质谱蛋白质组学在微生物鉴定中的应用

合集下载

生物质谱技术在微生物学中的应用

生物质谱技术在微生物学中的应用

生物质谱技术在微生物学中的应用随着现代科技的不断进步,生物学的发展也越来越快速。

其中,生物质谱技术是一种被广泛应用于微生物学领域的高新技术。

它通过对样品中生物大分子如蛋白质、核酸、糖等进行分子解析,提供了微生物领域研究所需的高精度、高通量、高灵敏度、高信息的获得手段,因此在微生物学领域有着广泛的应用。

一、生物质谱技术的基本原理及分类生物质谱技术指用来检测生物样品分子量和结构的一系列物理和化学技术。

生物质谱学包括大量的方法和技术,例如质谱分析、质谱成像等。

质谱分析是基于质谱仪的原理,凭借质量分析仪对分子的质量进行分析,根据分子的质量和质子化程度可以推测分子结构及代谢通路。

质谱成像技术是在分子水平上,对含有多种组分的生物样品进行成像分析。

它利用质谱仪的成像功能,对生物样品进行离子成像,实现在细胞和组织水平上的高分辨率成像。

质谱成像技术不仅可以分析有机化合物、蛋白质和氨基酸等生物分子,还可以发现新的代谢途径、功能基团、化学生物标记物等,成为微生物代谢组学和生物学研究的有力工具。

二、生物质谱技术在微生物代谢组学中的应用微生物代谢组学是在代谢水平上对微生物的全面研究,它是利用各种生物技术单元或方法对微生物的代谢物进行鉴定、分析、识别,从而构建一个完整的微生物代谢物组,进而了解并研究微生物的代谢物谱的整体特点及代谢通路。

在微生物代谢组学领域,生物质谱技术的应用众多,以下列举几种:1.蛋白质谱分析:微生物体内的蛋白质是微生物代谢中最重要的功能性产物之一。

利用生物质谱技术对蛋白质进行分析,不仅可以鉴定新的蛋白质与蛋白复合物,还可以通过拟南芥前体文件夹的生物质谱分析,确定微生物蛋白的后转录修饰。

2. 代谢物质谱分析:微生物代谢产物是微生物代谢组学的重要研究内容,用生物质谱技术对微生物代谢产物进行分析,可以得到微生物的代谢通路和代谢产物谱,精准测定代谢产物的分子式和分子量,加深对微生物代谢的了解。

3. 生物膜成分分析:尤其在酵母细胞中,可以使用生物质谱技术对生物膜结构和成分进行研究,进一步了解细胞内物质运输和信号转导的过程。

质谱技术在生物医学中的应用研究

质谱技术在生物医学中的应用研究

质谱技术在生物医学中的应用研究质谱技术作为分析化学领域中的重要技术,由于其高灵敏度、高分辨率、高通量以及无需事先知道分析物化学性质等优点,被广泛应用于生物医学领域。

本文将介绍质谱技术在生物医学中的应用研究,探讨其在蛋白质组学、代谢组学、药物代谢动力学等领域的应用,最后展望未来的发展方向。

一、蛋白质组学蛋白质组学是研究生命体系中所有蛋白质的结构、功能和相互作用的领域。

大规模蛋白质组学研究需要高通量、高分辨、高灵敏的技术支持,质谱技术应运而生。

对于蛋白质的定量分析,液相色谱-质谱联用技术是最常用的方法。

其原理是通过液相色谱将样品中的蛋白质分离成一系列峰,再通过质谱分析对其进行定量。

其中,同位素标记是一种广泛使用的方法,利用同位素标记前后的谱峰强度的比值进行分析,从而实现定量。

另外,已经发展出了多种定量方法,如多反应监测定量(Multiple reaction monitoring,MRM)、平行反应监测定量(Parallel reaction monitoring,PRM)等。

这些方法通过不同手段实现对蛋白质的定量分析,使蛋白质组学研究实现了更高的效率和准确性。

二、代谢组学代谢组学是研究生物体内所有代谢产物的变化规律和相互关系的学科。

它可以帮助我们了解代谢物在不同疾病状态下的变化,从而寻找针对性的治疗方法。

质谱技术可以对生物样品中的代谢产物进行高通量、高分辨的分析。

其中,液相色谱-质谱联用技术(LC-MS)是最常用的方法。

利用液相色谱将样品中的代谢产物分离,再通过质谱技术对其进行鉴定和定量分析。

近年来,代谢组学的应用已经涵盖了多种疾病领域,比如肿瘤学、心血管疾病、神经系统疾病等,并在疾病诊断、治疗和预后判断等方面发挥了重要作用。

三、药物代谢动力学药物代谢动力学是研究药物在生物体内的代谢和药效学关系的学科。

药物在体内的吸收、分布、代谢、排泄等过程是影响药效的重要因素,因此对药物代谢动力学的深入研究对于药物研发和临床药理学有着重要意义。

质谱仪在生物医学研究领域中的应用

质谱仪在生物医学研究领域中的应用

质谱仪在生物医学研究领域中的应用引言:质谱仪作为一种高效、精确的分析仪器,在生物医学研究领域中扮演着重要的角色。

它能够对生物样品中的分子进行精确的检测和鉴定,为科学家们提供了宝贵的数据和信息。

本文将详细介绍质谱仪在生物医学研究中的应用,并探讨其在蛋白质组学、代谢组学和药物研发等方面的重要作用。

一、质谱仪在蛋白质组学研究中的应用1. 蛋白质鉴定和定量蛋白质是生物体内重要的功能分子,研究蛋白质的鉴定和定量对于理解生物体的功能和疾病机制至关重要。

质谱仪通过质量分析技术,可以快速且准确地鉴定样品中的蛋白质,并实现对其定量。

从而帮助科学家们在疾病相关蛋白的筛选和生物标志物的发现方面取得突破性进展。

2. 磷酸化和糖基化蛋白质的分析磷酸化和糖基化等修饰在蛋白质功能调控中起着至关重要的作用。

质谱仪可以通过磷酸化和糖基化特异性的质量分析技术,对蛋白质样品中的修饰位点进行鉴定,以揭示其功能和调控机制。

这为疾病的筛选和治疗提供了重要的线索。

二、质谱仪在代谢组学研究中的应用1. 代谢物的鉴定和定量代谢物是生物体内代谢过程的产物,对代谢物的鉴定和定量能够帮助科学家们深入了解代谢通路和生物体的生理状态。

质谱仪通过对代谢物进行质量分析,可以快速、高效地鉴定和定量代谢物,为代谢通路的研究和生物医学研究提供重要的信息。

2. 叶酸代谢的研究叶酸代谢在细胞分裂、DNA合成和蛋白质合成等生理过程中起着重要的作用。

质谱仪可以通过分析代谢物样品中的叶酸代谢产物,揭示叶酸代谢通路的变化,从而帮助科学家们了解叶酸代谢与疾病的关系,并为相关疾病的诊断和治疗提供重要依据。

三、质谱仪在药物研发中的应用1. 药物代谢动力学研究药物代谢动力学研究是药物研发过程中十分重要的环节之一。

质谱仪可以通过对生物体内药物及其代谢产物的质量分析,帮助科学家们了解药物在体内的代谢速率、代谢位点和代谢产物等信息,为药物的剂型设计和给药方案提供指导。

2. 药物残留的检测药物残留的检测对于确保食品和饮用水的安全至关重要。

质谱分析在生物学中的应用

质谱分析在生物学中的应用

质谱分析在生物学中的应用质谱分析是一种重要的分析方法,可以对物质的结构、分子量、化学成分等进行分析和识别,因此在生物学领域中有着广泛的应用。

本文将重点介绍质谱分析在生物学中的应用,包括蛋白质质谱分析、代谢组学、糖蛋白组学等方面。

一、蛋白质质谱分析蛋白质是细胞中最重要的分子之一,负责各种生物功能的实现。

因此,研究蛋白质的结构、功能和相互作用对于生物学的发展具有重要意义。

质谱分析是研究蛋白质的优秀方法之一,可以通过质谱仪对蛋白质分子的分子量、氨基酸序列和翻译后修饰等信息进行分析。

其中,肽质谱分析和蛋白质质谱分析是常用的两种方法。

肽质谱分析是通过酶解蛋白质得到肽,再对肽进行质谱分析,从而确定蛋白质的氨基酸序列。

蛋白质质谱分析则是通过整个蛋白质分子的质谱,包括分子量和各种修饰,来确定蛋白质的结构和序列。

这两种方法在生物学领域中被广泛应用,可以用于研究蛋白质的结构和功能、疾病诊断、药物研发等方面。

二、代谢组学代谢组学是研究生物体内代谢物的组合及其在疾病、环境和药物作用下的变化的学科,是一种全局性的研究方法。

质谱分析是代谢组学研究中最常用的技术之一,可以通过测量样品中多种代谢物的质量和相对丰度,确定它们之间的关系以及与其他代谢物的相互作用。

代谢组学的应用广泛,涉及疾病诊断、药物研发、食品安全、环境污染等领域。

例如,在糖尿病研究中,代谢组学可以通过检测血液中的代谢物,监测糖尿病患者的病情及治疗效果;在药物研发中,代谢组学可以用于药效和毒性的评价,帮助研发更有效的药物。

三、糖蛋白组学糖蛋白是一种重要的膜蛋白,它扮演着许多生物学过程中重要的角色。

研究糖蛋白的结构和功能对于深入了解生物体内信息传递、信号转导等基本过程有着至关重要的作用。

质谱分析是研究糖蛋白的重要手段之一,可以通过对糖蛋白和与其结合的化学物质进行质谱分析,确定糖蛋白的结构和修饰方式。

糖蛋白组学在生物学和临床医学中具有非常重要的应用价值。

例如,在肿瘤学中,糖蛋白组学可以通过检测血液和组织中的糖蛋白,为肿瘤诊断和治疗提供有力的支持;在免疫学中,糖蛋白组学可以帮助研究人员深入了解与疾病相关的免疫过程。

质谱技术在生物医药领域中的应用

质谱技术在生物医药领域中的应用

质谱技术在生物医药领域中的应用质谱技术是一种基于分子质量和结构的分析技术,被广泛应用于生物医药领域。

在这个领域中,质谱技术被用来鉴定、定量和分析蛋白质、多肽、小分子化合物等生物分子,以及研究它们之间的相互作用。

一、质谱技术在蛋白质鉴定中的应用蛋白质是生物体内最为复杂的分子之一,它们中的每一个氨基酸都具有不同的物理和化学性质。

质谱技术能够对蛋白质进行序列鉴定、修饰分析和定量分析。

目前最常用的方法是质谱分析的两个技术:MALDI-TOF谱和ESI-Q-TOF谱,这些方法可以在非常短的时间内,对蛋白质进行快速鉴定和定量。

二、质谱技术在代谢组学中的应用代谢组学是一种研究生物体内代谢产物及其整个代谢网络的综合性学科。

生物代谢过程的异常往往与生物体内代谢产物到目标物的变化有关,而质谱技术能够完整地覆盖代谢产物的谱图,实现对代谢物质的鉴定、定量和分析。

例如,气-质联用谱(GC-MS)和液-质联用谱(LC-MS)等技术,已经成为代谢组学研究中最为常用的分析工具。

三、质谱技术在药物代谢中的应用质谱技术能够发现药物代谢性质、药物结构、代谢途径和代谢产物等信息,有助于发现新的、更有效的药物。

它通过研究药物在体内的输送、转化和排出过程,为药物代谢机理的研究提供了可靠的数据。

因此在新药研发过程中,质谱技术几乎已经成为了药物代谢研究中不可或缺的工具。

四、质谱技术在生物标志物鉴定中的应用生物标志物是指能够诊断某种疾病、指示疾病进展、预测病情、预测治疗反应或者评价治疗效果的物质。

它们可以是蛋白质、代谢物或其他组分。

质谱技术是确定生物标志物的快捷而可靠的方法之一。

研究人员可以利用质谱技术鉴定并研究特定的生物标志物。

总之,质谱技术在生物医药领域中具有关键性的作用。

它不仅可以帮助科学家们了解生物分子的性质和功能,同时也为药物研发、疾病早期诊断和治疗提供了有力的支持。

因此,随着生物医药领域的不断发展,质谱技术将继续发挥其重要的作用。

质谱技术在微生物鉴定和检测中的应用

质谱技术在微生物鉴定和检测中的应用

DOI:10.3969/j.issn.W04-6755.2019.W.011质谱技术在微生物鉴定和检测中的应用王淑娴,刁菁,樊英,李乐,刘洪军,叶海斌(山东省海洋生物研究院病害与渔药研究中心,山东青岛266104)摘要:质谱技术(Mass Spectrometry,MS)是一种根据离子产生的质量图谱来确定样品中分子组成的分析技术。

质谱法不仅可以对传统的目标分析物进行定性和定量分析,还可以用于细菌的快速准确鉴定。

基质辅助激光解吸电离飞行时【可(Matrix一Assisted Laser Desorption/Ionization—Time of Flight,MALDI一TOF)质谱仪由于能快速准确地鉴定革兰氏阴性菌和阳性菌的种类,因此是生物学中最常用的质谱仪之一。

质谱法鉴定微生物是以鉴定每个物种的特征光谱为基础的,然后与仪器内的大型数据库进行匹配$本综述阐述了细菌鉴定面临的挑战和机遇,特别是在微生物学领域中使用MALDI—TOF MS来鉴定微生物和分析抗菌药敏感性$关键词:质谱技术;MALDI—TOF;特征光谱;细菌鉴定;抗菌药敏感试验质谱(MS)法通过分析电离分子的质荷比(m/z)来对分子进行定性定量分析。

质谱仪扫描的特征图谱可以确定样品内不同分子的组成,并且能够直接分析任何可电离的生物分子。

FENN[1]和TANAKA⑵在MS的基础上,分别建立了电喷雾电离(Electrospray Ionization,ESI)技术和基质辅助激光解吸电离(Matrix—Assis-ted Laser Desorption/Ionization,MALDI)技术。

MALDI最大的优势在于不需要复杂的预分析,就可以直接对样品与化学基质混合后产生的离子进行分析。

离子飞行时间(TOF)是指用探测器精确测量离子到达飞行管末端所花费的时间。

基质辅助激光解吸电离飞行时间(MALDI—TOF)质谱技术是将MALDI技术和TOF技术整合在一起的一种技术。

蛋白质组学及其应用研究

蛋白质组学及其应用研究

蛋白质组学及其应用研究蛋白质组学是研究蛋白质组和分析蛋白质组的一门学科。

蛋白质组是一个生物体内所有蛋白质的全集,包括蛋白质的类型、数量以及它们在细胞和组织中的表达和功能。

蛋白质组学的研究方法主要包括蛋白质组分离、鉴定和定量分析等。

其中蛋白质组分离的方法有凝胶电泳、液相色谱和质谱等。

蛋白质组鉴定主要通过质谱技术,利用质谱仪对蛋白质样品进行分析,识别蛋白质的氨基酸序列和蛋白质的结构。

蛋白质组定量分析主要通过体内或体外标记的方法对蛋白质进行定量。

蛋白质组学的应用非常广泛。

它在生物医学领域中起到了重要作用。

蛋白质组学可以用于疾病的早期诊断和预测,通过比较病人和正常人的蛋白质组差异,可以发现许多与疾病相关的蛋白质指标,为临床诊断提供依据。

蛋白质组学还可以用于药物研发,通过分析药物与蛋白质之间的相互作用,可以筛选出具有潜在治疗效果的药物靶点。

蛋白质组学在农业领域也有重要应用。

通过分析植物的蛋白质组,可以研究植物的生长发育以及害虫、病原体等环境胁迫下植物的应激响应机制。

蛋白质组学还可以用于培育高产、高质量的农作物品种,通过对抗原蛋白质的定量分析,可以筛选出优质农作物的种子。

蛋白质组学还在微生物学、生态学和食品安全等领域有着广泛的应用。

在微生物学中,蛋白质组学可以帮助研究微生物的代谢途径、抗药性和致病机制等。

在生态学中,蛋白质组学可以用于研究生物多样性、食物链和物种互作等生态系统的重要问题。

在食品安全中,蛋白质组学可以用于检测食品中的有害物质和食源性病原体,保障食品的安全和质量。

蛋白质组学是一门应用广泛的学科,通过研究蛋白质组的组成和功能,可以为医学、农业、生态学和食品安全等领域提供重要的科学依据和技术手段。

随着研究方法和技术的不断发展,蛋白质组学将在更多领域展现出更大的应用潜力。

蛋白质组学技术在食品微生物安全评估与检测中的应用

蛋白质组学技术在食品微生物安全评估与检测中的应用
s u r v i v e n i f o o d p r o c e s s ng i ,c a u s ng i h e a l t h h a z a r d s t o c o n s u me r s . No wa d a y s , r a p i d d e t e c t i o n o f f o o d p a t h o g e n s a n d mi c r o b i a l t o x i n s a r e
Ce n t u r y , p r o t e o mi c s p r o v i d e n e w r o u t e f o r s a f e y t a s s e s s me n t nd a mo n i t o r i n g f o o d ic m r o b e s , wh i c h mi g h t c o mp l e me n t t h e s h o r t a g e s o f t h e r a p i d
( 2 . S t a t e Ke y L a bo f P u l p a n d P a p e r - ma k i n g E n g ne i e i r n g , S o u t hC h i n a U n i v e r s i yo t f T e c h n o l o g y , G u a n g z h o u 5 1 0 6 4 0 ,
c o n s i d e r e d t o b e i mp o r t a n t t o e n s u r e f o o d s a f e y t n i he t f a s t f o o d c  ̄ c u l a i t o n . As o n e o f he t s i x ma j o r t e c h n i q u e s n i l i f e s c i e n c e s o f t h e 2 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质谱蛋白质组学在微生物鉴定中的应用[ 文章来源: | 文章作者: | 发布时间:2007-08-08| 字体: [大 中 小]质谱蛋白质组学在微生物鉴定中的应用 微生物传统的鉴定方法是建立在微生物的形态学、生态学、细胞生理和生化以及基因的基础上的,自20世纪80~90年代以来,微生物鉴定系统不断发展,自动化程度不断提高,但也是建立在传统的生理生化和基因基础上。

无论是微生物鉴定的传统技术还是基于传统的生理生化和基因基础上的自动化仪器技术,它们均需要经过培养繁殖、分离纯化等步骤,然后再根据表型和基因型来进行鉴定,但是由于微生物群落及其生存环境的复杂性,目前自然界中只有极少部分微生物能够在实验室中培养,这严重阻碍了对微生物验明身份即鉴定的研究,也严重阻碍了对微生物生命活动规律的研究和微生物资源的开发。

虽然随着越来越多的致病微生物和模式微生物基因组全序列测定的完成,基于基因组学的技术也应用于微生物的鉴定系统,但要想通过基因序列,按传统的方法彻底研究海量数据的微生物基因的产物仍非易事,从已经完成测序的一些微生物来看,有许多开放读码框架(ORF )无法确定其功能,人们意识到有必要重新回到蛋白质的水平上来研究微生物,这就需要有一种高灵敏度高通量的大规模蛋白质研究手段,于是微生物蛋白质组研究应运而生。

作为蛋白质组支柱技术的MALDI-TOF-MS 得到了极大的发展,尤其是为微生物鉴定研发的CLINPROTTM 中的MALDIBioTyper 系统一经推出,就受到微生物鉴定和分类领域热烈的迎取,在这方面表现突出的当属德国微生物菌种保藏中心(DSMZ )。

BioTyper 除了被DSMZ 用于微生物鉴定和分类的研究外,还被用于微生物种质的质控以及不同微生物系统发生的研究。

下面将这种崭新的快速、方便、经济的鉴定微生物菌株的新一代技术作一概述。

基于质谱的蛋白质组学技术在微生物鉴定和分类中的应用概述基于质谱的蛋白质组学技术MALDIBioTyper 系统在微生物鉴定和分类的应用,可完成三个方面的工作:①对于一系列已知微生物,可获得MALDI-TOFMS 数据库,即建立已知微生物的标准蛋白质组指纹质谱数据库;②对于未知微生物,则制备未鉴定微生物样品,利用MALDI-TOFMS 获得质谱数据,再采用提供的软件包,将获得的质谱数据与已知微生物的标准蛋白质组指纹质谱数据库进行比较,以鉴定具有相同或相似质谱数据的已知微生物,再建立未知微生物的标准蛋白质组指纹质谱数据库;③采用提供的软件包工具,可以利用已建立的已知和未知微生物标准蛋白质组指纹质谱数据库用于临床、环境、工业未知样品的鉴定。

这方面的工作是在质谱采集谱图后,由BioTyper软件进行微生物如细菌、酵母、真菌等的鉴定、分类和去冗余。

BioTyper分析软件整合了质谱操作功能和鉴定以及分类的功能,研究者可以自定义滤波(Smoothing)处理参数、数据衰减或基线校正,所以所得结果是专业的峰列表。

用于鉴定未知微生物的模式匹配是通过比较所产生的峰的列表同含有种和亚种特征谱图信息的谱图库比较而获得。

软件自动产生峰列表并提取代表一个种群的一定数量谱图的典型峰。

未知微生物的鉴定是通过将它们独特的峰列表和数据库比较而完成的,由质谱测得的质量和强度相关性产生匹配分值,并用匹配分值来给结果定级(见图1)。

MALDIBioTyper能够通过一个复杂的校正运算对谱峰质量偏差进行校正,从而增加数据库搜索的可信度。

在获得峰后,软件可以设定一个公认的起始误差窗口和一个期望的调整结果,在调节范围内将一个新的峰列表校正为一个已知的峰列表,可鉴定偏离了5000ppm的质谱图。

对于系统树的去冗余、聚类和产生,BioTyper通过模式匹配计算库中所有主要谱图的相似性,由于这些谱图各自具有独特的谱峰,所以可采用这个相似分值来构建系统树;根据主成分分析,可以对一套谱图进行自动多变量分析(见图2),也可获得基于主成分计算基础之上的多种多样的聚类计算和可视化系统树(见图3)。

基于质谱的蛋白质组学技术在微生物鉴定和分类中应用的技术路线蛋白质组指纹图谱法建立微生物鉴定标准库,不是基于微生物的生理生化指标和基因,而是根据微生物的蛋白质组表达谱的比较来进行的,因此更为准确和直接。

采用MALDIBioTyper对微生物鉴定和分类研究的一般工作流程是一个直线性路径(见图4)。

它从一个单克隆或其它生物材料开始,可以在几分钟内分析样品。

每个样本的自动谱图获取可以在几秒钟内完成,并且可以实现数据向专门鉴定软件的无缝传输。

该操作流程包括以下步骤(见图4),即选择未知微生物、取微生物点MALDI靶、产生MALDI-TOF特征峰、BioTyper 数据解析、获得鉴定物种。

在用MALDI-TOF质谱测定时,质谱图用MALDI-TOF质谱仪以线性正性模式用最大频率(20-200Hz,依赖于仪器)采集。

谱图的测量质量范围是2000-20000Da。

谱图自动获取可以用autoExecute软件用激光强度的模糊控制来进行。

在microflex、autoflex或ultraflexMALDI-TOF质谱仪上皆可以高度重复的快速测定。

对于MALDI-TOFMS采集的质谱图,需要用软件BioTyper™或者用于FLEX系列的COMPASS™和flexAnalysis™进行分析,才能解读谱图所蕴含的生物学信息,从而进行微生物的鉴定和分类。

基于质谱的蛋白质组学技术进行微生物鉴定和分类的特点基于质谱的蛋白质组学技术用于微生物鉴定和分类与传统的方法以及现在主要在用的自动化仪器相比,具有以下特点:操作简单、快速可将单个微生物菌落或其它生物材料直接加到MALDI样品靶上并使用MALDI-TOF质谱仪进行分析,谱图识别可以在几分钟内完成,且数据评估同测定直接连接。

这种简单且唯一的工作流程对于绝大多数微生物的鉴定是足够的,且不需要进行革兰氏染色、氧化酶测试或PCR引物和条件选择。

重复性好在很宽的条件范围内,MALDIBioTyper方法都被证明是很稳定的。

生长培养基的不同组成对峰模式分布影响非常小,如在从4000到12000Da的范围内,几乎没有观察到培养基的影响。

同样,细胞的生长状态对峰模式也没有影响,缓慢生长期的细胞与对数生长期、平台期或者死亡期的细胞具有相似的模式。

在标准条件下进行样本制备和测量后,在不同的MALDI-TOF仪器上获取的质谱谱图具有很高的可比性,如在3个不同的仪器上,对同一样本靶测量的谱图实际上是一致的。

因此,来自于不同MALDI-TOF质谱仪的谱图可以用来建立真实可靠的数据库。

这种高重复性是建立在对稳定表达的高丰度的蛋白质测量基础上的,如核糖体蛋白质。

在很少出现代谢物的2000到20000Da质量范围内,波谱图可被观察到。

与活细胞相比,细菌芽孢可以产生明显不同的峰模式,而且这些“芽孢谱图”也具有重复性。

目前,仪器的高灵敏度可以检测到低至100ng或105个细胞。

而对于使用AnchorChip™仪器,25ng的生物材料就能满足需求。

准确度高MALDI-TOFMS获得的蛋白指纹图谱用作模式匹配,匹配分值用作鉴定结果的分级和归类。

BioTyper软件对所得的图谱进行分析统一化,这种校正和统计运算保证了鉴定的精确性,目前可鉴定背离了5000ppm的质谱图。

蛋白指纹主要集中在2-20kDa受到微生物生长环境和状态影响很小的持续高表达蛋白。

自动化和高通量采用MALDIBioTyper方法进行微生物的鉴定和分类,一个样品从单克隆到取得结果只需5分钟,1.5小时可以分析100个样品。

基于质谱的蛋白质组学技术在微生物鉴定中的应用进展基于MALDI-TOFMS的蛋白质组学技术的细菌鉴定为许多领域提供了比传统方法更为优越的选择,如环境研究、食品和水质控制、微生物储藏的质量控制、兽医和医学诊断。

此方法进行样品制备和检测迅速且成本低,尤其适合于常规和高通量使用。

进一步的应用领域在于分类学关系的分析研究,MALDI-TOFMS分析可以获得同经典方法相似的系统树,而且其基于各自质谱模式的复杂微生物群落的去冗余特点更提供了新的科学研究能力,如在环境研究和生物多样性调查中,成千上万的微生物都可以很容易的进行分析并作为进一步分析的基础。

在2006年的世界蛋白质组学会议上,ThomasMaler等报道,将小量的细胞、孢子进行灭活处理并点MALDI靶,在分子量从2000到20000Da范围内以线性模式采集谱图,采用Biotyper软件分析谱图并进行模式匹配、去冗余和主成分分析,结果成功的将梭菌属(Clostridia)和杆菌属(Bacillus)进行了鉴定,其后续研究对细菌(G+,G-)、酵母和真菌也进行了成功的鉴定和分类。

在2006年4月《Nature》杂志的方法栏目中,ThomasMaler等详细报道了这一快速、可靠的基于质谱的微生物鉴定和分类技术。

同样相似的报道,早在2005年,DemirevPA等在《AnalChem》上也报道了采用MALDI-TOF/TOF质谱进行完整细菌孢子种类的快速、高可信度的鉴定和分类研究。

2006年,ManuelJRodríguez-Ortega等在《NatureBiotechnology》杂志上撰文,采用基于质谱的蛋白质组学方法来快速、可靠的鉴定细菌表面暴露蛋白以用于候选疫苗的研究,结果表明,在链球菌(Streptococcus)M1_SF370A菌株中,有68个PSORT预测的表面相关蛋白被鉴定,其中包括了大多数保护性抗原。

这些表面暴露蛋白依菌株不同而不同。

高致病性菌株M23_DSM2071含有17个蛋白,有15个和M1_SF370相同,在这17个中有14个蛋白也在大肠杆菌(E.coli)中表达,而且在小鼠中具有拮抗M23_DSM2071致死剂量的保护作用。

在该研究中,还鉴定了一个新的保护性抗原Spy0416。

研究采用的技术策略克服了表面蛋白特性鉴定的困难,对疫苗的发现具有很大的潜在推动作用。

展望随着系统生物学的蓬勃兴起,组成系统生物学核心技术的蛋白质组学技术也渗透到生命科学研究的各个领域。

蛋白质组学的研究对象已涵盖了原核生物、真核生物、动物、植物等,而且由于微生物个体蛋白质种类少,已成为蛋白质组学研究的突破口,并已取得了很大进展,同时提出了亚蛋白质组学、比较蛋白质组学、定量蛋白质组学等新概念,推动了蛋白质组学的发展。

作为蛋白质组学支柱技术的MALDI-TOFMS也得到了长足的发展,并应用于细菌、病毒和真菌中研究致病微生物的致病因子,着重研究蛋白的功能,为寻找药物靶标和研发新的药物奠定基础,虽然同时多用于蛋白质组表达谱的研究,但技术路线皆为二维-SDS-PAGE联合MALDI-TOF-MS分析,而MALDIBioTyper的技术路线则越过了二维-SDS-PAGE步骤,直接将样品点靶,生成微生物的蛋白质组表达谱,所以该技术路线具有简便、快速、准确、自动化和高通量的特点。

相关文档
最新文档