肿瘤放射物理学基础

合集下载

肿瘤放射治疗

肿瘤放射治疗

肿瘤放射治疗的目的:一、根治性放射治疗;二、姑息性放射治疗;三、综合治疗。

姑息性放疗分高度姑息和低度姑息两种。

前者是为了延长生命,经治疗后可能带瘤存活多年甚至正常工作。

后者主要是为了减轻痛苦,往往达不到延长生命的目的,用于消除或缓解压迫症状(如上腔静脉压迫症、脊髓压迫等)、梗阻(如食管癌)、出血(如宫颈癌出血)、骨转移性疼痛以及脑转移的定位症状等。

术前放疗:因此需掌握放疗与手术的间隔时间,一般以2---4周为宜。

辐射剂量以根治量的2/3左右(约40 ~50 Gy/ 4 ~5周)为好。

放射线的基本特性:一、物理效应:(一)穿透作用;(二)荧光作用;(三)电离作用;二、化学效应:(一)感光作用;(二)脱水作用;三、生物效应。

放射诊断学主要利用放射线的穿透性和使荧光物质产生荧光及使胶片感光的特性,而肿瘤放疗则主要利用放射线的穿透性和使生物细胞电离的特性。

X线是由特征辐射(作用于内层电子)和韧致辐射(作用于原子核)产生的。

光电效应:光子与被照射物质原子的内层电子相遇,并把能量全部传递给该电子,电子从轨道上飞出,外层电子向内补充,产生特征辐射。

这种现象称为“光电效应”,飞出的电子称为“光电子”,而该原子本身变为正离子。

康普顿效应:光子将其部分能量转移给外层电子,电子被击出,击出的电子称反冲电子或康普顿电子,光子本身以其残余能量向另一个方向运动。

这种现象称为康普顿效应。

电子对效应:当光子能量>1.02MeV,在其通过原子核附近是,收到原子核电场影响,突然消失而变成一个负电子和一个正电子组成的电子对。

这种现象称为电子对效应。

一般认为电离辐射对细胞杀伤的基本机制是破坏DNA,而细胞膜和微管等其他损伤是放射细胞毒作用的辅助机制。

(一)直接作用;(二)间接作用。

.低能时(单能50 kV以下——相当于X线管电压峰值150 keV)以光电效应为主,在单能10 kV时,骨吸收比肌肉吸收多6倍能量。

光子能量升高时,逐渐出现康普顿效应,在单能达60~90 kV(即管电压180 ~300 keV)时光电效应和康普顿效应同等重要。

第一节1放射肿瘤学

第一节1放射肿瘤学
主要功能 是:增强 机体免疫 力,与放 射治疗相 结合可以 降低放疗 反映。
第三章 X(γ)射线剂量学
第一节放射物理学有关名词 第二节X(γ)射线的深度剂量特性 第三节X射线束的修整 第四节照射野的处方剂量计算
第一节放射物理学有关名词、
(1)射线质:指的是射线能量,主要表示射线贯穿 物体的能力。
重粒子治疗
• 快中子、质子、 π负介子 以及氮、碳、氧、氖等 离子的质量较大称为重粒子。重粒子一般在回旋 加速器中产生。
• 重粒子的特点①布喇格峰型百分深度剂量分布以 质子束和氮离子束为代表,在组织内形成布喇格 峰型百分深度剂量分布,以物理方式改善了靶区 与正常组织间的剂量比例。用改变离子入射能量 或外加吸收体的方法可以调节布喇格峰值的位置 (即深度)和峰值区宽度,以适应不同大小肿瘤 治疗的需要。只用单一照射野就可能获得理想的 剂量分布,简化了照射野的设计,提高了肿瘤治 疗剂量的准确性。
第二节钴-60治疗机
钴-60γ射线平均能量为1.25MeV
治疗机种类有直立型和旋转型。
按放射性活度分为百居里治疗机和千居里治 疗机
特点:穿透力强、保护皮肤、骨和软组织有 同等的吸收剂量、旁向散射小并且经济可靠 , 但不治疗时也有射线,污染环境,时间越长 剂量率越低,降低工作效率。并需要定期换 源。
CT模拟机
CT模拟机系统组成: CT模拟机;多幅图像显示器; 视觉优化的治疗计划系统;激光射野投影器
完整的CT模拟由三部分组成:
①一台大视野的螺旋CT扫描机
②一套具有CT图像的三维重建、显示及射野模拟 功能的软件
③一套激光射野模拟器
临床应用特点:利用图象信息进行靶区精确定位, 将病人的基础数据传输给TPS。并能接受TPS设计 治疗计划来进行靶区复位和位置验证。

卫生专业技术资格中级肿瘤放射治疗学(基础知识)模拟试卷3(题后

卫生专业技术资格中级肿瘤放射治疗学(基础知识)模拟试卷3(题后

卫生专业技术资格中级肿瘤放射治疗学(基础知识)模拟试卷3(题后含答案及解析)题型有:1. A1型题1.下列关于电子线的射程的说法正确的是A.电子线的射程比α粒子小B.电子线的射程与α粒子相同C.电子线的射程大于其实际路径D.电子线的射程与其最大能量没有关系E.电子线的最大射程与其最大能量有一定关系正确答案:E 涉及知识点:放射治疗物理学基础2.如果测得某能量的高能电子束PDD曲线,则电子束的模体表面平均能量是A.2.33Rs MeVB.2.33R50 MeVC.2.33R80 MeVD.2.059Rs MeVE.2.059R50 MeV正确答案:B 涉及知识点:放射治疗物理学基础3.电子线的射程一般采用质量厚度为单位,其最大射程与其最大能量之间的关系一般为A.1MeV/cmB.2MeV/cmC.3MeV/cmD.4MeV/cmE.5MeV/cm正确答案:B解析:电子穿过物质时所走的路径十分曲折,因而路径长度大大超过射程。

对加速器产生的单能电子,由于统计涨落引起的歧离现象严重,射程难以准确确定。

射程的歧离可达射程值的10%~15%,所以一般采用电子线在物质中的最大射程来描述电子线的射程。

电子线的最大射程与电子的最大能量之间有一定关系,一般为每厘米2MeV。

射程一般采用质量厚度作为单位。

知识模块:放射治疗物理学基础4.放射性活度的国际单位制是A.伦琴B.居里C.毫克镭当量D.贝克勒尔E.希伏特正确答案:D 涉及知识点:放射治疗物理学基础5.居里(Ci)与贝克勒尔(Bq)之间的换算关系是1居里等于A.3.7×108贝克勒尔B.3.7×1012贝克勒尔C.3.7×109贝克勒尔D.3.7×1010贝克勒尔E.3.7×106贝克勒尔正确答案:D 涉及知识点:放射治疗物理学基础6.吸收剂量是A.电离辐射在靶区释放的全部动能B.电离辐射在靶区损失的能量C.电离辐射在空气中释放的全部动能D.电离辐射在水中释放的全部能量E.电离辐射给予单位质量物质的平均授予能正确答案:E 涉及知识点:放射治疗物理学基础7.用授予某一体积元内物质的辐射能量除以该体积内的物质的质量,得到的是A.吸收剂量B.照射量C.照射率D.吸收剂量率E.比释动能正确答案:A 涉及知识点:放射治疗物理学基础8.戈瑞(Gy)的国际单位为A.radB.C/kgC.J/kgD.J·kgE.Sv正确答案:C 涉及知识点:放射治疗物理学基础9.比释动能定义为A.电离粒子在介质中释放的初始动能之积B.电离粒子在介质中释放的带电粒子与不带电粒子的初始动能之差,C.电离粒子在介质中释放的带电粒子与不带电粒子的初始动能之商D.不带电电离粒子在介质中释放的全部带电粒子初始动能之和E.电离粒子在介质中释放的初始动能之和正确答案:D 涉及知识点:放射治疗物理学基础10.空气中某点的照射量定义为A.光子释放的次级电子被完全阻止时,产生的离子电荷量与单位质量空气的比值B.光子释放的次级电子被完全阻止时,产生的离子总电荷量与单位质量空气的比值C.光子释放的次级电子被完全阻止时,产生的同一种符号的离子总电荷量与单位质量空气的比值D.光子释放的所有次级电子被完全阻止时,产生的同一种符号的离子总电荷量与单位质量空气的比值E.光子释放的所有次级电子被完全阻止时,产生的同一种符号的离子总电荷量的绝对值与单位质量空气的比值正确答案:E 涉及知识点:放射治疗物理学基础11.照射量X的国际单位制是A.库仑(C)B.伦琴(R)C.戈瑞(Cy)D.C/kgE.拉德(rad)正确答案:D 涉及知识点:放射治疗物理学基础12.电子平衡指的是A.介质中某小区域的电子数目达到某种重量平衡B.介质中某小区域的电子逃不出该处从而使电子数目在一段时间内固定不变C.介质中某小区域入射的电子数目与逃出该处的电子数目相同D.介质中某小区域次级电子带走的人射光子贡献的能量与入射该区的次级电子带来的能量相等E.介质中电子数量达到某一数值,与另外一处数目相同正确答案:D解析:电子平衡是指某一小区域内由于电子活动,造成该区域内能量方面的平衡,是一种电子动态平衡。

肿瘤放射物理学

肿瘤放射物理学
放射治疗的目的 对肿瘤最大的杀伤和对正常组织的最少并发症
3、放射治疗的种类
3.1 按放射源与病变的距离分:
• 远距离照射:外照射
治疗时放射源位于人体外一定距离,集中照射人 体某一部位。其工具是深部X线机、60Co机、加速 器(X线治疗、电子线治疗、质子、中子、重粒子 治疗等)
• 近距离照射:内照射
立体定向适形放射治疗
• 立体定向适形放射治疗是一种精确的放射治疗 技术,在肿瘤靶体积受到高剂量照射的同时, 其肿瘤靶体积以外的正常组织则受到较低剂量 的照射。
CT扫描机激光 定位系统
模拟工作站
• 调强放射治疗
• 将加速器、钴-60机均匀输出剂量率的射野按预定 的靶区剂量分布的要求变成不均匀的输出的射野的 过程,实现这个过程的装置成为调强器或调强方式。
50年代:发明60Co放疗机(平均能量1.25 MV),开始 应用于临床治疗,疗效显著提高。
60~70年代:医用加速器产生,用高能X线和电子线 治疗肿瘤。并逐步取代X线治疗机和60Co放疗机。近距离 放疗逐步被减少使用。
60年代末:γ刀、X刀,开创了立体定向放疗技术。放 射物理、计算机和CT技术的高度发展,适形放射治疗、 调强放射治疗。
4、肿瘤放疗的历史
肿瘤放疗至今有100多年的历史。从1895年伦琴发现 X线,1896年居里夫妇发现镭后开始。
在放疗初期: 镭管、镭针近距离放疗。适用于位于浅 表的肿瘤,或自然腔道能进入部位的肿瘤,而且对体积较大 肿瘤的放射剂量分布不佳,最重要的缺点是对医护人员的 辐射量较大。
上世纪30年代:发明千伏X线治疗机,放射物理学和 放射生物学的研究有了重要发展。
1)X刀
• 以CT或MRI影像技术 为基础,采用三维立体 在人体内定位,X射线 能够准确的按照肿瘤的 生长形状照射,对治疗 靶区实施准确定位和聚 焦照射,靶点高剂量照 射同时,靶区周围且剂 量很低。适用范围广, 可以扩大照射到任何部 位,包括体部

肿瘤放射物理学基础

肿瘤放射物理学基础

基本措施
1.时间防护 尽量缩短受照时间 2.距离防护 增大与辐射源的距离 3.屏蔽防护 人与源之间设置防护屏障
能量和照射野的选择
常用能量 4~25Mev
能量与治疗深度的关系 E = 3d+2~3Mev
照射野 电子束射野≥靶区横径的1.18倍
近距离照射剂量学
剂量学特点 放射源周围的剂量分布按照与放射
源之间的距离的平方而下降,即平方反 比定律。 基本特征 肿瘤剂量 高而不均匀,而邻 近正常组织受量低
近距离治疗的主要特点
康普顿效应:
当光子与原子内
一个轨道电子发生相互 作用时,光子损失一部 分能量,并改变运动方 向,电子获得能量而脱 离原子,这种现象叫做 康普顿效应。在 0.03~25MeV的范围占 优势,骨和软组织的吸 收剂量相近
电子对效应:
入射光子能量 大于1.02MV时,光 子可以与原子核相 互作用,使入射光 子的全部能量转化 成为具有一定能量 的正电子和负电子 ,这就是电子对效 应。在25~100MeV 的范围占优势。
任何物质。
名词解释
放射源(S) 一般规定为放射源前表面 的中心,或产生辐射的靶面中心。
照射野 射线束经准直后垂直通过模体的 范围。
临床剂量学中规定模体内50%等剂量线 的延长线交于模体表面的区域定义为照射野 的大小
参考点 规定模体表面下射野中心轴 上某一点作为剂量计算或测量参考的点。 400kV以下X射线参考点取在模体表面,对 高能X(γ)射线参考点取在模体表面下射 野中心轴上最大剂量点位置
60Co治疗机
原理:利用放射性同位素60Co发射出的γ 射线治疗肿瘤,平均能量1.25MeV,与一 般深部X射线机相比有一下特点
特点:①能量较高,射线穿透力强;② 皮肤反应轻;③康普顿效应为主,骨吸 收类似于软组织吸收;④旁向散射少, 放射反应轻;⑤经济可靠,维修方便。

(肿瘤放射物理学课件)01.1肿瘤放射物理的概论

(肿瘤放射物理学课件)01.1肿瘤放射物理的概论
在一定深度(建成深度)以内,总吸收剂量随深度的增加而增加—建成区
(1)当高能的X(γ)射线入射到人体或模体时,在体表或皮下组织中产生高能次级电子; (2)高能次级电子要穿过一定的组织深度直至其能量耗尽后才停止; (3)由于前面两个原因,造成在最大电子射程范围内,由高能次级电子产生的吸收剂量随深度的增加
附一肿瘤科李英
二 常用放射线的物理特性
光子(X、 γ )射线与物质(肿瘤)的相互作用方式
(2)康普顿效应: 光子与外层电子相互作用,随着入射光子能量的
增加,光子将部分能量转移给电子,使电子快速前 进(反冲电子),而光子本身则以减低之能量,改变 方向,继续前进(散射光子) 。
特点:①与原子序数无关 ②主要发生在高能X线(0.2-7MeV) ③骨吸收≈肌肉≈脂肪
而增加,大约在电子最大射程附近达到最大; (4)但是由于高能X(γ)射线的强度随组织深度的增加而按指数和平方反比定律减少,造成产生的高
能次级电子随深度的增加而减少,其总效果,
附一肿瘤科李英
三 放射线的临床剂量学特性
临床剂量学的基本特征 百分深度剂量
高能电子线的PDD分布特点:
(1)剂量建成区:从表面到dmax深度区域,宽度随射线 能量增加而增宽。表面剂量高,建成效应不明显。
(1)光电效应: 入射光子作用于吸收物质的原子的内层电子,发生能量传
递,把内层电子打出来形成光电子,其能级上的空位由外层轨 道上的电子来填充,在电子能级跃迁的过程中产生光子特征辐 射。入射的光子的能量全部传递给了光电子,这一过程叫作光 电效应。
.
特点:①与原子序数Z3正比(内层电子发生) ②主要发生在低能量的X线 ③骨吸收>肌肉>脂肪
附一肿瘤科李英
附一院肿瘤科 李英 2017.2

《放射治疗物理学》讲义教案放射治疗物理学目录.doc

《放射治疗物理学》讲义教案放射治疗物理学目录.doc

放射治疗物理学目录第一章放射治疗物理基础第一节原子和原子核性质一、一些基本概念二、原子核的大小和质量三、原子核结合能四、原子核的自旋与磁矩五、原子核和核外电子的能级第二节射线与物质的相互作用一、基木粒子的种类和物理特性二、核的稳定性和衰变类型三、放射性度量和放射性核素衰减规律四、常见类型射线与物质的相互作用及定量表达第二章临床放射生物学概论第一节电离辐射对生物体的作用一、辐射生物效应的时间标尺二、电离辐射的直接作用和间接作用第二节电离辐射的细胞效应一、辐射诱导的DNA损伤及修复二、细胞死亡的概念三、细胞存活曲线四、细胞周期时相与放射敏感性五、氧效应及乏氧细胞的再氧合六、再群体化笫三节电离辐射对肿瘤组织的作用一、肿瘤的增殖动力学二、在体实验肿瘤的放射生物学研究中得到的一些结论第四节正常组织及器官的放射效应一、正常组织的结构组分二、早期和晚期放射反应的发生机制三、正常组织的体积效应第五节肿瘤放射治疗的基本原则一、照射范围应包括肿瘤二、要达到基本消灭肿瘤的目的三、保护邻近正常组织和器官四、保护全身情况及精神状态良好第六节提高肿瘤放射敏感性的措施一、放射源的选择二、利用时间-剂量-分割关系三、使肿瘤细胞再分布四、利用氧效应第七节肿瘤放射治疗中生物剂量等效换算的数学模型一、“生物剂量”的概念二、放射治疗屮生物剂量等效换算的数学模型三、外推反应剂量(ERD)概念第三章常用放射治疗设备第一节X线治疗机一、X线的发生二、X线机的一般结构三、X线质的改进四、X射线治疗机的改进第二节医用加速器一、概述二、医用电子直线加速器的加速原理三、医用电子直线加速器的结构四、质子放疗系统第三节远距离^Co治疗机一、叫20源的产生与衰变二、远距离治疗机的一般结构三、60Co治疗机种类四、60Co治疗机的半影种类五、垂直照射相邻照射野的设计六、60c°v射线的优缺点七、6°C0源更换八、Y刀第四节远距离控制的近距离治疗机一、H DR后装治疗设备的组成二、现代后装机具有的优点第五节理想放射源条件一、理想的剂量分布二、能杀灭乏氧细胞三、能杀灭非增殖期细胞(Go期)第六节模拟定位设备一、模拟定位机二、C T模拟定位机三、磁共振模拟机四、P ET-CT模拟机第七节体位固定装置一、一般的头颈部支持系统二、乳腺体位辅助托架三、热塑面网(罩)和体罩四、真空成形固定袋(真空袋)第八节放射治疗局域网络一、局域网络的配置二、放射治疗科网络的信息交换三、L ANTIS系统四、科室网络的安全维护第四章辐射剂量学的基本概念第一节辐射剂量学基本定义一、照射量二、比释动能三、吸收剂量四、有关辐射场的几个基本定义第二节各辐射量Z间的关系一、高能光子在介质中的能量转移和吸收二、电子平衡三、照射量和比释动能的关系四、比释动能和吸收剂量的关系五、吸收剂量和照射量的关系第三节空腔理论一、阻止本领二、阻止本领和吸收剂量的关系三、Bragg-Gray空腔理论四、Spencer-Attix 理论五、空腔理论住电离室剂量测量中的应用第五章射线的测量第一节电离室一、电离室基本原理二、指形电离室三、电离室的工作特性以、特殊电离室五、电离室测量吸收剂量的原理第二节热释光剂量计一、原理二、热释光剂量讣的种类三、热释光剂量计使用四、热释光剂量计的刻度第三节胶片剂量计一、原理二、应用第四节半导体剂量计一、原理二、Mapcheck半导体剂量仪第五节场效应管一、原理二、M OSFET探测器的特性第六节剂量的标定一、射线质的测定二、射线吸收剂量的标定第六章光子照射剂量学第一节原射线与散射线一、原射线二、散射线第二节平方反比定律第三节百分深度剂量一、照射野及有关名词定义二、百分深度剂量第四节射野输出因子和模体散射因子一、射野输出因子二、模体散射校正因子第五节组织空气比一、组织空气比定义二、源皮距对组织空气比的影响三、射线能量、组织深度和射野大小对组织空气比的彫响四、反向散射因子五、组织空气比与百分深度剂量的关系六、不同源皮距百分深度剂量的计算一一组织空气比法七、旋转治疗屮的剂量计算八、散射空气比第六节组织最大比一、组织模体比和组织最大剂量比二、散射最大剂量比第七节等剂量线一、等剂量线二、射野离轴比第八节组织等效材料一、组织替代材料二、组织替代材料间的转换三、模体四、剂量准确性要求第九节人体曲而和组织不均匀性的修正一、均匀模体和人体之间的差别二、人体曲面的校正第十节不均匀组织(骨、肺)校正一、射线衰减和散射的修正二、不均匀组织屮的吸收剂量三、组织补偿第十一节楔形野剂量学一、楔形野等剂量分布与楔形角二、楔形因子三、一楔合成四、楔形板临床应用方式及其计算公式五、动态楔形野第十二节不规则射野剂量学第十三节临床剂量计算一、处方剂量二、加速器剂量计算三、钻-60剂量计算四、离轴点剂量计算一一Day氏法第七章电子线照射剂量学第一节电子线中心轴深度剂量分布一、中心轴深度剂量曲线的基木特点二、有效源皮距及平方反比定律三、彫响电子线百分深度剂量的因素四、电子线的输出因子第二节电子线剂量学参数一、电子线的射程二、电子线能量参数三、电子线的离轴比四、电子线的均整度、对称性及半影五、电子线的等剂量线分布特点第三节电子线的一般照射技术一、电子线处方剂量ICRU参考点二、能量和照射野的选择三、射野形状及铅挡技术四、电子线的补偿技术五、电子线的斜入射修正六、电子线的组织不均匀修正和边缘效应七、电子线的射野衔接技术第四节电子线的特殊照射技术一、电子线旋转照射技术二、电子线全身皮肤照射三、电子线术中照射第八章近距离放射治疗剂量学第一节近距离放疗概述一、近距离放射治疗的设备和相关技术二、近距离放疗的常用核素第二节近距离放疗的剂量计算一、单个粒子源的剂量计算方法二、临床多粒子源植入的扰动影响三、组织异质情况下的剂量修正第三节近距离放疗的临床应用和剂量体系一、粒子源植入治疗的临床应用二、粒子源植入的临床剂量体系第九章中子近距离照射剂量学第一节钿中子与制中子相对生物学效应一、钢屮子二、^cf的相对生物效应(RBE)三、屮子近距离治疗的优势第二节钏中子治疗技术一、'叱彳中子后装治疗机(中子刀)简介二、中子刀适应症及禁忌症第三节钿中子治疗的剂量分布一、模体二、确定漩Cf中子束、Y射线吸收剂量分布的探测器三、确定^Cf中子、Y吸收剂量分布的理论方法第四节中子的防护一、中子后装机的辐射防护性能二、患者的辐射防护三、医护人员的辐射防护四、公众的辐射防护五、安全管理第十章临床常用技术和应用第一节挡块一、挡块的厚度二、低熔点铅技术三、挡块制作第二节组织补偿一、组织填充物二、组织补偿器三、电子束的补偿技术第三节多叶准直器一、多叶准直器的基本结构二、多叶准直器的安装位置第四节楔形野一、楔形板二、楔形角与楔形因子三、一楔合成四、动态楔形野第五节独立准直器第十一章临床常用放疗方案第一节放疗临床对剂量学的要求一、提高治疗比二、实现临床剂量学四原则第二节照射技术和射野设计原理一、体外照射技术的分类及其优缺点二、射线及其能量的合理选择三、高能X射线的射野设计原则四、相邻野设计五、不对称射野笫三节临床常见肿瘤放射治疗方案一、鼻咽癌常规照射野设计二、肺癌常规照射野设计三、食管癌常规照射野设计第十二章三维适形放射治疗及调强放射治疗第一节三维适形放疗的发展过程第二节3DCRT工作流程、计划工具一、体模制作二、计划CT扫描与数据传输三、轮廓勾画四、计划设计和评价五、计划验证六、三维适形放疗的临床应用第三节立体定向放射外科和立体定向放射治疗一、立体定向放射外科二、立体定向放射治疗笫以节调强放射治疗一、IMRT的工作流程和基本概念二、IMRT实施方法三、IMRT的优点四、IMRT的可能潜在问题五、IMRT的剂量验证第五节 调强放射治疗的临床应用举例一、 鼻咽癌的调强放射治疗二、 前列腺癌的调强放射治疗三、 肺癌的调强放射治疗第十三章治疗计划系统和治疗计划评估 第一节治疗计划系统概念和历史简介一、 治疗计划系统概念二、 治疗计划系统的发展历史三、 两维和三维治疗计划系统的比较 第二节治疗计划的剂量学原则及靶区剂量规定一、 肿瘤致死剂量与正常组织耐受剂量二、 临床剂量学四项原则 第三节外照射靶区剂量学规定治疗目的 参考点和坐标系 体积的定义 対剂量报告的一般性建议 剂量归一点 吸收剂量二、四、五、八、第六节近距离放射治疗剂量算法近距离治疗特点近距离治疗类型和放射源空间重建近距离主耍剂量计算方法192Ir 放射源的数学模型 近距离照射的剂量优化第七节外照射剂量计算算法一、 剂量计算算法的临床实现进程二、 剂量计算算法第八节 治疗计划系统的设计和体系结构一、 基本组成二、 单个治疗计划工作站系统三、 多工作站系统四、 辅助部件五、 第三方软件六、 治疗计划系统的发展七、 系统说明书二、 四、五、八 第四节TPS 中的图像和图像处理技术一、 放射治疗计划中使用的图像技术二、 图像处理第五节治疗计划设计过程体位固定治疗计划设计放射治疗计划评估治疗计划的验证治计划的执行调强放射治疗的TPS 剂量验证 二、 四、 五、 六、第九节治疗计划系统的验收一、验收内容二、与剂量无关的项目三、外照射野光子剂量计算四、电子线剂量计算五、后装治疗六、数据传输第十节治疗计划系统的质量保证一、系统文件和人员培训二、系统定期QA项目三、患者治疗计划检查第十四章放射治疗的质量保证QA和质量控制QC 第一节QA和QC的目的及重要性第二节放射治疗对剂量准确度的要求一、靶区剂量的确定二、对剂量准确度的要求三、影响剂量准确性的因素第三节外照射治疗物理质量保证内容一、外照射治疗机、模拟机和辅助设备二、等中心及指示装置三、照射野特性的检查四、剂量测量和控制系统五、治疗计划系统六、治疗安全第四节近距离治疗QA内容一、放射源二、污染检查三、遥控后装机QA四、治疗的质量控制第五节QA、QC的管理要求一、部门QA的主要内容二、国家QA的主要内容第十五章发展中的图像引导放射治疗第一节三维适形放射治疗第二节调强放射治疗第三节图像引导放射治疗一、放射治疗实施前影像二、治疗室内图像引导和投照三、图像引导放射治疗四、4维放射治疗第四节剂量引导放疗和循变放疗一、剂量引导放射治疗二、循变放射治疗第十六章放射防护第一节电离辐射的生物效应一、放射损伤机理二、放射生物效应的类型三、影响放射生物效应的主要因素四、辐射对组织、器官的损伤效应第二节放射防护目的与标准一、放射防护的目的二、放射防护应遵守的三项基本原则三、人工照射类型四、放射防护标准第三节外照射防护基本措施一、工作场所区域划分二、减少外照射剂量的三项措施第四节医用电离辐射防护一、医院的防护职责二、医疗照射的正当性判断三、医疗照射的防护最优化四、医疗照射的指导水平与剂量约束章名为小三宋体加粗节名为小四宋体加粗正文为五号宋体加粗一、加粗(一)加粗有必要时1.加粗有必要时(1)a.(a)数字为timenewman公式为(1-1)。

放射物理学基础一(ppt)

放射物理学基础一(ppt)
内或人体天然腔内进行照射.
优点
可获得准确照射. 工作人员隔室操作,比较安全. 放射源微型化. 高活度放射源形成高剂量率治疗. Hale Waihona Puke 微机控制.放射治疗物理学基础
➢ 近距离后装治疗机
组成:①放射源 ②施源器 ③源室及放射源驱动元 ④治疗计划系统
放射治疗物理学基础
➢ 体内照射与体外照射的区别
放射源强度
放射治疗物理学基础
➢钴 - 60 治 疗 机
结构:①放射源
②源客器及防护机头
③遮线照装置
④准直器
⑤支持系统及其附属电子设备
钴-60γ线的特点:
与深部x线机(200~400kv)相比的优点: ①穿透力强 ②保护皮肤 ③骨和软组织有同等的吸收剂量 ④旁向散射小 ⑤经济可靠
钴 - 60 半 影 问 题
放射治疗物理学基础
三种常见体外照射设备的特点比较
能量 穿透力 皮肤剂量 骨吸收剂量 旁向散射 经济、维修
照射野 防护
X线机
低 弱 高 高 大 价格低 维护方便 小 容易
6 0CO远距离治疗机
高,单能 较强
低 和软组织相同
较小 价格较低 维护方便
中等 定期换源 防护难
直线加速器
高,可调 强 低
和软组织基本相同 小
几何半影 穿射半影 散射半影
放射治疗物理学基础
➢ 加速器
X线和电子束的产生
电源
脉冲调制器
电子枪 磁控管
加速管
偏转磁铁 电子束 打靶 高能X线
放射治疗物理学基础
➢ 加速器
分类 电子感应加速器 电子直线加速器 电子回旋加速器
放射治疗物理学基础
➢ 电子直线加速器的特点
能量高,可调控,剂量率高. 穿透力强. 皮肤剂量低:6MvX最大剂量点在皮下1.5cm. 骨和软组织吸收基本相等. 旁向散射小. 价格昂贵. 维护难,对水、电、湿度要求高. 射野可以较大,可达40×40cm.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最佳靶区剂量

定义:使肿瘤得到最大的控制而不产生 正常组织并发症的剂量。
外照射靶区剂量规定
定义
肿瘤区(GTV) 为一般的诊断手段 (CT,MRI)能够确诊出的可见的具有一 定形状和大小的恶性病变的范围。 临床靶区(CTV) 指按一定时间剂量 模式给予一定剂量的肿瘤的临床灶亚临床 灶以及肿瘤可能侵犯的范围。
心脏 V40≤40~50% 肝脏 (60%体积)≤30Gy 骨髓 ≤45Gy 脑干 ≤54Gy
治疗计划的评价
DVH图 在DVH图上认定靶区剂量涵盖度、剂量均匀性
等剂量曲线图
可以清楚地显示高、低剂量区的空间位置
39%
31%
8%
放射防护常识
基本原则
1.放射实践的正当化
任何伴有电离辐射的实践所获得的利益必须大于所付出 的代价。 2.放射防护的最优化 任何电离辐射的实践,应当避免不必要的照射。在谋求 最优化时,应以最小的防护代价,获取最佳的防护效果, 不能追求无限地降低剂量。 3.个人剂量限值 所有实践带来的个人受照剂量必须低于当量剂量限值标准。
2、X射线直线加速器
直线加速器是通过高能电子线打靶产生X射线, 主要用到的能量有6MV、8MV和10MV。
3、电子、质子及其他重粒子加速器 一般用到的电子线能量为4~25Mev,重粒子一
般在回旋加速器中产生。
电离
电离:原子的核外电子与外界相互作用 获得足够的能量,挣脱原子核对它的束 缚,造成原子的电离。 直接电离:由带点粒子通过碰撞直接引 起的物质的原子或分子的电离称为直接 电离。 间接电离:不带电粒子通过它们与物质 相互作用产生 的次级带电粒子引起的原 子电离称为间接电离。

模拟定位机
X线模拟定位机是用来模拟加速器或60Co 治疗机机械性能的专用X线诊断机。 作用:模拟各类治疗机实施治疗时的照 射部位及范围,进行治疗前定位。

CT

模拟定位机
肿瘤的正确定位 提供照射野的剂量分布 产生数字模拟影像 帮助设计合适的照射野 在病人皮肤上标记等中心点
基本照射方式


X = dQ / dm
单位:库仑/千克 (C/kg)。原用单位是伦琴(R) 1R = 2.58×10-4 C/kg 照射量是用以衡量光子辐射致空气电离程度 的一个量,不能用于其他类型辐射和其他物质。
吸收剂量(D)





吸收剂量是单位质量物质吸收电离辐射的平均 能量。即电离辐射给予质量为dm介质的平均能 量dE。 D = dE / dm 单位:焦耳/千克 (J/kg)。 专用名 Gray(Gy),1 Gy = 1 J/kg=100cGy; 原用单位rad,1rad = 1cGy 吸收剂量使用与任何类型和任何能量的电 离辐射,以及适用于任何受照物质。
参考点 规定模体表面下射野中心轴 上某一点作为剂量计算或测量参考的点。 400kV以下X射线参考点取在模体表面,对 高能X(γ)射线参考点取在模体表面下射 野中心轴上最大剂量点位置 源皮距(SSD)放射源到模体表面的 射野中心处距离 源瘤距(STD)放射源到肿瘤内所考 虑点的距离 源轴距(SAD)放射源到机器等中心 的距离
比释动能(K)
比释动能是不带电电离粒子在质量为dm的物质 中所释放的所有带电粒子的初始功能之和。 K=dEtr/dm 单位:焦耳/千克 (J/kg)。 专用名 Gray(Gy),1 Gy = 1 J/kg; 比释动能只适用于间接致电离辐射,适用于 任何物质。

名词解释
放射源(S) 一般规定为放射源前表面 的中心,或产生辐射的靶面中心。 照射野 射线束经准直后垂直通过模体的 范围。 临床剂量学中规定模体内50%等剂量线 的延长线交于模体表面的区域定义为照射野 的大小
ICRU 规定的区域定义图
照射区(IV) 肿瘤区(GTV) 临床靶区(CTV) 内靶区(ITV)
治疗区(TV)
计划靶区(PTV)
肿瘤致死剂量
肿瘤致死剂量 TCD95:是达到 95%的肿瘤控制 率所需要的剂量。
正常组织的耐受剂量
串行组织:串行组织的放射性并发症概率 主要决定于最大剂量,如脊髓、神经、小肠等。 并行组织:并行组织的放射性并发症概率 主要受照射体积和平均剂量的影响,如肺、肝、 肾等。 肺剂量 双肺V20≤28% 双肺V30≤20%
射线与物质的相互作用
光电效应:
能量为hv光子与物 质原子的轨道电子发生 相互作用,把全部能量 传递给对方,光子消失, 获得能量的电子挣脱原 子束缚成为自由电子, 这种现象叫做光电效应。 (光电效应在10~30keV的 范围占优势,骨吸收高 于肌肉和脂肪)

康普顿效应:
当光子与原子内 一个轨道电子发生相互 作用时,光子损失一部 分能量,并改变运动方 向,电子获得能量而脱 离原子,这种现象叫做 康普顿效应。在 0.03~25MeV的范围占 优势,骨和软组织的吸 收剂量相近
建成区
从表面到最大剂量深度区域称为剂量 建成区。钴-60、6MV、8MV和10MV建成深
度一般为0.5cm、1.5cm、2cm和2.5cm。
百分深度剂量曲线
等剂量曲线
将体模内百分深度剂量相同的点用线连 接起来,即成等剂量曲线
高能电子束射野剂量学
高能电子线的百分深度剂量分布大致为四 部分:剂量建成区,高剂量坪区,剂量跌落区 和X射线污染区。
肿瘤放射物理学基础
主要内容
一、放射源的种类 二、常用放疗设备及照射方式 三、射线与物质的相互作用 四、放射物理学有关名词及概念 五、常用射线剂量学特点 六、治疗计划评价 七、放射防护常识
放射源的种类
1、放射性同位素
放疗中主要用产生α、β、γ射线的放射性同位 素, 用γ射线居多,如钴-60、铱-192等。
近距离照射剂量学
剂量学特点 放射源周围的剂量分布按照与放射 源之间的距离的平方而下降,即平方反 比定律。 基本特征 肿瘤剂量 高而不均匀,而邻 近正常组织受量低
近距离治疗的主要特点
根据距离平方反比定律:射线到达介质的 强度与照射距离成平方反比关系。即距放 射源较近处受照剂量高,随距放射源距离 的增加,剂量迅速跌落。 可对正常组织进行保护,但亦造成靶区剂 量分布的不均匀。 内照射不能单独应用于临床,一般作为外 照射的补充。
内靶区(ITV)由于呼吸和器官运动引起 的CTV外边界运动的范围。
计划靶区(PTV)考虑到照射中 由于呼吸 、器官运动及疗程中肿瘤缩 小等并且考虑到每次摆位误差等因素 而扩大照射范围。 治疗区(TV) 通常用90%的等剂量 线的范围作为治疗区。 照射区(IV)50%等剂量曲线所 包括的范围。 危机器官(OAR)指可能卷入射 野内的重要组织或器官。
等效方野
物理意义 如果使用的不规则野在射野中心轴处的百分 深度剂量与某一方形野中心轴处剂量相等,则该 方野为该不规则射野的等效方野。 计算方法—面积/周长比法 长方形:
ቤተ መጻሕፍቲ ባይዱ

S=2ab/(a+b)
组织补偿
为了改善人体弯曲表面对剂量分布均匀 性的影响,需外加组织补偿使剂量分布均匀。
1、组织填充物
材料:用组织替代材料制成,如薄膜塑 料、水袋、石蜡等。 位置:填充物一般放在皮肤表面

射线特点
1.带点粒子可直接致电离辐射 2.不带电粒子只能间接致电离辐射 3.带电粒子均有有效射程
射线质的表示
射线质:即射线能量,表示射线穿射物质的本领。 中低能X射线:通常用半价层表示。
半价层 (HVL):为使X(r)射线光子的强度减低 一半时所需要的某种材料吸收体的厚度。
高能X射线:通常用电子的标称加速电位表示, 单位为百万伏,兆伏 (MV) 如 6MV-X 线。 放射线同位素:通常用核素名+辐射类型表示, 如60Coγ射线。

内照射和外照射的区别
1、内照射的放射源活度较小,治疗距离短 2、外照射射线的利用率低 3、外照射肿瘤剂量受正常组织耐受量的限 制,一般采用多野照射 4、内照射靶区剂量均匀性较外照射差
质子束的剂量学特点
质子束百分深度剂量曲线
特点: 1、能量反比与质子运动速度的 平方,在射程末端形成典型的布喇 格峰。 2、有效的保护了峰值前后的正 常组织。 3、具有较高的传能线密度和相 对生物效应与较低的氧增强效应。

外照射
位于体外一定距离集中照射人体的某一部位, 叫体外远距离照射,简称外照射。

内照射
将放射源密封直接放入被治疗的组织内或放 入人体的天然腔内进行照射,叫近距离照射,简 称内照射。
外照射技术分类
1、固定源皮距(SSD)照射 2、等中心定角(SAD)照射 3、旋转(ROT)照射
内照射的分类
1、腔内照射 2、组织间插植照射 3、管内照射 4、表面施源器照射
基本措施
1.时间防护 尽量缩短受照时间 2.距离防护 增大与辐射源的距离 3.屏蔽防护 人与源之间设置防护屏障
2、组织补偿器
材料:铜、铝、铅等来代替(如楔形板) 位置:必须远离皮肤,一般为15cm以上
临床剂量学原则
放疗 ‘临床四原则’: (1)最大:靶区剂量在一定范围内最大 (2)最小:靶区周围正常组织受量最小 (3)最准:靶区的定位和照射最准确 (4)最匀:靶区内的剂量分布最均匀 靶区内剂量变化不超过+ 5%
常用放疗设备
60Co治疗机 医用直线加速器
模拟定位机
CT
模拟定位机 近距离后装治疗机 其他
60Co治疗机
原理:利用放射性同位素60Co发射出的 γ射线治疗肿瘤,平均能量1.25MeV,与 一般深部X射线机相比有一下特点 特点:①能量较高,射线穿透力强;② 皮肤反应轻;③康普顿效应为主,骨吸 收类似于软组织吸收;④旁向散射少, 放射反应轻;⑤经济可靠,维修方便。 缺点:需定时换源;环境污染
相关文档
最新文档