶点为A 0),∴|OA |,∴1<a 2+1<4,∴1>1a 2+1>14,∵c 2=a 2+1+1=a 2+2,∴c ∴ee e C.49.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是( )A.(0 B.(0,34] C.1) D.[34,1)49.答案 A 解析 设左焦点为F0,连接F0A,F0B,则四边形AFBF0为平行四边形.∵|AF|+|BF|=4,∴|AF|+|AF0|=4,∴a=2.设M(0,b),则M到直线l的距离d=4b5≥45,∴1≤b<2.离心率e=ca=(0,故选A.50.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点为F1、F2,双曲线上的点P满足4|PF1→+PF2→|≥3|F1F2→|恒成立,则双曲线的离心率的取值范围为( )A.1<e≤32 B.e≥32 C.1<e≤43 D.e≥4350.答案 C 解析 由OP为△F1PF2的中线,可得4|PF1→+PF2→|=8|PO→|≥3|F1F2→|,因为|F1F2→|≥a,|F1F2→|=2c,可得8a≥6c,即双曲线的离心率为:1<e≤43.故选C.51.已知点F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过F2且垂直于x轴的直线与双曲线交于M,N两点,若MF―→1·NF―→1>0,则该双曲线的离心率e的取值范围是( )A.1) B.(11) C.(1 D.∞)51.答案 B 解析 设F1(-c,0),F2(c,0),依题意可得c2a2-y2b2=1,得到y=b2a,不妨设M(c,b2a),N(c,-b2a),则MF―→1·NF―→1=(-2c,-b2a)·(-2c,b2a)=4c2-b4a2>0,得到4a2c2-(c2-a2)2>0,即a4+c4-6a2c2<0,故e4-6e2+1<0,解得3-e2<3+e>1,所以1<e2<3+1<e<1+52.正方形ABCD的四个顶点都在椭圆x2a2+y2b2=1(a>b>0)上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( )A.21) B.(02 C.21) D.(0252.答案 B 解析设正方形的边长为2m,因为椭圆的焦点在正方形的内部,所以m>c,又正方形ABCD的四个顶点都在椭圆x2a2+y2b2=1(a>b>0)上,所以m2a2+m2b2=1>c2a2+c2b2=e2+e21-e2,整理得e4-3e2+1>0,e20<e B.53.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为________.53.答案 1) 解析 设椭圆的方程为x2a2+y2b2=1(a>b>0),∠B1PA2为钝角可转化为B2A2→,F2B1→所夹的角为钝角,则(a,-b)·(-c,-b)<0,得b2<ac,即a2-c2<ac,故(c a)2+c a-1>0即e2+e-1>0,e e0<e<1e<1.54.已知F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,若椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是( )A.1) B.(12,1) C.(0 D.(0,12)54.答案 A 解析 法一:设P(x0,y0),由题意知|x0|<a,因为∠F1PF2为钝角,所以PF1―→·PF2―→<0有解,即(-c-x0,-y0)·(c-x0,-y0)<0,化简得c2>x20+y20,即c2>(x20+y20)min,又y20=b2-b2a2x20,0≤x20<a2,故x20+y20=b2+c2a2x20∈[b2,a2),所以(x20+y20)min=b2,故c2>b2,又b2=a2-c2,所以e2=c2a2>12,解得e0<e<1,故椭圆C的离心率的取值范围是1).法二:椭圆上存在点P使∠F1PF2为钝角⇔以原点O为圆心,以c为半径的圆与椭圆有四个不同的交点⇔b <c .如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >0<e <1,故椭圆C 的离心率的取值范围是1).55.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P 为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A .1)B .,12) C .(12,1) D .(0,12)55.答案 B 解析 由题意可得,|PF 2|2=|F 1F 2|2+|PF 1|2-2|F 1F 2|·|PF 1|cos ∠PF 1F 2=4c 2+4c 2-2·2c ·2c ·cos∠PF 1F 2,即|PF 2|=所以a =|PF 1|+|PF 2|2=c 又60°<∠PF 1F 2<120°,∴-12<cos ∠PF 1F 2<12,所以2c <a 1)c ,<c a <12,e <12.故选B .56.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,D 为虚轴的一个端点,且△ABD 为钝角三角形,则此双曲线离心率的取值范围为________.56.答案 (1∪∞) 解析 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1(-c,0),令x =-c ,可得y =±±b 2a ,设A (-c ,b 2a ),B (-c ,-b 2a ),D (0,b ),可得AD →=(c ,b -b 2a ),AB → =(0,-2b 2a ),DB → =(-c ,-b -b 2a ),若∠DAB 为钝角,则AD → ·AB →<0,即0-2b 2a·(b -b 2a )<0,化为a >b ,即有a 2>b 2=c 2-a 2,可得c 2<2a 2,即e =c a<e >1,可得1<e ∠ADB 为钝角,则DA → ·DB →<0,即c 2-(b 2a +b )(b 2a -b )<0,化为c 4-4a 2c 2+2a 4>0,由e =c a,可得e 4-4e 2+2>0,又e >1,可得eAB → ·DB → =2b 2a(b +b 2a )>0,∴∠DBA 不可能为钝角.综上可得,e 的取值范围为(1∪∞).57.已知点F 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线y =kx (k >0)与E 交于不同象限内的M ,N两点,若MF ⊥NF ,设∠MNF =β,且β∈[π12,π6],则该双曲线的离心率的取值范围是( )A .B .[21]C .[2D .1]57.答案 D 解析 如图,设左焦点为F ′,连接MF ′,NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r 21+r 22=4c 2②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF ,∴12r 1r 2=2·12c 2·sin 2β,∴c 2-a 2=c 2·sin 2β,∴e 2=11-sin 2β,又∵β∈[π12,π6],∴sin 2β∈[12,,∴e 2=11-sin 2β∈[2,1)2].又e >1,∴e ∈1].58.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,则此双曲线离心率的取值范围为________.58.答案 (1 解析 由过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,可得ba <2.∴e =ca =∵e >1,∴1<e ∴此双曲线离心率的取值范围为(159.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 的离心率的取值范围是( )A .[23,1)B .[13,2C .[13,1)D .(0,13]59.答案 C 解析 如图所示,∵线段PF 1的中垂线经过F 2,∴|PF 2|=|F 1F 2|=2c ,即椭圆上存在一点P ,使得|PF 2|=2c .∴a -c ≤2c <a +c .∴e =c a ∈[13,1).60.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点,若椭圆上存在点P 使得PF 1⊥PF 2,则该椭圆的离心率的取值范围是( )A .1) B .1) C .(0 D .(60.答案 B 解析 ∵F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点,∴离心率0<e <1,F 1(-c ,0),F 2(c ,0),c 2=a 2-b 2.设点P (x ,y ),由PF 1⊥PF 2,得(x +c ,y )·(x -c ,y )=0,化简得x 2+y 2=c 2.联立方程组{x 2+y 2=c 2,x 2a 2+y 2b 2=1,整理得,x 2=(2c 2-a 2)·a 2c 2≥0,解得e0<e <1,e <1.61.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3]B .[3,+∞)C .(0,3)D .(0,3]61.答案 A 解析根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca≤3,又e >1,∴1<e ≤3,即双曲线C 的离心率的取值范围为(1,3].62.已知F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,点P 在椭圆上且满足PF 1→ ·PF 2→=c 2,则该椭圆离心率的取值范围是( )A .1) B . C .[13,12] D .(062.答案 B 解析 设P (x ,y ),则x 2a 2+y 2b2=1(a >b >0),y 2=b 2-b 2a 2x 2,-a ≤x ≤a ,PF 1→ =(-c -x ,-y ),PF 2→ =(c -x ,-y ).所以PF 1→ ·PF 2→ =x 2-c 2+y 2=(1-b 2a 2)x 2+b 2-c 2=c 2a2x 2+b 2-c 2.因为-a ≤x ≤a ,所以b 2-c 2≤PF 1→ ·PF 2→≤b 2.所以b 2-c 2≤c 2≤b 2,所以2c 2≤a 2≤3c 2≤c a ≤B .63.已知双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=2c .若双曲线M 的右支上存在点P ,使a sin ∠PF 1F 2=3csin ∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A .(1 B .(1C .(1,2)D .(1,2]63.答案 A 解析 根据正弦定理可知sin ∠PF 1F 2sin ∠PF 2F 1=|PF 2||PF 1|,所以|PF 2||PF 1|=a 3c ,即|PF 2|=a3c|PF 1|,|PF 1|-|PF 2|=2a ,所以1-a3c)|PF1|=2a ,解得|PF 1|=6ac3c -a,而|PF 1|>a +c ,即6ac 3c -a>a +c ,整理得3e 2-4e -1<0e e >1,所以1<e A .64.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得sin ∠MF 1F 2a=sin ∠MF 2F 1c,则该椭圆离心率的取值范围为( )A .(01)B .1) C .(0 D .1,1)64.答案 D 解析在△MF 1F 2中,|MF 2|sin ∠MF 1F 2=|MF 1|sin ∠MF 2F 1,而sin ∠MF 1F 2a =sin ∠MF 2F 1c ,∴|MF 2||MF 1|=sin ∠MF 1F 2sin ∠MF 2F 1=ac ,①.又M 是椭圆x 2a 2+y 2b2=1上一点,F 1,F 2是椭圆的焦点,∴|MF 1|+|MF 2|=2a ,②.由①②得,|MF 1|=2aca +c ,|MF 2|=2a 2a +c .显然|MF 2|>|MF 1|,∴a -c <|MF 2|<a +c ,即a -c <2a 2a +c <a +c ,整理得c 2+2ac -a 2>0,∴e 2+2e -1>0,又0<e <11<e <1,故选D .65.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),若椭圆上存在点P 使1-cos 2∠PF 1F 21-cos 2∠PF 2F 1=a 2c2,该椭圆的离心率的取值范围为 .65.答案 1,1) 解析 由1-cos 2∠PF 1F 21-cos 2∠PF 2F 1=a 2c 2得ca =sin ∠PF 2F 1sin ∠PF 1F 2.又由正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|,所以|PF 1||PF 2|=c a ,即|PF 1|=c a |PF 2|.又由椭圆定义得|PF 1|+|PF 2|=2a ,所以|PF 2|=2a 2a +c ,|PF 1|=2ac a +c,因为PF 2是△PF 1F 2的一边,所以有2c -2ac a +c <2a 2a +c <2c +2aca +c,即c 2+2ac -a 2>0,所以e 2+2e -1>0(0<e <1),解得椭圆离心率的取值范围为1,1).。

妙解离心率问题(解析版)

妙解离心率问题(解析版)

妙解离心率问题【目录】考点一:顶角为直角的焦点三角形求解离心率的取值范围问题考点二:焦点三角形顶角范围与离心率考点三:共焦点的椭圆与双曲线问题考点四:椭圆与双曲线的4a 通径体考点五:椭圆与双曲线的4a 直角体考点六:椭圆与双曲线的等腰三角形问题考点七:双曲线的4a 底边等腰三角形考点八:焦点到渐近线距离为b考点九:焦点到渐近线垂线构造的直角三角形考点十:以两焦点为直径的圆与渐近线相交问题考点十一:渐近线平行线与面积问题考点十二:数形结合转化长度角度求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.考点要求考题统计考情分析离心率2023年新高考I 卷第5、16题,10分2023年甲卷第9题,5分2022年甲卷第10题,5分2022年浙江卷第16题,4分2021年甲卷第5题,5分2021年天津卷第8题,5分离心率问题一直是高考每年必考,对圆锥曲线概念和几何性质的考查为主,一般不会出太难,二轮复习我们需要掌握一些基本的性质和常规的处理方法,挖掘椭圆双曲线的几何性质下手.求离心率范围的方法一、建立不等式法:1.利用曲线的范围建立不等关系.2.利用线段长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1 ∈a -c ,a +c ;F 1,F 2为双曲线x2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,PF 1 ≥c -a .3.利用角度长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b2=1的左、右焦点,P 为椭圆上的动点,若∠F 1PF 2=θ,则椭圆离心率e 的取值范围为sin θ2≤e <1.4.利用题目不等关系建立不等关系.5.利用判别式建立不等关系.6.利用与双曲线渐近线的斜率比较建立不等关系.7.利用基本不等式,建立不等关系.1(2023•新高考Ⅰ)设椭圆C 1:x 2a2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A.233B.2C.3D.6【答案】A【解析】由椭圆C 2:x 24+y 2=1可得a 2=2,b 2=1,∴c 2=4-1=3,∴椭圆C 2的离心率为e 2=32,∵e 2=3e 1,∴e 1=12,∴c 1a 1=12,∴a 21=4c 21=4(a 21-b 21)=4(a 21-1),∴a =233或a =-233(舍去).故选:A .2(2023•甲卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.455【答案】D【解析】双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,可得c =5a ,所以b =2a ,所以双曲线的渐近线方程为:y =±2x ,一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,圆的圆心(2,3),半径为1,圆的圆心到直线y =2x 的距离为:|4-3|1+4=15,所以|AB |=21-15=455.故选:D .3(2022•甲卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A【解析】已知A (-a ,0),设P (x 0,y 0),则Q (-x 0,y 0),k AP =y 0x 0+a ,k AQ =y 0a -x 0,故k AP ⋅k AQ =y 0x 0+a ⋅y 0a -x 0=y 20a 2-x 20=14①,∵x 20a 2+y 20b 2=1,即y 20=b 2(a 2-x 20)a 2②,②代入①整理得:b 2a2=14,e =c a =1-b 2a 2=32.故选:A .4(2021•甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.7B.13C.72D.132【答案】C【解析】设|PF 1|=m ,|PF 2|=n ,则根据题意及余弦定理可得:m =3n12=m 2+n 2-4c22mn,解得m =67cn =27c ,∴所求离心率为2c 2a =2c m -n =2c 47c=72.故选:C .5(2021•天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与抛物线y 2=2px (p >0)的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C ,D 两点,若|CD |=2|AB |,则双曲线的离心率为()A.2B.3C.2D.3【答案】A【解析】解由题意可得抛物线的准线方程为x =-p2,由题意可得:p 2=c ,渐近线的方程为:y =±ba x ,可得A -c ,b 2a ,B -c ,-b2a ,C -c ,bc a ,D -c ,-bca,所以|AB |=2b 2a ,|CD |=2bca,由|CD |=2|AB |,解得:c =2b ,即a =b ,所以双曲线的离心率e =ca=2.故选:A .6(2022•甲卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1 ⋅BA 2=-1,则C 的方程为()A.x 218+y 216=1B.x 29+y 28=1C.x 23+y 22=1D.x 22+y 2=1【答案】B【解析】由椭圆的离心率可设椭圆方程为x 29m 2+y 28m 2=1(m >0),则A 1(-3m ,0),A 2(3m ,0),B (0,22m ),由平面向量数量积的运算法则可得:BA 1 ⋅BA 2=(-3m ,-22m )⋅(3m ,-22m )=-9m 2+8m 2=-1,∴m 2=1,则椭圆方程为x 29+y 28=1.故选:B .7(2022•全国)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线y =2x +1垂直,则C 的离心率为()A.5 B.5C.54D.52【答案】D【解析】由双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的方程可得渐近线方程为y =±b a x ,由题意可得b a =12,所以双曲线的离心率e =c a =1+b 2a 2=1+14=52,故选:D .8(多选题)(2022•乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为()A.52B.32C.132D.172【答案】AC【解析】当直线与双曲线交于两支时,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),设过F 1的切线与圆D :x 2+y 2=a 2相切于点P ,则|OP |=a ,OP ⊥PF 1,又|OF 1|=c ,所以PF 1=OF 12-OP 2=c 2-a 2=b ,过点F 2作F 2Q ⊥MN 于点Q ,所以OP ⎳F 2Q ,又O 为F 1F 2的中点,所以|F 1Q |=2|PF 1|=2b ,|QF 2|=2|OP |=2a ,因为cos ∠F 1NF 2=35,∠F 1NF 2<π2,所以sin ∠F 1NF 2=45,所以|NF 2|=QF 2sin ∠F 1NF 2=5a 2,则|NQ |=|NF 2|⋅cos ∠F 1NF 2=3a2,所以|NF 1|=|NQ |+|F 1Q |=3a2+2b ,由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以3a 2+2b -5a 2=2a ,可得2b =3a ,即b a =32,所以C 的离心率e =c a =1+b 2a 2=1+94=132.情况二:当直线与双曲线交于一支时,如图,记切点为A ,连接OA ,则|OA |=a ,|F 1A |=b ,过F 2作F 2B ⊥MN 于B ,则|F 2B |=2a ,因为cos ∠F 1NF 2=35,所以|NF 2|=5a 2,|NB |=3a2,|NF 2|-|NF 1|=5a 2-3a2-2b =a +2b =2a ,即a =2b ,所以e =c a =1+b 2a2=1+14=52,A 正确.故选:AC .9(2023•新高考Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ⊥F 1B ,F 2A =-23F 2B,则C 的离心率为.【答案】355【解析】(法一)如图,设F 1(-c ,0),F 2(c ,0),B (0,n ),设A (x ,y ),则F 2A =(x -c ,y ),F 2B=(-c ,n ),又F 2A =-23F 2B ,则x -c =23c y =-23n,可得A 53c ,-23n ,又F 1A ⊥F 1B ,且F 1A =83c ,-23n ,F 1B =(c ,n ),则F 1A ⋅F 1B =83c 2-23n 2=0,化简得n 2=4c 2.又点A 在C 上,则259c 2a 2-49n 2b 2=1,整理可得25c 29a 2-4n 29b2=1,代n 2=4c 2,可得25c 2a 2-16c 2b 2=9,即25e 2-16e 2e 2-1=9,解得e 2=95或15(舍去),故e =355.(法二)由F 2A =-23F 2B ,得|F 2A||F 2B |=23,设|F 2A |=2t ,|F 2B |=3t ,由对称性可得|F 1B |=3t ,则|AF 1 |=2t +2a ,|AB|=5t ,设∠F 1AF 2=θ,则sin θ=3t 5t =35,所以cos θ=45=2t +2a5t,解得t =a ,所以|AF 1 |=2t +2a =4a ,|AF 2|=2a ,在△AF 1F 2中,由余弦定理可得cos θ=16a 2+4a 2-4c 216a2=45,即5c 2=9a 2,则e =355.故答案为:355.10(2022•浙江)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是.【答案】364.【解析】(法一)如图,过点A 作AA ′⊥x 轴于点A ′,过点B 作BB ′⊥x 轴于点B ′,由于B (x 2,y 2)且x 2>0,则点B 在渐近线y =b a x 上,不妨设B m ,bam ,m >0,设直线AB 的倾斜角为θ,则tan θ=b 4a ,则|BB ||FB |=b 4a ,即b am |FB|=b 4a ,则|FB ′|=4m ,∴|OF |=c =4m -m =3m ,又|AA ||BB |=|AF ||BF |=13,则|AA |=13|BB |=bm 3a =bc 9a ,又|FA ||FB|=|AF ||BF |=13,则|FA |=13|FB |=4m 3,则|x 1|=3m -4m 3=5m 3=5c 9,∴点A 的坐标为-5c 9,bc9a ,∴25c 281a 2-b 2c 281a 2b 2=1,即c 2a2=8124=278,∴e =c a =364.(法二)由y =b 4a (x +c )y =b a x,解得B c 3,bc 3a,又|FB |=3|FA |,所以点A 的纵坐标为y 1=bc9a,代入方程y =b 4a (x +c )中,解得x 1=-5c 9,所以A -5c 9,bc 9a ,代入双曲线方程中,可得c 2a 2=278,所以e =c a =364.故答案为:364.考点一:顶角为直角的焦点三角形求解离心率的取值范围问题顶角为直角的焦点三角形求解离心率的取值范围问题,如图所示:椭圆:e =1sin α+cos α=12sin α+π4,根据α范围求解值域.双曲线:e =1cos α−sin α=12cos α+π4,根据α范围求解值域.1(2024·重庆沙坪坝·高三重庆八中校考阶段练习)已知椭圆x 2a 2+y 2b2=1a >b >0 上一点A ,它关于原点的对称点为B ,点F 为椭圆右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π3,则该椭圆的离心率e 的取值范围是()A.22,3-1B.22,63C.3-1,63D.63,62【答案】B【解析】如图所示,设椭圆得左焦点为F ,连接AF ,BF ,则四边形AFBF 为矩形,则AB =FF =2c ,AF =BF ,所以BF +BF =BF +AF =2a ,在Rt △ABF 中,由∠ABF =α,得AF =AB sin α=2c sin α,BF =AB cos α=2c cos α,所以2c sin α+2c cos α=2a ,所以c a =1sin α+cos α=12sin α+π4,因为α∈π12,π3,所以α+π4∈π3,7π12,所以2sin α+π4∈62,2 ,所以e =c a ∈22,63.故选:B .1(2024·高三单元测试)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF ⊥BF ,设∠ABF =α,且α∈π12,π6,则该椭圆的离心率e 的取值范围为()A.3-1,63 B.3-1,32C.64,63D.0,63【答案】A【解析】如图所示,设椭圆的左焦点为F ′,连接AF ′,BF ′.则四边形AFBF ′为矩形.因此|AB =|FF ′|=2c .|AF |+|BF |=2a .所以|AF |=2c sin α,|BF |=2c cos α.∴2c sin α+2c cos α=2a .∴e =1sin α+cos α=12sin α+π4,∵α∈π12,π6,∴α+π4∈π3,5π12,∴sin α+π4 ∈32,2+64,其中sin 5π12=sin π6+π4 =sin π6cos π4+cos π6sin π4=12×22+32×22=2+64,∴2sin α+π4 ∈62,1+32.∴e ∈3-1,63.故选:A .2(2024·宁夏银川·高三银川二中校考阶段练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π4,则该椭圆的离心率e 的取值范围为()A.22,63 B.3-12,32C.3-1,63D.22,32【答案】A【解析】设椭圆的左焦点为F ′,连接AF ,BF ,可知四边形AFBF 为矩形,从而可知AB =FF =2c ,且AF +BF =2a ,由∠ABF =α,可得AF =2c sin α,BF =2c cos α,结合2c sin α+2c cos α=2a ,可得ca=1sin α+cos α,根据α∈π12,π4 ,求出范围即可.如图所示,设椭圆的左焦点为F ′,连接AF ,BF,则四边形AFBF 为矩形,所以AB =FF =2c ,AF +BF =AF +AF=2a ,由∠ABF =α,可得AF =AB ⋅sin α=2c sin α,BF =AB ⋅cos α=2c cos α,∴2c sin α+2c cos α=2a ,即c a =1sin α+cos α=12sin α+π4,∵α∈π12,π4,∴α+π4 ∈π3,π2 ,∴sin α+π4 ∈32,1 ,∴2sin α+π4 ∈62,2 ,∴e =c a ∈22,63.故选:A .3(2024·河南驻马店·高三统考期末)已知双曲线C :x 2a 2-y 2b2(a >b >0)右支上非顶点的一点A 关于原点O 的对称点为B ,F 为其右焦点,若AF ⋅BF =0,设∠BAF =θ且θ∈π4,5π12,则双曲线C 离心率的取值范围是()A.(2,2] B.[2,+∞) C.(2,+∞) D.(2,+∞)【答案】C【解析】如图所示,设双曲线的左焦点为F ,连接AF ,BF ,因为AF ⋅BF=0,所以四边形AFBF 为矩形,所以AB =FF =2c ,因为AF =2c cos θ,BF =2c sin θ,AF -AF =2a ,所以2c sin θ-2c cos θ=2a ,所以e =1sin θ-cos θ=12sin θ-π4,∵θ∈π4,5π12 ,∴θ-π4∈0,π6 ,2sin θ-π4 ∈0,22 ,∴e ∈2,+∞ ,故选:C考点二:焦点三角形顶角范围与离心率F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,点P 在椭圆上,∠F 1PF 2=θ,则cos θ≥1−2e 2(当且仅当动点为短轴端点时取等号).1(2024·辽宁葫芦岛·高三统考期末)已知点F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 是椭圆上的一个动点,若使得满足ΔPF 1F 2是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A.12B.32C.22D.33【答案】C【解析】由题意知,椭圆的最大张角为900,所以b =c ,所以a =2c ,所以e =c a =22=22,故选:C .1(2024·江西抚州·高三统考期末)设F 1,F 2是椭圆的两个焦点,若椭圆上存在点p ,使∠F 1PF 2=120°,则椭圆离心率的取值范围是()A.0,32B.0,32C.32,1D.32,1【答案】D【解析】F 1(-c ,0),F 2(c ,0),c >0,设P x 1,y 1 ,则|PF 1|=a +ex 1,|PF 2|=a -ex 1.在△PF 1F 2中,由余弦定理得cos120°=-12=a +ex 1 2+a -ex 1 2-4c 22a +ex 1 a -ex 1,解得x 21=4c 2-3a 2e 2.∵x 21∈0,a 2,∴0≤4c 2-3a 2e 2<a 2,即4c 2-3a 2≥0.且e 2<1∴e =c a ≥32.故椭圆离心率的取范围是e ∈32,1 2(2024·宁夏·高三校联考阶段练习)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆C 上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围为()A.12,22B.22,1 C.0,22D.12,22【答案】B【解析】若椭圆C 上存在点P ,使得PF 1⊥PF 2,即以F 1F 2为直径的圆与椭圆C :x 2a 2+y 2b2=1(a >b >0)有交点,设F 1(-c ,0),F 2(c ,0),x 2+y 2=c 2x 2a 2+y 2b 2=1,解得x 2=(2c 2-a 2)⋅a 2c 2≥0,即2c 2-a 2≥0,e ≥22,又0<e <1,故e ∈22,1.故选:B .3(2024·高三课时练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1、F 2,若椭圆上存在点P 使得∠F 1PF 2是钝角,则椭圆离心率的取值范围是()A.0,22B.22,1C.0,12D.12,1【答案】B【解析】当动点P 从椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值.∵椭圆上存在点P 使得∠F 1PF 2是钝角,∴△F 1P 0F 2中,∠F 1P 0F 2>90°,∴Rt △OP 0F 2中,∠OP 0F 2>45°,∴b <c ,∴a 2-c 2<c 2,∴a 2<2c 2,∴e >22,∵0<e <1,∴22<e <1.椭圆离心率的取值范围是22,1,故选B .考点三:共焦点的椭圆与双曲线问题sin 2α2e 椭2+cos 2α2e 双2=1,与基本不等式联姻求解离心率的取值范围1(2024·全国·高三专题练习)已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则当1e 1e 2取最大值时,e 1,e 2的值分别是()A.22,62B.12,52C.33,6 D.24,3【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:x 2a 2+y 2b 2=1a >b >0 ,c =a 2-b 2,x 2a 21-y 2b 21=1,c =a 21+b 21.设PF 1 =m ,PF 2 =n .m >n .则m +n =2a ,m -n =2a 1,∴m =a +a 1,n =a -a 1.因为∠F 1PF 2=π3,所以cos π3=m 2+n 2-2c 22mn =12,即a +a 1 2+a -a 1 2-4c 2=a +a 1 a -a 1 .∴a 2+3a 21-4c 2=0,∴1e 21+3e 22=4,∴4≥21e 21×3e 22,则1e 1e 2≤23,当且仅当e 1=22,e 2=62时取等号.故选:A .1(2024·湖南·高三校联考期末)已知椭圆和双曲线有共同的焦点F 1,F 2,P ,Q 分别是它们在第一象限和第三象限的交点,且QF 2⊥F 2P ,记椭圆和双曲线的离心率分别为e 1,e 2,则4e 21+e 22最小值等于.【答案】92【解析】设椭圆长半轴为a 1,双曲线实半轴为a 2,F 1-c ,0 ,F 2c ,0 ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点,如图,由椭圆和双曲线定义与对称性知PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,四边形PF 1QF 2为平行四边形,QF 2 =PF 1 =a 1+a 2,PF 2 =a 1-a 2,而QF 2⊥F 2P ,则PF 1⊥F 2P ,因此F 1F 2 2=PF 1 2+PF 2 2,即4c 2=a 1+a 2 2+a 1-a 2 2=2a 21+2a 22,于是有2c 2=a 21+a 22,则2=a 21c 2+a 22c 2,1e 21+1e 22=2,所以4e 21+e 22=12(4e 21+e 22)1e 21+1e 22=125+e 22e 21+4e 21e 22≥125+2e 22e 21⋅4e 21e 22=92,当且仅当e 21=34,e 22=32时取等号.故答案为:922(2024·湖北咸宁·校考模拟预测)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若PF 1 =24,椭圆与双曲线的离心率分别为e 1,e 2,则3e 1e 2的取值范围是()A.19,+∞B.1,+∞C.13,+∞D.12,+∞【答案】B 【解析】设椭圆与双曲线的半焦距为c ,椭圆长半轴为a 1,双曲线实半轴为a 2,PF 1 =r 1,PF 2 =r 2,∵△PF 1F 2是以PF 1为底边的等腰三角形,点P 在第一象限内,∴PF 2 =F 1F 2 ,PF 1 >PF 2 ,PF 2 +F 1F 2 >PF 1 ,即r 1=24,r 2=2c ,且r 1>r 2,2r 2>r 1,2c <24,4c >24,解得:6<c <12.在双曲线中,PF 1 -PF 2 =2a 2,∴e 2=c a 2=2c 2a 2=2c r 1-r 2=2c 24-2c =c12-c ;在椭圆中,PF 1 +PF 2 =2a 1,∴e 1=c a 1=2c 2a 1=2c r 1+r 2=2c 24+2c =c12+c;∴e 1e 2=c 12+c ⋅c 12-c =1144c2-1;∵6<c <12,∴36<c 2<144,则1<144c 2<4,∴0<144c 2-1<3,可得:1144c2-1>13,∴3e 1e 2的取值范围为1,+∞ .故选:B .考点四:椭圆与双曲线的4a 通径体椭圆与双曲线的4a 通径体如图,若AF 2⊥F 1F 2,易知AF 2 =b 2a ,若AF 1 =λF 1B (λ>1),则一定有AF 1 =λ+12⋅b 2a,根据AF 1 +AF 2 =2a 可得λ+32⋅b 2a =2a ,即λ+34⋅(1-e 2)=1⇒e =λ-1λ+31(2024·河南新乡·高三统考期末)设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别是F 1、F 2,过F 1的直线交双曲线C 的左支于M 、N 两点,若MF 2 =F 1F 2 ,且2MF 1 =NF 1 ,则双曲线C 的离心率是()A.43B.53C.52D.32【答案】B【解析】如下图所示:MF 2 =F 1F 2 =2c ,由双曲线的定义可得MF 1 =MF 2 -2a =2c -2a ,所以,NF 1 =2MF 1 =4c -4a ,则NF 2 =NF 1 +2a =4c -2a ,由余弦定理可得cos ∠MF 1F 2=MF 12+F 1F 2 2-MF 2 22MF 1 ⋅F 1F 2=c -a2c ,cos ∠NF 1F 2=NF 12+F 1F 2 2-NF 2 22NF 1 ⋅F 1F 2=c -3a4c ,因为cos ∠NF 1F 2=cos π-∠MF 1F 2 =-cos ∠MF 1F 2,故c -3a 4c =-c -a 2c ,整理可得3c =5a ,故该双曲线的离心率为e =c a =53.故选:B .1(2024·甘肃庆阳·高三校联考阶段练习)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,过点F 1的直线交椭圆C 于M ,N 两点.若MN +NF 2 =2MF 2 ,且MF 2⊥NF 2,则椭圆C 的离心率为()A.33B.55C.22D.66【答案】B【解析】因为MN +NF 2 =2MF 2 ,所以可设NF 2 =m -d ,MF 2 =m ,MN =m +d m >0,d >0 ,因为MF 2⊥NF 2,所以m -d 2+m 2=m +d 2,解得m =4d ,因为NF 2 +MF 2 +MN =4a =3m ,所以NF 2 =a ,MF 2 =43a ,MN =53a ,所以cos ∠F 2MN =MF 2 MN=45,在△MF 1F 2中,F 1F 2 =2c ,MF 1 =2-MF 2 =23a ,由cos ∠F 2MF 1=23a 2+43a 2-(2c )22×23a ×43a =45,可得a 2=5c 2,即椭圆C 的离心率为55.故选:B .2(2024·湖南衡阳·校联考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 1作直线l 与椭圆相交于M 、N 两点,∠MF 2N =90°,且4F 2N =3F 2M ,则椭圆的离心率为()A.13B.12C.33D.55【答案】D【解析】如图所示,设F 1F 2 =2c ,∵4F 2N =3F 2M ,设F 2N =3t ,则F 2M =4t ,在Rt △F 2MN 中,MN =NF 22+MF 2 2=5t ,由椭圆定义可知F 1N =2a -3t ,F 1M =2a -4t ,F 1N +F 1M =MN =4a -7t =5t ,解得a =3t ,所以F 1N =2a -3t =3t =F 2N ,F 1M =2a -4t =2t ,在△F 1NF 2中,可得cos ∠NF 1F 2=c3t,在△F 1MF 2中,由余弦定理可得cos ∠MF 1F 2=c 2-3t 22ct,∵∠NF 1F 2+∠MF 1F 2=π,∴cos ∠NF 1F 2+cos ∠MF 1F 2=0,即c 3t +c 2-3t 22ct=0,解得c =35t 5,所以椭圆离心率e =c a =55.故选:D .考点五:椭圆与双曲线的4a 直角体如左图,若AF 2⊥AB ,AB 过原点,且AF 1=λF 1B ,∠AF 1F 2=α,则e cos α=λ−1 λ+1可得离心率.如右图,若BF 2⊥AC ,AB 过原点,且AF 2=λF 2C(0<λ<1),通过补全矩形,可得AF 1⊥AC ,AF 2 =λ+12⋅b 2a ,借助公式e cos α=λ−1 λ+1可得离心率.1(2024·山东济南·校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于A ,B 两点,且AF 1 ⋅AF 2 =0,AF 2 =2F 2B,则椭圆E 的离心率为()A.23B.34C.53D.74【答案】C【解析】因为AF 2 =2F 2B ,不妨令AF 2 =2F 2B =2m m >0 ,过F 2的直线交椭圆于A ,B 两点,由椭圆的定义可得,AF 1 +AF 2 =2a ,BF 1 +BF 2 =2a ,则BF 1 =2a -m ,AF 1 =2a -2m ,又AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,则△AF 1F 2和△AF 1B 都是直角三角形,则AF 1 2+AB 2=BF 1 2,即2a -2m 2+9m 2=2a -m 2,解得m =a3,所以AF 1 =43a ,AF 2 =23a ,又F 1F 2 =2c ,AF 1 2+AF 2 2=F 1F 2 2,所以169a 2+49a 2=4c 2,因此c 2a2=59,所以椭圆E 的离心率为c a =53.故选:C .1(2024·安徽池州·高三统考期末)设F 1、F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1-c ,0 的直线交椭圆E 于A ,B 两点,若AF 1=3 F 1B ,且AB ⊥AF 2,则椭圆E 的离心率是()A.12B.52C.32D.22【答案】D【解析】设FB 1=k (k 0 ⇒ AF 1=3k ,AB =4k ⇒ AF 2=2a -3k , BF 2|=2a -k ,再由BF 2|2= AF 2|2+|AB |2⇒AF 2 =3k ⇒ΔAF 1F 2是等腰直角三角形⇒c =22a ⇒e =22,故选D ,2(2024·湖北黄冈·高三统考期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于A ,B 两点,AF 2 =λF 2B ,且AF 1 ⋅AF 2 =0,椭圆C 的离心率为22,则实数λ=()A.23B.2C.13D.3【答案】D【解析】因为AF 2 =λF 2B ,设AF 2 =λF 2B =t (t >0),由椭圆的定义可得:AF 1 +AF 2 =2a ,则AF 1 =2a -t ,因为AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,所以AF 1 2+AF 2 2=F 1F 2 2,即(2a -t )2+t 2=4c 2,又因为椭圆C 的离心率为22,所以a =2c ,则有(2a -t )2+t 2=4c 2=2a 2,所以t =a ,则λF 2B =a ,则F 2B =aλ,由BF 1 +BF 2 =2a ,所以BF 1 =2a -aλ,因为AF 1 ⋅AF 2 =0,所以AF 1⊥AF 2,所以AF 1 2+AB 2=BF 1 2,即a 2+a 21+1λ 2=2a -a λ2,解得:λ=3,故选:D .考点六:椭圆与双曲线的等腰三角形问题同角余弦定理使用两次1已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若│AF 2 =2F 2B ,AB │=BF 1 ,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1【答案】B【解析】法一:如图,由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1B 中,由余弦定理推论得cos ∠F 1AB =4n 2+9n 2-9n 22⋅2n ⋅3n =13.在△AF 1F 2中,由余弦定理得4n 2+4n 2-2⋅2n ⋅2n ⋅13=4,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .法二:由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1F 2和△BF 1F 2中,由余弦定理得4n 2+4-2⋅2n ⋅2⋅cos ∠AF 2F 1=4n 2,n 2+4-2⋅n ⋅2⋅cos ∠BF 2F 1=9n 2 ,又∠AF 2F 1,∠BF 2F 1互补,∴cos ∠AF 2F 1+cos ∠BF 2F 1=0,两式消去cos ∠AF 2F 1,cos ∠BF 2F 1,得3n 2+6=11n 2,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .1(2024·江西九江·高三九江一中校考期末)已知双曲线x 2a 2-y 2b2=1a >0,b >0 左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=2F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.7B.2C.213D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=2F 2Q ,所以QF 2 =a ,从而QF 1 =3a ,PF 1 =4a ,PQ =3a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a 2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 3a =23,所以5a 2-c 24a 2=23,7a 2=3c 2,所以e =c a =213,故选:C .2(2024·辽宁沈阳·高三沈阳二中校考阶段练习)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=3F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.3 B.2C.2D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=3F 2Q ,所以QF 2 =23a ,从而QF 1 =83a ,PF 1 =4a ,PQ =83a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 83a =34,所以5a 2-c 24a 2=34,2a 2=c 2,所以e =c a =2,故选:C .考点七:双曲线的4a 底边等腰三角形当F 2A =F 2B 或者AB =4a 时,令∠AF 1F 2=α,则一定存在①F 1M =F 2B ,②e =1cos2α1(2024·河南·高三校联考阶段练习)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -3y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.153B.53C.13D.52【答案】D【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H.因为MN ⋅F 2M +F 2N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以NF 1 -NF 2 +MF 2 -MF 1 =NF 1 -MF 1 =MN =4a ,则MH =NH =2a ,从而HF 1 =m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为13,所以tan ∠HF 1F 2=HF 2 HF 1=2c 2-2a 22a 2+2c2=13,整理得c 2-a 2a 2+c 2=19,即5a 2=4c 2⇒e =52,故选:D .1(2024·贵州·校联考模拟预测)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -2y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN ⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.53B.43C.153D.233【答案】C【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H .因为MN ⋅F 2M +F 2 N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以|NF 1|-|NF 2|+|MF 2|-|MF 1|=NF 1∣-MF 1 = MN |=4a ,则|MH |=|NH |=2a ,从而|HF 1|=m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为12,所以tan ∠HF 1F 2=HF 2 HF 1 =2c 2-2a 22a 2+2c 2=12,整理得c 2-a 2a 2+c 2=14,即3c 2=5a 2,则c 2a 2=53,故e =c 2a 2=153.故选:C2(2024·全国·高三长垣市第一中学校联考开学考试)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作斜率为33的直线l 与双曲线C 的左、右两支分别交于M ,N 两点,且F 2M +F 2N ⋅MN =0,则双曲线C 的离心率为()A.2B.3C.5D.2【答案】A【解析】如图,设D 为MN 的中点,连接F 2D .易知F 2M +F 2N =2F 2D ,所以F 2M +F 2N ⋅MN =2F 2D ⋅MN =0,所以F 2D ⊥MN .因为D 为MN 的中点,所以F 2M =F 2N .设F 2M =F 2N =t ,因为MF 2 -MF 1 =2a ,所以MF 1 =t -2a .因为NF 1 -NF 2 =2a ,所以NF 1 =t +2a .所以MN =NF 1 -MF 1 =4a .因为D 是MN 的中点,F 1D =F 1M +MD ,所以MD =ND =2a ,F 1D =t .在Rt △F 1F 2D 中,F 2D =4c 2-t 2;在Rt △MF 2D 中,F 2D =t 2-4a 2.所以4c 2-t 2=t 2-4a 2,解得t 2=2a 2+2c 2.所以F 2D =2c 2-2a 2,F 1D =t =2a 2+2c 2.因为直线l 的斜率为33,所以tan ∠DF 1F 2=F 2D F 1D =2c 2-2a 22a 2+2c2=33,所以c 2-a 2a 2+c 2=13,c 2=2a 2,c =2a ,所以离心率为ca= 2.故选:A3(2024·全国·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线与双曲线C 的左支交于A ,B 两点,连接AF 2,BF 2,在△ABF 2中,sin ∠ABF 22=14,AB =BF 2 ,则双曲线C 的离心率为()A.3 B.2C.3D.2【答案】D【解析】设BF 1 =m ,则由双曲线定义可得BF 2 =2a +m ,AF 1 =2a ,AF 2 =4a ,由sin ∠ABF 22=14可得m =6a ,再在△BF 1F 2中根据余弦定理即可列出式子求出离心率.设BF 1 =m ,则由双曲线定义可得BF 2=2a +m ,AF 1 =AB -BF 1 =BF 2 -m =2a ,则AF 2 =4a ,则sin∠ABF 22=2a 2a +m =14,解得m =6a ,从而BF 2 =8a .在△BF 1F 2中,F 1F 2 2=BF 1 2+BF 2 2-2BF 1 ⋅BF 2 cos ∠F 1BF 2,即4c 2=36a 2+64a 2-2×6a ×8a ×1-2sin 2∠ABF 22 ,解得e =ca =2.故选:D .考点八:焦点到渐近线距离为b双曲线的特征三角形,如图所示,设渐近线l1:y=bax,l2:y=-bax,过右焦点作FM⊥l1,FN⊥l2,由于渐近线方程为y=±bax,故MF2OM=NF2ON=ba,且斜边OF2=c,故MF2OF2=NF2OF2=bc,故OM=ON=a,MF2=NF2=b.1(2024·河南新乡·高三校联考阶段练习)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线l,垂足为H,直线l与双曲线C的左支交于E点,且H恰为线段EF2的中点,则双曲线C的离心率为()A.2B.3C.2D.5【答案】D【解析】连结EF1,因为点O,H分别为F1F2和EF2的中点,所以OH⎳EF1,且EF1⊥EF2设点F2c,0到一条渐近线y=bax的距离d=bca2+b2=b,所以EF2=2b,又EF2-EF1=2a,所以EF1=2b-2a,Rt△EF1F2中,满足2b-2a2+4b2=4c2,整理为:b=2a,双曲线的离心率e=ca=a2+b2a2=5.故选:D1(2024·吉林白山·高三校联考阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,以OF1为直径的圆与双曲线的一条渐近线交于点M(异于坐标原点O),若线段MF1交双曲线于点P,且MF2⎳OP则该双曲线的离心率为()A.2B.3C.52D.6【答案】A【解析】不妨设渐近线的方程为y=-bax,因为MF2⎳OP,O为F1F2的中点,所以P为MF1的中点,将直线OM,MF1的方程联立y=-baxy=ab(x+c),可得M-a2c,abc,又F 1-c ,0 ,所以P -c +-a 2c 2,ab 2c 即P -a 2+c 22c ,ab 2c,又P 点在双曲线上,所以a 2+c 224a 2c 2-a 24c2=1,解得ca =2,所以该双曲线的离心率为2,故选:A .2(2024·山西运城·高三统考期末)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M ,若线段MF 1交双曲线于点P ,且PF 2 =5PF 1 ,则双曲线的离心率为()A.264B.344C.2D.3【答案】C【解析】根据题意,不妨取点M 在第二象限,题中条件,得到k MF 1=ab,记∠MF 1F 2=∠PF 1F 2=θ,求出cos θ=b c ,根据双曲线定义,得到PF 2 =5a 2,PF 1 =a 2,在△PF 1F 2中,由余弦定理,即可得出结果.因为以OF 1为直径的圆与双曲线的一条渐近线交于点M ,不妨取点M 在第二象限,所以MF 1⊥OM ,则k MF 1⋅k OM =-1,因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±b a x ,则k OM =-b a ,所以k MF 1=a b ;记∠MF 1F 2=∠PF 1F 2=θ,则tan θ=a b ,由tan θ=a b sin 2θ+cos 2θ=1解得cos θ=b c ,因为PF 2 =5PF 1 ,由双曲线的定义可得PF 2 -PF 1 =2a ,所以PF 2 =5a 2,PF 1 =a2,由余弦定理可得:cos θ=bc =PF 1 2+F 1F 2 2-PF 2 22PF 1 ×F 1F 2=a 24+4c 2-25a242×a 2×2c,则2c 2-3a 2=ab ,所以2a 2+b 2 -3a 2=ab ,整理得2b 2-ab -a 2=0,解得b =a ,所以双曲线的离心率为e =c 2a 2=b 2+a 2a 2= 2.故选:C .3(2024·辽宁·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为A .若△OFA (O 为坐标原点)的面积等于14c 2(c 为双曲线C 的半焦距),则双曲线C 的离心率为()A.2B.3 C.2 D.5【答案】A【解析】设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0),双曲线C 的一条渐近线方程设为bx +ay =0,可得AF =bc a 2+b 2=b ,OA =c 2-b 2=a ,△OAF 的面积为14c 2,即有12ab =14c 2,化为4a 2(c 2-a 2)=c 4,e 4-4e 2+4=0,解得e = 2.故选:A .4(2024·广西南宁·统考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M 、N 两点(点F 1位于点M 与点N 之间),且MF 1 =2F 1N,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e =()A.5B.3C.233D.62【答案】C【解析】不妨设M 在第二象限,N 在第三象限,如下图所示:因为ON =OP ,∠F 1OP =∠F 1ON ,所以△F 1OP ≅△F 1ON ,所以∠F 1PO =∠F 1NO =90°,F 1P =F 1N ,又l OM :y =-bax ,F 1-c ,0 ,所以F 1P =F 1N =-bca1+b 2a 2=b ,所以ON =OP =c 2-b 2=a ,所以MF 1 =2F 1N =2b ,因为tan ∠F 1OP =b a ,tan ∠MON =tan2∠F 1OP =3b a ,所以2ba 1-b 2a 2=3b a ,所以b 2a 2=c 2-a 2a2=e 2-1=13,所以e =233.故选:C .考点九:焦点到渐近线垂线构造的直角三角形利用几何法转化1(2024·江西九江·高三九江一中校考阶段练习)F 是双曲线x 2a 2-y 2b2=1a >0,b >0 的左焦点,过点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若3FA =FB,则此双曲线的离心率为()A.2 B.53C.233D.3【答案】D【解析】由题意得:F -c ,0 ,双曲线渐近线方程为:y =±b ax若A 为直线FA 与y =-b a x 交点,B 为直线FA 与y =bax 交点则k FA =a b ∴直线FA 方程为:y =a bx +c ,与y =-b a x 联立可得:x A =-a 2c 直线FA 方程与y =b a x 联立可得:x B =a 2cb 2-a2由3FA =FB 得:3-a 2c +c =a 2c b 2-a 2+c ,即-3a 2+2c 2=a 2c 2c 2-2a 2∴-3+2e 2=e 2e 2-2,即e 4-4e 2+3=0,解得:e 2=3或1(舍)∴e =3由双曲线对称性可知,当A 为直线FA 与y =b a x 交点,B 为直线FA 与y =-bax 交点时,结论一致故选:D 1(2024·广西玉林·校考模拟预测)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 引一条渐近线的垂线,与另一条渐近线相交于第二象限,则双曲线C 的离心率的取值范围是()A.(2,+∞) B.(3,+∞)C.(2,+∞)D.(3,+∞)【答案】A【解析】由题意双曲线C :x 2a 2-y 2b2=1的渐近线y =±b a x ,右焦点F (c ,0),不妨设过右焦点F (c ,0)与双曲线的一条渐近线垂直的直线方程为y =-ab(x -c )与y =-b a x 联立得-b a x =-a b (x -c ),所以x =a 2c a 2-b 2,y =-abc a 2-b 2,所以交点坐标为a 2c a 2-b 2,-abca 2-b2,因为交点在第二象限,所以-abca 2-b 2>0a 2c a 2-b 2<0,因为a >0,b >0,c >0,所以a 2c >0,abc >0,所以a 2-b 2<0,即a<b ,因为c =a 2+b 2>a 2+a 2=2a ,所以e =ca>2aa=2,即e ∈2,+∞ 故选:A2(2024·江西新余·统考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 ,过右焦点F 作C 的一条渐近线的垂线l ,垂足为点A ,l 与C 的另一条渐近线交于点B ,若AF =25AB,则C 的离心率为()A.305B.2C.233D.52【答案】A【解析】如下图所示:双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,所以,AF =bc b 2+a 2=b ,则OA =OF 2-AF 2=c 2-b 2=a ,因为AF =25AB ,则AB =52b ,设∠AOF =α,则∠BOF =α,所以,∠AOB =2α,tan α=AF OA =b a ,tan2α=AB OA=5b2a ,由二倍角的正切公式可得tan2α=2tan α1-tan 2α,即2ba1-b a 2=5b 2a ,可得b 2a 2=15,因此,e =c a =1+b 2a2=1+15=305.故选:A .考点十:以两焦点为直径的圆与渐近线相交问题以F 1F 2为直径作圆,交一条渐近线y =bax 于点B ,BF 1交另一条渐近线于点A ,则令∠BOF 2=α,则∠BF 1F 2=α2,e =1+tan 2α1(2024·全国·校联考)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作x 轴的垂线,与双曲线C 及其一条渐近线在第一象限分别交于A ,B 两点,且OF =2OA -OB(O 为坐标原点),则该双曲线的离心率是()A.2. B.3 C.322D.233【答案】D【解析】设双曲线的半焦距为c ,由x =cx 2a 2-y 2b2=1得到A c ,b 2a ,由y =b a x x =c 得到B c ,bca ,而F (c ,0),OF =2OA -OB ⇔OA =OF +OB2,即点A 是线段FB 的中点,所以bc a =2b 2a ,c =2b ,所以e =c a =2b c 2-b 2=233.故选:D1(2024·山西晋城·统考)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,以线段F 1F 2为直径的圆与直线bx -ay =0在第一象限交于点A ,若tan ∠AF 2O =2,则双曲线C 的离心率为()A.53B.32C.3D.2【答案】A【解析】由题意可得|AO |=|OF 2|=c ,即有△AOF 2为等腰三角形,设∠OAF 2=∠AF 2O =α,则∠AOF 2=π-2α,所以tan ∠AOF 2=tan π-2α =-tan2α=2tan αtan 2α-1=2×222-1=43即为b a =43,所以e =c a =1+b 2a2=1+169=53,故选:A 2(2024·河北衡水·高三河北衡水中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,若以F 1F 2为直径的圆和曲线C 在第一象限交于点P ,且△POF 2恰好为正三角形,则双。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

圆锥曲线中求离心率的值与范围的问题(共28张PPT)

圆锥曲线中求离心率的值与范围的问题(共28张PPT)

分析:在椭圆内的所有焦点三角形,当顶点 P 与短轴重合时,此时面积最大 Smax b
解析:注意,凡是经过原点的直线与椭圆或双曲线相交于两点时,这两点的位置是对
的,本题目中 ABF2 和 AF1F2 是全等的,因此 SABF2 SAF1F2 故当点 A 位于短轴的交点处时,面积最大 Smax bc
这两个区域内直线斜率的取值范围。
求离心率范围问题
②过焦点的直线与双曲线交点个数问题

12:已知双曲线 x2 a2

y2 b2
1的右焦点为
F,若过点
F
且倾斜角为 60
的直线与双曲线
的右支有且只有一个交点,则此双曲线离心率的取值范围为_________.
解析:过双曲线的右焦点可能与右支的交点个数为 1 个或 2 个,取决于这条直线和右渐

2a PF2 PF2
注意 PF2 为焦半径,因此 a c PF2 a c
所以不等关系就能找出来了,解不等式可得 2 1 e 1
离心率范围问题
(2)焦点三角形顶角的取值范围:当 P 点处于 B 位置时,顶角最大,例:

10:设
P
是椭圆
x2 a2

y2 b2
1上一点,且 F1PF2
求离心率范围问题
和求离心率的值相似,求解离心率的取值范围问题依旧是需要建立一个不等 关系,且不等关系中含有 a,b, c 或数字的形式,至于如何建立不等关系,可总结为四
种思考方向:
1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:
(1)焦半径的取值范围为 a c PF1 a c .
求离心率范围问题

7:椭圆
x2 a2

求离心率的范围问题

求离心率的范围问题

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

离心率取值范围问题的求解方法

离心率取值范围问题的求解方法

线 z:3z一 4y— O交 椭 圆 E 于 A ,B 两 点 。 若 l AF l+ l BF l一 4,点 M 到 直 线 £的 距 离 不 小
a z

一 十 n,3P 2— 5g一 2> O,所 以 8> 2 或 e<

于 了4 则 椭 圆 E 的 离 心 率 的 取 值 范 围 是 ( )。
I p I
一 e 得 :—
一 e。 由 焦 半 径 公 式 得 :
高 考 中 解 析 几 何 试 题 的 一 个 倍 受 青 睐 的 考 查 点 ,其 求 解 策 略 的 关 键 是 建 立 目 标 不 等 式 ,建 立 不 等 式 的 方 法 一 般 有 :利 用 曲 线 定 义 ,利 用
南 一 的离心率e的取值范围是‘
+ 1。
又 >l,所以 ∈(1, +1)。


, 则
:::一
“1_组
≤ 一 ,即 一 。
e - 2e~ 1≥ 0,解 得 1< e≤ 1+ 。
曲 线 的 几 何 性 质 ,利 用 题 设 指 定 条 件 等 。

借助 定义 求离心 率
由 圆 锥 曲 线 的 统 一 定 义 知 ,圆 锥 曲 线 的
立 竿 见 影 :若 双 曲 线 一 一 1( > o ,

倒 9 已知双曲线 LC 2一 y 2—1(“>。 ,
左 、右 焦 点 分 别 为 F.、F ,如 果 椭 圆 上 存 在 点 6> o)的 左 ,右 焦 点 分 别 为 F l( O),F 2(
P ,使 F·PFz一 90 ̄求 离 心 率 的 取 值 范 围 。
解 析 :由 椭 圆 定 义 ,有 2a — l PF f+ I PF。l,平 方 后 得 :

圆锥曲线微专题----求离心率的取值范围

圆锥曲线微专题----求离心率的取值范围

圆锥曲线离心率的取值范围 专题一、知识纵横1. 求离心率的取值范围基本方法:通过对已知几何条件的代数化翻译,得到关于a ,b ,c 的齐次不等式,最后除以a 相应的次数,得到e 的不等式,解之即可.解决问题的关键在于获知取值范围的来源,也即不等关系的产生原因,常见的范围来源总结如下. ①题中给出:即题目中已经明确给出某个变量的范围,则只需找到e 与此变量的关系即可;②焦半径范围:注意椭圆焦半径范围[],a c a c -+,双曲线中焦半径范围为[),c a -+∞或[),c a ++∞; ③存在性问题:即由几何存在性问题对某个变量的约束所产生的范围.二、典型例题【题型1 题中给出范围】例1. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)4例2. 已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,左顶点为A .若点P 为椭圆C 上的点,PF x ⊥轴,且sin PAF ∠C 的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭ B .20,3⎛⎫ ⎪⎝⎭ C .1,13⎛⎫ ⎪⎝⎭ D .2,13⎛⎫ ⎪⎝⎭例3. 已知椭圆2222:1(0)x y C a b a b+=>>,过原点的直线交椭圆于,A B 两点,以AB 为直径的圆过右焦点F ,若,123FAB ππα⎡⎤∠=∈⎢⎥⎣⎦,则此椭圆离心率的取值范围是( )A .1⎤⎥⎣⎦B .⎢⎥⎣⎦C .⎛ ⎝⎦D .⎫⎪⎪⎣⎭【题型2 焦半径范围】例4. 已知P 为椭圆22221(0)x y a b a b+=>>上一点,12F F ,为椭圆焦点,且213PF PF =,则椭圆离心率的范围是( )A .10,3⎛⎤ ⎥⎝⎦B .1,13⎡⎫⎪⎢⎣⎭C .10,2⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭例5. 已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .13⎡⎢⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦例6. 已知椭圆22221x y a b +=(0a b >>)的右焦点为(c,0)F ,上顶点为(0,)A b ,直线2a x c =上存在一点P 满足()0FP FA AP +⋅=,则椭圆的离心率取值范围为( )A .1,12⎡⎫⎪⎢⎣⎭B .⎫⎪⎪⎣⎭C .⎫⎪⎪⎣⎭D .⎛ ⎝⎦例7. 设椭圆E :22221(0)x y a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得9PA PF +=,则椭圆E 的离心率的取值范围是( )A .1[,1)2B .11,32⎡⎤⎢⎥⎣⎦C .11,54⎡⎤⎢⎥⎣⎦D .12,23⎡⎤⎢⎥⎣⎦【题型3 存在性问题】例8. 若双曲线()222210,0x y a b a b-=>>与直线y =没有公共点,则该双曲线的离心率e 的取值范围是( )A .(]1,2B .()1,2C .(D .(例9. 设椭圆22221x y a b+=()0a b >>的两焦点为1F ,2F ,若椭圆上存在点P ,使12120F PF ∠=︒,则椭圆的离心率e 的最小值为( )A .12 B C D例10. 已知椭圆22122:1(0)x y C a b a b +=>>与圆22223:4b x y C +=,若在椭圆1C 上不存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( )A .B .C .D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解离心率的范围问题离心率的范围问题是高考的热点问题,各种题型均有涉及,因联系的知识点较多,且处理的思路和方法比较灵活,关键在于如何找到不等关系式,从而得到关于离心率的不等式,进而求其范围.很多同学掌握起来比较困难,本文就解决本类问题常用的处理方法和技巧加以归纳.一、【知识储备】求离心率的方法离心率是刻画圆锥曲线几何特点的一个重要尺度.常用的方法:(1)直接求出a 、c ,求解e :已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解; (2)变用公式,整体求出e :以椭圆为例,如利用e ===e == (3)构造a 、c 的齐次式,解出e :根据题设条件,借助a 、b 、c 之间的关系,构造出a 、c 的齐次式,进而得到关于e 的方程,通过解方程得出离心率e 的值. 二、求解离心率的范围的方法1 借助平面几何图形中的不等关系根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值 等得到不等关系,然后将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式,从而确定离心率 的范围.【例1】 已知椭圆的中心在O ,右焦点为F ,右准线为l ,若在l 上存在点M ,使线段OM 的垂直平分线经过点F ,则椭圆的离心率的取值范围是_____________.【答案】:⎪⎪⎭⎫⎢⎣⎡1,22 x【点评】离心率的范围实质为一个不等式关系,如何构建这种不等关系可以利用方程和垂直平分线性质构建.利用题设和平面几何知识的最值构建不等式往往使问题简单化.【牛刀小试】已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是______________.【答案】2[,1)2【解析】椭圆上长轴端点向圆外两条切线PA,PB ,则两切线形成的角APB ∠最小,若椭圆1C 上存在点P 令切线互相垂直,则只需090APB ∠≤,即045APO α=∠≤, ∴02sin sin 452b a α=≤=,解得222a c ≤,∴212e ≥,即22e ≥,而01e <<, ∴212e ≤<,即2[2e ∈. 2借助题目中给出的不等信息根据试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等,进一步得到离心率的不等关系式,从而求解.Bo F 1FAxy【例2】 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 . 【答案】26[,]23【点评】本题的关键是利用椭圆的定义建立等量关系式2sin 2cos 2c c a αα+=,然后借助已知条件,,124ππα⎡⎤∈⎢⎥⎣⎦利用三角函数的图象求解离心率的范围. 【牛刀小试】过椭圆C :)0(12222>>=+b a b y a x 的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B在x 轴上的射影恰好为右焦点F ,若31<k <21, 则椭圆的离心率的取值范围是.【答案】(32,21)【解析】如图所示:2AF a c =+|,222a c BF a-=,()2222222tan a c BF a c a k BAF AF a c a a c --=∠===++, 又∵31<k <21,∴()221132a c a a c -<<+,∴2111312e e -<<+,解得1223e <<.3 借助函数的值域求解范围根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式,通过确定函数的定义域后,利用函数求值域的方法求解离心率的范围.【例3】已知椭圆221:12x y C m n -=+与双曲线222:1x y C m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为_________________. 【答案】2(,1)2【点评】本题根据题设“相同的焦点”建立等量关系,得到函数关系式21112e m =-+,进而根据m 的范围,借助反比例函数求解离心率的范围.【牛刀小试】已知两定点(2,0)A -和(2,0)B ,动点(,)P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值为______________.【答案】26【解析】由题意可知,2c =,由2c e a a==可知e 最大时需a 最小,由椭圆的定义||||2PA PB a +=,即使得||||PA PB +最小,如图,设(2,0)A -关于直线3y x =+的对称点(,)D x y ,由11202322y x y x -⎧⋅=-⎪⎪+⎨+-+⎪=+⎪⎩,可知(3,1)D -. 所以22||||||||||1526PA PB PD PB DB +=+≥=+=,即226a ≥,所以262a ≥,则2626c e a=≤=. 4 根据椭圆或双曲线自身的性质求范围在求离心率的范围时有时常用椭圆或双曲线自身的性质,如椭圆()2222100x y a b a b+=>>,中,a x a -≤≤,P 是椭圆上任意一点,则1a c PF a c -≤≤+等。

【例4】设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为______.【答案】33【点评】P 为椭圆上的一点是本题的关键条件,根据圆锥曲线的共同特征把212||||2PF PF c ⋅=转化成基本量a ,c ,e 与0x 的关系式,结合椭圆的范围,即可得到e 的不等式,从而求出其最小值.【牛刀小试】已知12,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,P 为双曲线右支上的任意一点,若212PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是__________.【答案】(]1,3【解析】本题以双曲线为素材,综合考查双曲线的离心率和函数的最值,难度中等.设2||PF t =,则1||2PF a t =+,t c a ≥-.又22212||(2)448||PF a t a t a a PF t t+==++≥,当且仅当2t a =时,等号成立.所以2c a a -≤,所以13e <≤.通过以上类型的分析,灵活多变的离心率范围问题是一个棘手问题,需要通过必要的练习进行方法和思路的寻找,并且培养对题目中的不等关系的灵敏的感知和转化.【迁移运用】1.【苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中】如图,在平面直角坐标系xOy 中,已知A ,1B ,2B 分别为椭圆2222:1(0)x y C a b a b +=>>的右、下、上顶点,F 是椭圆C 的右焦点.若21B F AB ⊥,则椭圆C 的离心率是 .【答案】51-y(第10题) xO FA B 2B 12.【江西南昌市2017届摸底考试,10】若圆22(3)(1)3x y -+-=与双曲线22221(0,0)x y a b a b-=>>的一条渐近线相切,则此双曲线的离心率为 。

【答案】233【解析】试题分析:由题意得|3|23332b a c a b c b e a +=⇒=⇒=⇒==. 考点:直线与圆相切,双曲线离心率【方法点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.【河北省衡水中学2017届高三摸底联考,9】焦点在x 轴上的椭圆方程为 ()222210x y a b a b+=>>,短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为3b,则椭圆的离心率为 . 【答案】12考点:椭圆的标准方程与几何性质.4.【山东省肥城市2017届高三上学期升级统测,14】在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+5则m 的值为 . 【答案】2 【解析】试题分析:由题意得245m m m m++>= 2.m =考点:双曲线离心率【方法点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5.【云南省、四川省、贵州省2017届高三上学期百校大联考数学,11】如图,椭圆的中心在坐标原点,焦点在x 轴上,1A ,2A ,1B ,2B 为椭圆的顶点,2F 为右焦点,延长12B F 与22A B 交于点P ,若12B PB ∠为钝角,则该椭圆的离心率的取值范围是【答案】51(0,)- 【解析】考点:椭圆的性质. 学科网【思路点睛】根据12B PB ∠为22B A u u u u u r 与21F B u u u u r 的夹角,并分别表示出22B A u u u u u r 与21F B u u u u r,由∠B 1PB 2为钝角,222210B A F B ac b =-+>u u u u u r u u u u rg ,利用椭圆的性质,可得到210e e +-<,即可解得离心率的取值范围.6.【河北邯郸2017届9月联考,11】如图,1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右两个焦点,若直线y x =与双曲线C 交于P 、Q 两点,且四边形12PF QF 为矩形,则双曲线的离心率为 .【答案】22+考点:1、双曲线的简单几何性质;2、双曲线的概念.学科网【思路点睛】本题考查了双曲线的简单几何性质和双曲线的概念,考查学生综合知识能力和图形识别能力, 数中档题.其解题的一般思路为:首先根据矩形的性质并将直线y x =代入双曲线C 方程中即可得出点P 的坐标,再由矩形的几何性质可得c ab b a =-⋅22222,最后可得出所求的结果.其解题的关键是正确地运用 矩形的几何性质求解双曲线的简单几何性质.7.【山东省实验中学2017届高三第一次诊,15】过双曲线22221x y a b-=(0a >,0b >)的右焦点F 作渐进线的垂线,设垂足为P (P 为第一象限的点),延长FP 交抛物线22y px =(0p >)于点Q ,其中该双曲线与抛物线有一个共同的焦点,若1()2OP OF OQ =+u u u r u u u r u u u r,则双曲线的离心率的平方为 .【答案】51+考点:双曲线定义【方法点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.8.【河南百校联考2017届高三9月质检,16】已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,,A B 是圆()2224x c y c ++=与C 位于x 轴上方的两个交点,且12//FA FB ,则双曲线C 的离心率为______________. 【答案】3174+考点:双曲线定义及离心率【方法点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.【2016届安徽省六安一中高三上第五次月考】已知椭圆22221(0)x y a b a b+=>>上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF BF ⊥,设ABF α∠=,且[,]126ππα∈,则该椭圆的离心率e的取值范围为________________.【答案】6[31,]3-【解析】把x c=代入椭圆方程解得2bya=±,取2(,)bA ca,则2(,)bB ca--;由图可知222,tan,tan22bb baOBF AOF OFB AOF OFBac c ac∠=∠-∠∠=∠==,所以tan tan OBFα=∠()2222441tan tan1tan tan21e eAOF OFB acbAOF OFB a c b e-∠-∠===+∠⋅∠++;又[,]126ππα∈,所以323tan3α-≤≤,即()24132313e ee--≤≤+,解得6313e-≤≤.10.【2016届河北省邯郸市一中高三一轮收官考试】已知中心在坐标原点的椭圆和双曲线有公共焦点,且左、右焦点分别为21,FF,这两条曲线在第一象限的交点为P,21FPF∆是以1PF为底边的等腰三角形.若101=PF,椭圆与双曲线的离心率分别为21,ee,则21ee的取值范围是______________.【答案】(31,+∞)11.【2016届四川省成都市七中高三11月阶段测试】已知12,F F是双曲线22221x ya b-=(0,0)a b>>的左、右两个焦点,以线段12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N (点M ,N 均在第一象限),当直线1MF 与直线ON 平行时,双曲线离心率取值为0e ,则0e 所在区间为______________. 【答案】(1,2)【解析】因为2220c c a b e a =+=, ,双曲线的渐近线方程为b y x a=,与圆222x y c += 联立,得()M a b , ,与双曲线方程()222210b x y a b a ->>=联立,得交点222242222,a c a b c a c a b N c c ⎛⎫+--⎪ ⎪⎝⎭, 即22222,a c a c a N c c ⎛⎫--⎪ ⎪⎝⎭,直线1MF 与直线ON 平行时,即有22222b c a a c a c a -=+- ,即()()()2222222a c ca a c a +-=- ,即有32232220c ac a c a +--= ,即有320002220e e e +--= ,令()32222f x x x x =+-- ,由于()()()()()1020302030f ff f f <,>,>,>,> ,则()012e ∈,.学科网12.【2016届湖南师范大学附中高三上学期月考】如图,椭圆的中心在坐标原点,焦点在x 轴上,1212,,,A A B B 为椭圆顶点,2F 为右焦点,延长12B F 与22A B 交于点P ,若12B PA ∠为钝角,则该椭圆离心率的取值范围是______________.【答案】51,12⎛⎫- ⎪ ⎪⎝⎭13.【2016届浙江省绍兴市一中高三上学期期中】若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为__________.【答案】(1,2]【解析】若点F关于直线OP的对称中心在y轴上,则1OPk=,根据题意,不存在这样的点P,∴双曲线渐近线的斜率2222222122(1,2]b cb a a b ac a ea a≤⇒≤⇒+≤⇒≤⇒=∈.14.椭圆M:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,P为椭圆M上任一点,且|PF1→|·|PF2→|的最大值的取值范围是[2c2,3c2],其中c=a2-b2,则椭圆M的离心率e的取值范围是_____________.【答案】[33,22]【解析】∵|PF1→|+|PF2→|=2a,∴|PF1→|·|PF2→|≤(|PF1→|+|PF2→|2)2=a2.当且仅当|PF1→|=|PF2→|=a时,等号成立,∴2c2≤a2≤3c2,∴2e2≤1≤3e2.∴13≤e2≤12,即33≤e≤22.15.已知点F1、F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过点F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是___________.【答案】(1+2,+∞)【解析】依题意,0<∠AF2F1<π4,故0<tan∠AF2F1<1,则b2a2c=c2-a22ac<1,即e-1e<2,e2-2e-1<0,(e-1)2<2,所以1<e<1+ 2.16..从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是________.【答案】[53,32]17.【2016届安徽省六安一中高三上第五次月考】已知P是椭圆2222111x ya b+=11(0)a b>>和双曲线2222221xy a b -=22(0,0)a b >>的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,1223F PF π∠=,则1211e e ⋅的最大值为 .【答案】2318.在平面直角坐标系中,已知点2,2)F 及直线:20l x y +-=,曲线1C 是满足下列两个条件的动点(,)P x y 的轨迹:①2,PF d =其中d 是P 到直线l 的距离;②00.225x y x y >⎧⎪>⎨⎪+<⎩(1) 求曲线1C 的方程;(2) 若存在直线m 与曲线1C 、椭圆22222:1(0)x y C a b a b+=>>均相切于同一点,求椭圆2C 离心率e 的取值范围.【解析】(1)2222(2)(2)22()4PF x y x y x y =-+-=+-++22x y d +-=,由①2,PF d =得:222222()4222()2x y x y x y xy x y +-++=++-++,即 1.xy =将1xy =代入②得:1150,0,2x x x x >>+<, 解得:12.2x << 所以曲线1C 的方程为:1y x =1(2).2x << (2)(解法一)由题意,直线m 与曲线1C 相切,设切点为1(,)M t t, 12.2t << 则直线m 的方程为2111()()()y x t x t x t t x t'-=⨯-=--=,即212.y x t t =-+将212y x t t=-+代入椭圆2C 的方程222222b x a y a b +=,并整理得: 242222222()4(4)0.b t a x a tx a b t t +-+-=(2)(解法二)设直线m 与曲线111:(2)2C y x x =<<、椭圆22222:1(0)x y C a b a b +=>> 均相切于同一点1(,),M t t则22221 1.t a b t +=由1y x =知21y x'=-;由22221(0)x yya b+=>知221xy ba=-,222222222.211xb xaya yx xaa a-'==-=---。

相关文档
最新文档