放射物理学基础第六章高能电子束射野剂量学
肿瘤放射物理学-物理师资料-6.3 电子束治疗的计划设计

五、电子束照射野的衔接技术
对一些特殊部位的病变的照射,如全脑全脊髓照射中 的脊髓野,乳腺癌术后的胸壁照射野等,因单一电子束射野 不可能包括整个靶区,需要采用多个相邻野衔接构成大野进 行照射,必须恰当处理,避免靶区内超、欠剂量的发生。
(一)电子束照射野衔接的基本原则
根据射线束宽度随深度变化的特点,在皮肤表面相邻野 之间,或留有一定的间隙,或使两野共线,最终使其50% 等剂量曲线在所需深度相交,形成较好的剂量分布。
二、电子束的斜入射校正
电子束治疗经常遇到的一个问题是,由于患者治疗部 位皮肤表面的弯曲,或由于摆位条件的限制,致使电子束限 光筒的端面不能很好平行和接触于皮肤表面,引起空气间隙 和形成电子束的斜入射,导致电子束等剂量分布曲线的畸变。
电子束斜入射的影响: 最大剂量点深度处的侧向散射增加 穿透能力变弱 最大剂ห้องสมุดไป่ตู้点深度向表面移动
校正方法:等效厚度系数法(CET法)。
如果计算位于厚度为Z的不均匀性组织后的某一点深度d处 的剂量,应先计算该点的等效深度deff :
Zd
(1) deff=d-Z +Z×CET= d+Z(CET-1) CET由不均匀组织对水的相对电子密度求得。
然后,经平方反比 定律 校正,可得到该点剂量。
2
(2)
(二)电子束和X(γ)射线照射野的衔接
临床中,特别是在头颈部肿瘤的治疗时,会遇到电子束和X(γ)射线照射 野的衔接问题。采用的方法一般采用两照射野在皮肤表面共线相交。这会使得 X(γ)射线照射野一侧出现剂量热点,电子束一侧出现剂量冷点。其原因是由 于电子束照射野产生的侧向散射。剂量的冷、热点还同时受到电子束源皮距的 影响,源皮距延长,空气间隙的增加,使得电子束等剂量曲线变得较标称条件 下的更加弯曲,冷,热点剂量区域变宽。
放射物理学

缺点:半影大,需定时换源;环境污染
医用直线速加器
原理:利用微波电场沿直线加速电子然后发射, 或打靶产生X线发射,治疗肿瘤的装置。
特点:
1、可产生不同能量的X线 (4~25MV) 2、可产生不同能量的电子线 (3~25MV) 3、照射野均匀性好,剂量率稳定 4、可作为X刀使用 5、安全性好
X线的能谱:X线的光子强度与光子能量的关系。
X线有两种成分: ① 特征辐射X线(单能谱) ② 韧致辐射X线(连续谱,
X线的主要成分)。
从最大能量(最高管电压值)以下,在
任一能量处光子均有一定的强度,并在 一定的能量处强度最大。
X线的平均能量(光子强度最大处)约等 于最高能量的1/4~1/3, X线机及加速器 上所标称的能量是其产生X线的最高能量。
(3)碰撞损失与辐射损失
碰撞损失:由电离激发而引起,用单位长 度的能量损失来量度(dE/dx),在低能时发 生,主要产生热。
辐射损失:由特征辐射和韧致辐射引起的, 在高能范围发生,主要产生X射线,γ射 线
损失比=碰撞损失/辐射损失=816mev/T.Z
T-电子动能,Z—原子序数
2、光子射线与物质的相互作用
(2)临床应用 肿瘤量=处方量×PDD 即处方量=肿瘤量÷PDD
4、组织空气比(TAR) 定义:射线中心轴上,相同深度处在体膜 中吸收剂量与在空气中吸收剂量之比
TAR=Da水/Da空气
旋转治疗时,靶区为中心,源皮距不断 改变,不能用百分深度剂量来表示吸收 剂量,改用TAR表示在同一个位置,不 同散射条件,两种情况下的剂量比,不 受距离的影响。
高能电子束的应用技术

谢谢
高能电子束的 应用技术
讲课人 吴湘阳
关于高能电子束
高能电子束用于放射治疗始于50年代初期,现 今,接受放射治疗的患者中,约80%的患者要 应用到高能电子束
对于X射线,沿射线入射方向靶体积后方的正 常组织,不可避免会接受到一定程度的辐射剂 量,高能电子束则由于具有有限的射程,可有 效地避免对靶区后深部组织的照射。基于上述 特点,它主要用于治疗表浅和偏心的肿瘤以及 浸润的淋巴结。
如7MEV表面剂量为85%表面剂量为高剂 量坪区变宽,X线污染加大。故临床使用 的高能电子束,能量应该在4-25Mev之间。
电子束射野剂量学
照射野对百分深度剂量的影响 射野对输出剂量的影响非常复杂,无规 律可循必须针对每一台加速器所配置的 电子束限光筒进行测试
电子束等剂量曲线分布特点
随深度增加,低值等剂量线向外侧扩张, 高值等剂量线向内侧收缩并随电子束能 量而变化。
高能电子束的产生
一般由加速器产生,在本质上与β射线一 样为带负电的高速电子组成。经加速和 偏转后引出的电子束,基本是单能窄束 通过散射箔扩展后,先经X射线准直器, 再经电子束限光筒,形成治疗用野。电 子限光筒的设计,除要形成治疗用射野 外,可以利用电子束易散射的特点,借 助限光筒壁增加射野中的散射电子,弥 补野边缘剂量的不足
注意勿挤伤、刮伤病人。来自高能电子束的应用范围表浅病变:如皮肤病变,胸壁,内乳淋巴结, 颈部表浅淋巴结。可单野照射。
电子束和高能X射线混合使用,提高皮下浅部 组织剂量。
电子线的旋转照射,治疗面积较大,体表弯曲 的浅表病变。
电子线的全身照射技术, 电子线的术中照射治疗技术,对经手术切除的
瘤床、残存灶在直视下进行单次、大剂量照射
高能电子束在物质中容易被散射,且更易被阻 挡
6第六章光子照射剂量学解析

高能光子的剂量学特点
穿透力强、皮肤剂量低、旁向散射小、骨与软组织有相 似的剂量吸收以及等剂量曲线平坦等优势。 后图为典型的光子束百分深度剂量曲线,由最大剂量点 将曲线分成剂量建成区和指数衰减区。 剂量建成区是指从表面至最大剂量点的区域,此区域内 剂量随深度的增加而增加。由于剂量建成区剂量变化梯 度大,一般将肿瘤区放在最大剂量点之后。 随着能量的增加,最大剂量点的深度增加,皮肤剂量下 降,在肿瘤区域内剂量曲线较为平坦,但肿瘤后的正常 组织受量稍有增加。照射野由小变大时,散射线剂量的 贡献增加,到达一定程度后趋于饱和,低能光子变化较 大而对于高能光子则变化相对较小。
Dp/Dq=Fq2/Fp2
第三节
百分深度剂量
射线进入物质(人体)后中心轴上任意深度d点的剂量(Dd)与 峰值点d0点的剂量Dd0之比,即: D(d) PDD(d)= ————x100% D(dm)
百分深度量是在一定照射条件下(能量、距离、面积),在 体模或水模中经实测测得,为使用方便起见,制成各种照射 条件下使用的百分深度量表供选择使用(见书后附表)。 影响百分深度量的因素有射线能量、照射面积、源皮距(SSD) 和被照射组织/肿瘤的深度,在查表时这四个因素均应注意。
4.半值层(HVL) 表示射线质的一种方法。是使一定条件下 已知的放射强度减弱一半所需吸收体物质 的厚度(可用塑料、水、Al、Cu,Pb等)。 测HVL时应注意所使用的物理条件如滤过、 距离、照射野大小等均要与实际照射时一 致,同时应保持一定的距离(15cm以上), 以避免次级射线造成的误差。 5.半衰期 放射性核素的活度(强度)减少一半时所 需要的时间称为该放射性核素的半衰期 (half life time).
肿瘤放射物理学基础

基本措施
1.时间防护 尽量缩短受照时间 2.距离防护 增大与辐射源的距离 3.屏蔽防护 人与源之间设置防护屏障
能量和照射野的选择
常用能量 4~25Mev
能量与治疗深度的关系 E = 3d+2~3Mev
照射野 电子束射野≥靶区横径的1.18倍
近距离照射剂量学
剂量学特点 放射源周围的剂量分布按照与放射
源之间的距离的平方而下降,即平方反 比定律。 基本特征 肿瘤剂量 高而不均匀,而邻 近正常组织受量低
近距离治疗的主要特点
康普顿效应:
当光子与原子内
一个轨道电子发生相互 作用时,光子损失一部 分能量,并改变运动方 向,电子获得能量而脱 离原子,这种现象叫做 康普顿效应。在 0.03~25MeV的范围占 优势,骨和软组织的吸 收剂量相近
电子对效应:
入射光子能量 大于1.02MV时,光 子可以与原子核相 互作用,使入射光 子的全部能量转化 成为具有一定能量 的正电子和负电子 ,这就是电子对效 应。在25~100MeV 的范围占优势。
任何物质。
名词解释
放射源(S) 一般规定为放射源前表面 的中心,或产生辐射的靶面中心。
照射野 射线束经准直后垂直通过模体的 范围。
临床剂量学中规定模体内50%等剂量线 的延长线交于模体表面的区域定义为照射野 的大小
参考点 规定模体表面下射野中心轴 上某一点作为剂量计算或测量参考的点。 400kV以下X射线参考点取在模体表面,对 高能X(γ)射线参考点取在模体表面下射 野中心轴上最大剂量点位置
60Co治疗机
原理:利用放射性同位素60Co发射出的γ 射线治疗肿瘤,平均能量1.25MeV,与一 般深部X射线机相比有一下特点
特点:①能量较高,射线穿透力强;② 皮肤反应轻;③康普顿效应为主,骨吸 收类似于软组织吸收;④旁向散射少, 放射反应轻;⑤经济可靠,维修方便。
放疗科考试题库及答案(二)

放疗科考试题库及答案421、60钴治疗机光野边界偏差不得超过A、1mmB、2mmC、3mmD、0.5mmE、1.5mm正确答案:B60钴治疗机准直器其轴心线回转时,光野边界偏差不得超过2mm。
422、关于近距离放疗的特点描述错误的是A、使用放射性同位素B、有效治疗距离短,约在5mm~5cmC、射线能量小部分被组织吸收D、其放射源强度较小E、剂量分布遵循平方反比定律正确答案:C近距离放疗是将密闭的放射源直接放入人体需要治疗的部位进行放射治疗,治疗距离较短,一般5mm~5cm。
由于放射源放置在肿瘤组织中或紧贴肿瘤组织,射线能量大部分被组织吸收。
423、不是近距离放疗的形式的是A、腔内、管内放疗B、组织间插植放疗C、全身放疗D、术中置管术后放疗E、敷贴治疗正确答案:C近距离放疗包括腔内放疗、管内照射、组织间照射、术中置管术后放疗及敷贴治疗。
全身放疗包括全身X线照射以及电子线全身皮肤照射,均是从距离人体外一定距离集中照射某一部位,属于远距离放疗(体外照射)。
424、术中置管术后近距离治疗的优点包括A、清醒后照射B、可拍定位片进行剂量计算并优化C、可以多次照射D、A+B+CE、A+C正确答案:D术中置管术后近距离治疗是一种外科手术和放疗联合治疗的手段,术中在瘤床范围埋置数根软管施源器,术后再进行近距离放疗。
术后置管后患者不需立即照射,可清醒后再定位,制订计划并治疗,且可进行多次治疗。
425、低熔点铅的熔点为A、50℃B、60℃C、70℃D、80℃E、90℃正确答案:C外加挡块均由纯铅制成,由于铅的熔点比较高(327℃)制作困难,多用于射野标准挡块使用。
而对于每个患者制作特定形状的铅块,采用低熔点铅可克服铅的缺点,实现了患者个体化的不规则限光筒。
低熔点铅的熔点约为70℃。
426、半挡板一般需要半价层的个数为A、0.5B、1C、1.5D、2E、2.5正确答案:B所谓半挡即挡块的厚度要使原射线的穿射量不超过50%,即半挡只需一个半价层。
《放射治疗物理学》讲义教案放射治疗物理学目录.doc

放射治疗物理学目录第一章放射治疗物理基础第一节原子和原子核性质一、一些基本概念二、原子核的大小和质量三、原子核结合能四、原子核的自旋与磁矩五、原子核和核外电子的能级第二节射线与物质的相互作用一、基木粒子的种类和物理特性二、核的稳定性和衰变类型三、放射性度量和放射性核素衰减规律四、常见类型射线与物质的相互作用及定量表达第二章临床放射生物学概论第一节电离辐射对生物体的作用一、辐射生物效应的时间标尺二、电离辐射的直接作用和间接作用第二节电离辐射的细胞效应一、辐射诱导的DNA损伤及修复二、细胞死亡的概念三、细胞存活曲线四、细胞周期时相与放射敏感性五、氧效应及乏氧细胞的再氧合六、再群体化笫三节电离辐射对肿瘤组织的作用一、肿瘤的增殖动力学二、在体实验肿瘤的放射生物学研究中得到的一些结论第四节正常组织及器官的放射效应一、正常组织的结构组分二、早期和晚期放射反应的发生机制三、正常组织的体积效应第五节肿瘤放射治疗的基本原则一、照射范围应包括肿瘤二、要达到基本消灭肿瘤的目的三、保护邻近正常组织和器官四、保护全身情况及精神状态良好第六节提高肿瘤放射敏感性的措施一、放射源的选择二、利用时间-剂量-分割关系三、使肿瘤细胞再分布四、利用氧效应第七节肿瘤放射治疗中生物剂量等效换算的数学模型一、“生物剂量”的概念二、放射治疗屮生物剂量等效换算的数学模型三、外推反应剂量(ERD)概念第三章常用放射治疗设备第一节X线治疗机一、X线的发生二、X线机的一般结构三、X线质的改进四、X射线治疗机的改进第二节医用加速器一、概述二、医用电子直线加速器的加速原理三、医用电子直线加速器的结构四、质子放疗系统第三节远距离^Co治疗机一、叫20源的产生与衰变二、远距离治疗机的一般结构三、60Co治疗机种类四、60Co治疗机的半影种类五、垂直照射相邻照射野的设计六、60c°v射线的优缺点七、6°C0源更换八、Y刀第四节远距离控制的近距离治疗机一、H DR后装治疗设备的组成二、现代后装机具有的优点第五节理想放射源条件一、理想的剂量分布二、能杀灭乏氧细胞三、能杀灭非增殖期细胞(Go期)第六节模拟定位设备一、模拟定位机二、C T模拟定位机三、磁共振模拟机四、P ET-CT模拟机第七节体位固定装置一、一般的头颈部支持系统二、乳腺体位辅助托架三、热塑面网(罩)和体罩四、真空成形固定袋(真空袋)第八节放射治疗局域网络一、局域网络的配置二、放射治疗科网络的信息交换三、L ANTIS系统四、科室网络的安全维护第四章辐射剂量学的基本概念第一节辐射剂量学基本定义一、照射量二、比释动能三、吸收剂量四、有关辐射场的几个基本定义第二节各辐射量Z间的关系一、高能光子在介质中的能量转移和吸收二、电子平衡三、照射量和比释动能的关系四、比释动能和吸收剂量的关系五、吸收剂量和照射量的关系第三节空腔理论一、阻止本领二、阻止本领和吸收剂量的关系三、Bragg-Gray空腔理论四、Spencer-Attix 理论五、空腔理论住电离室剂量测量中的应用第五章射线的测量第一节电离室一、电离室基本原理二、指形电离室三、电离室的工作特性以、特殊电离室五、电离室测量吸收剂量的原理第二节热释光剂量计一、原理二、热释光剂量讣的种类三、热释光剂量计使用四、热释光剂量计的刻度第三节胶片剂量计一、原理二、应用第四节半导体剂量计一、原理二、Mapcheck半导体剂量仪第五节场效应管一、原理二、M OSFET探测器的特性第六节剂量的标定一、射线质的测定二、射线吸收剂量的标定第六章光子照射剂量学第一节原射线与散射线一、原射线二、散射线第二节平方反比定律第三节百分深度剂量一、照射野及有关名词定义二、百分深度剂量第四节射野输出因子和模体散射因子一、射野输出因子二、模体散射校正因子第五节组织空气比一、组织空气比定义二、源皮距对组织空气比的影响三、射线能量、组织深度和射野大小对组织空气比的彫响四、反向散射因子五、组织空气比与百分深度剂量的关系六、不同源皮距百分深度剂量的计算一一组织空气比法七、旋转治疗屮的剂量计算八、散射空气比第六节组织最大比一、组织模体比和组织最大剂量比二、散射最大剂量比第七节等剂量线一、等剂量线二、射野离轴比第八节组织等效材料一、组织替代材料二、组织替代材料间的转换三、模体四、剂量准确性要求第九节人体曲而和组织不均匀性的修正一、均匀模体和人体之间的差别二、人体曲面的校正第十节不均匀组织(骨、肺)校正一、射线衰减和散射的修正二、不均匀组织屮的吸收剂量三、组织补偿第十一节楔形野剂量学一、楔形野等剂量分布与楔形角二、楔形因子三、一楔合成四、楔形板临床应用方式及其计算公式五、动态楔形野第十二节不规则射野剂量学第十三节临床剂量计算一、处方剂量二、加速器剂量计算三、钻-60剂量计算四、离轴点剂量计算一一Day氏法第七章电子线照射剂量学第一节电子线中心轴深度剂量分布一、中心轴深度剂量曲线的基木特点二、有效源皮距及平方反比定律三、彫响电子线百分深度剂量的因素四、电子线的输出因子第二节电子线剂量学参数一、电子线的射程二、电子线能量参数三、电子线的离轴比四、电子线的均整度、对称性及半影五、电子线的等剂量线分布特点第三节电子线的一般照射技术一、电子线处方剂量ICRU参考点二、能量和照射野的选择三、射野形状及铅挡技术四、电子线的补偿技术五、电子线的斜入射修正六、电子线的组织不均匀修正和边缘效应七、电子线的射野衔接技术第四节电子线的特殊照射技术一、电子线旋转照射技术二、电子线全身皮肤照射三、电子线术中照射第八章近距离放射治疗剂量学第一节近距离放疗概述一、近距离放射治疗的设备和相关技术二、近距离放疗的常用核素第二节近距离放疗的剂量计算一、单个粒子源的剂量计算方法二、临床多粒子源植入的扰动影响三、组织异质情况下的剂量修正第三节近距离放疗的临床应用和剂量体系一、粒子源植入治疗的临床应用二、粒子源植入的临床剂量体系第九章中子近距离照射剂量学第一节钿中子与制中子相对生物学效应一、钢屮子二、^cf的相对生物效应(RBE)三、屮子近距离治疗的优势第二节钏中子治疗技术一、'叱彳中子后装治疗机(中子刀)简介二、中子刀适应症及禁忌症第三节钿中子治疗的剂量分布一、模体二、确定漩Cf中子束、Y射线吸收剂量分布的探测器三、确定^Cf中子、Y吸收剂量分布的理论方法第四节中子的防护一、中子后装机的辐射防护性能二、患者的辐射防护三、医护人员的辐射防护四、公众的辐射防护五、安全管理第十章临床常用技术和应用第一节挡块一、挡块的厚度二、低熔点铅技术三、挡块制作第二节组织补偿一、组织填充物二、组织补偿器三、电子束的补偿技术第三节多叶准直器一、多叶准直器的基本结构二、多叶准直器的安装位置第四节楔形野一、楔形板二、楔形角与楔形因子三、一楔合成四、动态楔形野第五节独立准直器第十一章临床常用放疗方案第一节放疗临床对剂量学的要求一、提高治疗比二、实现临床剂量学四原则第二节照射技术和射野设计原理一、体外照射技术的分类及其优缺点二、射线及其能量的合理选择三、高能X射线的射野设计原则四、相邻野设计五、不对称射野笫三节临床常见肿瘤放射治疗方案一、鼻咽癌常规照射野设计二、肺癌常规照射野设计三、食管癌常规照射野设计第十二章三维适形放射治疗及调强放射治疗第一节三维适形放疗的发展过程第二节3DCRT工作流程、计划工具一、体模制作二、计划CT扫描与数据传输三、轮廓勾画四、计划设计和评价五、计划验证六、三维适形放疗的临床应用第三节立体定向放射外科和立体定向放射治疗一、立体定向放射外科二、立体定向放射治疗笫以节调强放射治疗一、IMRT的工作流程和基本概念二、IMRT实施方法三、IMRT的优点四、IMRT的可能潜在问题五、IMRT的剂量验证第五节 调强放射治疗的临床应用举例一、 鼻咽癌的调强放射治疗二、 前列腺癌的调强放射治疗三、 肺癌的调强放射治疗第十三章治疗计划系统和治疗计划评估 第一节治疗计划系统概念和历史简介一、 治疗计划系统概念二、 治疗计划系统的发展历史三、 两维和三维治疗计划系统的比较 第二节治疗计划的剂量学原则及靶区剂量规定一、 肿瘤致死剂量与正常组织耐受剂量二、 临床剂量学四项原则 第三节外照射靶区剂量学规定治疗目的 参考点和坐标系 体积的定义 対剂量报告的一般性建议 剂量归一点 吸收剂量二、四、五、八、第六节近距离放射治疗剂量算法近距离治疗特点近距离治疗类型和放射源空间重建近距离主耍剂量计算方法192Ir 放射源的数学模型 近距离照射的剂量优化第七节外照射剂量计算算法一、 剂量计算算法的临床实现进程二、 剂量计算算法第八节 治疗计划系统的设计和体系结构一、 基本组成二、 单个治疗计划工作站系统三、 多工作站系统四、 辅助部件五、 第三方软件六、 治疗计划系统的发展七、 系统说明书二、 四、五、八 第四节TPS 中的图像和图像处理技术一、 放射治疗计划中使用的图像技术二、 图像处理第五节治疗计划设计过程体位固定治疗计划设计放射治疗计划评估治疗计划的验证治计划的执行调强放射治疗的TPS 剂量验证 二、 四、 五、 六、第九节治疗计划系统的验收一、验收内容二、与剂量无关的项目三、外照射野光子剂量计算四、电子线剂量计算五、后装治疗六、数据传输第十节治疗计划系统的质量保证一、系统文件和人员培训二、系统定期QA项目三、患者治疗计划检查第十四章放射治疗的质量保证QA和质量控制QC 第一节QA和QC的目的及重要性第二节放射治疗对剂量准确度的要求一、靶区剂量的确定二、对剂量准确度的要求三、影响剂量准确性的因素第三节外照射治疗物理质量保证内容一、外照射治疗机、模拟机和辅助设备二、等中心及指示装置三、照射野特性的检查四、剂量测量和控制系统五、治疗计划系统六、治疗安全第四节近距离治疗QA内容一、放射源二、污染检查三、遥控后装机QA四、治疗的质量控制第五节QA、QC的管理要求一、部门QA的主要内容二、国家QA的主要内容第十五章发展中的图像引导放射治疗第一节三维适形放射治疗第二节调强放射治疗第三节图像引导放射治疗一、放射治疗实施前影像二、治疗室内图像引导和投照三、图像引导放射治疗四、4维放射治疗第四节剂量引导放疗和循变放疗一、剂量引导放射治疗二、循变放射治疗第十六章放射防护第一节电离辐射的生物效应一、放射损伤机理二、放射生物效应的类型三、影响放射生物效应的主要因素四、辐射对组织、器官的损伤效应第二节放射防护目的与标准一、放射防护的目的二、放射防护应遵守的三项基本原则三、人工照射类型四、放射防护标准第三节外照射防护基本措施一、工作场所区域划分二、减少外照射剂量的三项措施第四节医用电离辐射防护一、医院的防护职责二、医疗照射的正当性判断三、医疗照射的防护最优化四、医疗照射的指导水平与剂量约束章名为小三宋体加粗节名为小四宋体加粗正文为五号宋体加粗一、加粗(一)加粗有必要时1.加粗有必要时(1)a.(a)数字为timenewman公式为(1-1)。
放射物理学ppt课件

间接致电离辐射在放射治疗中主要指X(γ)辐 射,X(γ)光子进入介质ቤተ መጻሕፍቲ ባይዱ经与介质相互作用 损失能量,分为两步。 如图(a)入射光子将其部分或全部能量转移给 介质而释放出次级电子; 其次如图(b)获得光子转移能量的大部分次级 电子再与介质原子中的电子作用,以使原子电离 或激发的形式损失其能量,即被介质所吸收;而 少数次级电子与介质原子的原子核作用,发生轫 致辐射产生X射线。
热释光材料的剂量响应与其受辐照和加热历史 有关,在使用前必须退火。如LiF在照射前要经 过1小时400℃高温和24小时80℃低温退火。它 的剂量响应,一般在10Gy以前呈线性变化,大 于10Gy则出现超线性现象。其灵敏度基本不依 赖于X(γ)射线光子的能量,但对于低于10MeV的 电子束,灵敏度下降5%~10%。热释光材料的 剂量响应依赖于许多条件,因此校准要在相同条 件,如同一读出器,近似相同的辐射质和剂量水 平下进行,经过严格校准和对热释光材料的精心 筛选,测量精度可达到95%~97%。
吸收剂量(Absorbed dose) 吸收剂量 Dd E dm 即电离辐射给予质量为dm的介质的平均授 予能。 单位为J/kg,专用名为戈瑞Gray(Gy)。 1 Gy=1 J/kg 1Gy=100cGy 拉德(rad), 1Gy=100 rad
比释动能(kinetic energy released per unit mass,Kerma) 比释动能 K dE tr dm 即不带电粒子在质量为dm的介质中释放的 全部带电粒子的初始动能之和。 K的单位为J/kg,专用名戈瑞(Gy)。
同体积的半导体探测器,要比空气电离室 的灵敏度高18000倍左右。这样的半导体 探头可以做得 非常小(0.3—0.7mm3),除 常规用于测量剂量梯 度比较大的区域, 如剂量建成区、半影区的剂量分布和用于 小野剂量分布的测量外,近十年来,半导 体探测器越来越被广泛用于患者治疗过程 中的剂量监测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高能电子束射野剂量学
高能电子束应用于肿瘤的放射治疗 始于上世纪50年代初期。
据估计约15%的患者在治疗过程中 要应用高能电子束。
计划设计要求在给予靶区足够剂量 的同时,必须注意保护正常器官。
加速器 偏转磁铁
钨靶
散射片
均整器
扩大和均匀射野
电子束治疗
X射线治疗
加速器治疗机产生的射线
(7)不规则射野输出剂量的计算,仍存在问 题。
基于高能电子束的上述特点,它主要用 于治疗表浅或偏心的肿瘤和浸润的淋巴结。
一、中心轴百分深度剂量曲线
1、百分深度剂量曲线的特点 图6-5示出了模体内电子束中心轴百分深
度剂量的基本特性及有关参数。
有关参数:
Ds:入射或表面剂量,以表面下0.5mm处的 剂量表示;
对采用散射箔系统的医用直线加速器, x射线污染水平随电子束能量的增加而增加。
2、百分深度剂量的 影响因素
(1)能量的影响
电子束百分深 度剂量分布随电子 束能量的改变有很 大变化。
基本特点是:由于电子束易于散射,所以 随着射线能量的增加,表面剂量增加,高剂量 坪区变宽,剂量梯度减小,X射线污染增加, 电子束的临床剂量学优点逐渐消失。
(3)源皮距 的影响
当源皮距不同时,一些主要参数的变化规律, 主要表现为:当限光筒至皮肤表面的距离增 加时,表面剂量降低,最大剂量深度变深, 剂量梯度变陡,X射线污染略有增加,而且 高能电子束较低能电子束变化显著。造成这 一现象的主要原因,是由于电子束有效源皮 距的影响和电子束的散射特性。由于电子束 百分深度剂量随源皮距变化的这一特点,要 求临床应用中,除非特殊需要,应保持源皮 距不变,否则要根据实际的临床使用条件, 具体测量百分深度剂量有关参数的变化。
(2)易于散射,皮肤剂量相对较高,且随电 子能量的增加而增加;
(3)随着电子束限光筒到患者皮肤距离的增 加,射野的剂量均匀性迅速变劣、半影增宽;
(4)百分深度剂量随射野大小特别在射野较 小时变化明显;
(5)不均匀组织对百分深度剂量影响显著;
(6)拉长源皮距照射时,输出剂量不能准确 按平方反比定律计算;(应考虑有效源皮距)
剂量趺落是临床使用高能电子束时极为重 要的一个概念。
用剂量梯度G表示:
记为,G=Rp/(Rp-Rq)
该值一般在2.0~2.5之间。
任何医用加速器产生的电子束都包含有 一定数量的X射线,从而表现为百分深度剂 量分布曲线后部有一长长的“拖尾”。
电子束在经过散射箔、监测电离室、x射 线准直器和电子限光筒装置时,与这些物质 相互作用,产生了X射线。
Dm:最大剂量点剂量; R100:最大剂量点深度; Dx:电子束中x射线剂量; Rt(R85):有效治疗深度,即治疗剂量规定
值(如85%Dm)处的深度;
R50:50%Dm或半峰值处的深度(HVD);
Rp:电子束的射程;
Rq:百分深度剂量曲线上,过剂量跌落最陡 点的切线与Dm水平线交点的深度。
高能电子束的百分深度剂量分布,大致 可分为四部分:
剂量建成区
高剂量坪区 剂量跌落区 x射线污染区
与高能x(γ)射线相比,高能电子束的剂量 建成效应不明显,表现为:
➢表面剂量高,一般都在75%~85% 以上,并随能量增加而增加;
➢随着深度的增加,百分深度剂量很 快达到最大点;
➢然后形成高剂量“坪区”。
这主要是由于电子束在其运动径迹上,很容 易被散射,使得单位截面上电子注量增加。
方法之二:利用电磁偏转原理展宽电子束。
可以减少或避免因电子束穿过散射箔时 产生的x射线污染,它采用类似电视光栅式扫 描或螺旋式扫描的方法,将窄束电子打散,从 而使电于束展宽。其特点是能谱窄,剂量跌落 的梯度更为陡峭,较低的x射线污染等。
第二节 电子束射野剂量学
高能电子束的特点:
(1)高能电子束具有有限的射程,可以有效 地避免对靶区后深部组织的照射。这是高能 电子束最重要的剂量学特点;
第一节 治疗电子束的产生
对于医用直线加速器,经加速和偏转后 引出的电子束,束流发散角很小,基本是单 能窄束,必须加以改造,才能用于临床。
改造方法主要有两种: 利用散射箔展宽电子束。 利用电磁偏转原理展宽电子束。
方法之一:利用散射箔展宽电子束
根据电子束易于散射的特点,将其射 束展宽。所用散射箔材料的原子序数和厚度, 要依据电子束能量选择。散射箔可以有效地 将电子束展宽到临床所需要的最大射野范围。 电子束通过散射箔展宽后,先经x射线治疗准 直器,再经电子束限光筒形成治疗用射野。
电子束能量愈低,电子束愈易于被散射, 散射角愈大,剂量建成更迅速,距离更短。表 面剂量相对于最大剂量点剂量的比值,低能电 子束要小于高能电子束。
这一现象的最简单解释,如图6-8所示。对 于相同入射的电子注量(cm-2),低能电子束的剂 量跌落要比高能电子束的更陡。
综上所述,为了充分发挥高能电子束的上 述特点,临床中应用的高能电子束,其能量应 在4~25 MeV范围。
(2)照射野的影响
低能时,因射程较短,射野对百分深度 剂量的影响较小;
对较高能量的电子束,因射程较长,使 用较小的照射野时,相当数量的电子被散射 出照射野,百分深度剂量随射野ቤተ መጻሕፍቲ ባይዱ变化较大。 当照射野增大时,较浅部位中心轴上电子的 散射损失被照射野边缘的散射电子补偿逐渐 达到平衡,百分深度剂量不再随射野的增加 而变化。一般条件下,当照射野的直径大于 电子束射程的二分之一时,百分深度剂量随 照射野增大而变化极微。
电子束经x射线准直 器及电子限光筒壁时, 也会产生散射电子,从 而改变电子束的角分布 并使其能谱变宽,从而 改善射野均匀性,使其 剂量建成区的剂量显著 增加,但随限光筒到表 面的距离的增加而影响 减少。
将单一散射箔改用为双散 射箔系统,可进一步改善电于 束的能谱和角分布。第一散射 箔的作用,是利用电子穿射时 的多重散射,将射束展宽;第 二散射箔类似于x射线系统中 的均整器,增加射野周边的散 射线,使整个射线束变得均匀 平坦。使用双散射箔系统,电 子束限光筒可不再使用单一散 射箔通常采用的封闭筒壁式结 构而改用边框式,此时边框式 限光筒仅起确定射野大小(几 何尺寸)的作用。