肿瘤放射物理学基础 ppt
合集下载
肿瘤放射物理 第一讲

2, 6
18
N
4s, 3d, 4p
2, 10, 6
36
O
5s, 4d, 5p
2, 10, 6
54
P
6s, 4f, 5d, 6p 2, 14, 10, 6 86
Q
7s, 5f, 6d, … 2, 14, 10, …
原子能级和特征辐射
原子核壳层结构和能级
在原子核内部也存在类似 核外电子的壳层结构和能 级。每个壳层也只能容纳 一定数量的质子和中子。 核子填充壳层的顺序也遵 从从低能级到高能级的顺 序。
原子的基本表述
❖
一个原子的基本表述可以用符号
A Z
X表示,其
中 X是元素符号, Z是原子序数, 是A 原子的质
量数
2670Co
228 88
Ra
核外电子的运动状态
❖运动状态由主量子数n,轨道角动量量子 数l,轨道方向量子数ml 和自旋量子数ms 决定。n取值依次为1,2,…,7;对每一个n, l可以取0,1,…,(n-1);对每一个l,ml可以取 -l,-l+1,…,l-1,l;对每一个ml,ms可以取-
1e 1.602192 1019C
1 eV=1.0x10-3 KeV=1.0x10-6 MeV=1.602192x10-19 J
质量和能量的转换关系
质量和能量是物质的基本属性。根据相对 论,这两个属性是相互联系的。具有一定 质量的物体具有相应的能量,当它的质量 发生了变化,则其能量也发生相应变化。
质量(m) 千克 (kg) 时间(t) 秒 (s) 电流(I) 安培 (A)
温度 开尔文 (K) 物质的量 摩尔 (mol) 发光强度 坎德拉 (cd)
原子结构
肿瘤放射治疗PPT课件【可编辑全文】

放射生物学
37
细胞照射后的存活曲线-氧效应
38
正常组织和肿瘤细胞在分次照射 中的4个变化(4R)
肿瘤细胞放射损伤的修复(Repair)
致死性损伤
亚致死性损伤
潜在致死性损伤
肿瘤细胞的再增殖(Regeneration)
残存细胞加速再增殖、G0期细胞进入增殖周期
细胞周期再分布(Redistribution) G2
电
离
辐
电子
射
中子
粒子辐射
质子
加 速
器
负π介子
重粒子LETຫໍສະໝຸດ LET远距离治疗 低
近距离治疗
射 线
高
远距离治疗
射 线
11
放射物理学及放疗设备
1. 电离辐射与物质作用 2. 放射源与放射治疗设备 3. 放射剂量单位 4. 放射治疗剂量学四原则
12
一.电离辐射和物质作用
能够使物质发生电离的射线称为电离辐射线 电离是射线引起物质物理、化学变化及生物效 应的主要机制。 带电粒子辐射: α粒子、β粒子等 非带电粒子辐射:X射线、 γ射线、中子等
疗程时间 影响大
影响大
影响小
总剂量
影响大
影响大
影响大
放疗原则:以较小的分割剂量、在尽可能短的总疗
程内给予一定的总剂量。
照射(重要器官的保护)
Cancer Center 26 SUMS
三 高能电子束临床剂量学特点
射程深度与能量成正比; 一定深度内剂量分布较 均匀,超过一定深度后 剂量迅速下降; 骨、脂肪、肌肉对电子 线吸收差别不显著; 可用单野作浅表或偏心 部位肿瘤的照射。
电子束深度剂量曲线
放射物理学
27
37
细胞照射后的存活曲线-氧效应
38
正常组织和肿瘤细胞在分次照射 中的4个变化(4R)
肿瘤细胞放射损伤的修复(Repair)
致死性损伤
亚致死性损伤
潜在致死性损伤
肿瘤细胞的再增殖(Regeneration)
残存细胞加速再增殖、G0期细胞进入增殖周期
细胞周期再分布(Redistribution) G2
电
离
辐
电子
射
中子
粒子辐射
质子
加 速
器
负π介子
重粒子LETຫໍສະໝຸດ LET远距离治疗 低
近距离治疗
射 线
高
远距离治疗
射 线
11
放射物理学及放疗设备
1. 电离辐射与物质作用 2. 放射源与放射治疗设备 3. 放射剂量单位 4. 放射治疗剂量学四原则
12
一.电离辐射和物质作用
能够使物质发生电离的射线称为电离辐射线 电离是射线引起物质物理、化学变化及生物效 应的主要机制。 带电粒子辐射: α粒子、β粒子等 非带电粒子辐射:X射线、 γ射线、中子等
疗程时间 影响大
影响大
影响小
总剂量
影响大
影响大
影响大
放疗原则:以较小的分割剂量、在尽可能短的总疗
程内给予一定的总剂量。
照射(重要器官的保护)
Cancer Center 26 SUMS
三 高能电子束临床剂量学特点
射程深度与能量成正比; 一定深度内剂量分布较 均匀,超过一定深度后 剂量迅速下降; 骨、脂肪、肌肉对电子 线吸收差别不显著; 可用单野作浅表或偏心 部位肿瘤的照射。
电子束深度剂量曲线
放射物理学
27
放射物理学基础ppt课件

7
模拟定位机
• X线模拟定位机:是用来模拟加速器或60Co治 疗机机械性能的专用X线诊断机。
• 作用:模拟各类治疗机实施治疗时的照射部位 及范围,进行治疗前定位。
• CT模拟机:是利用CT获取患者图像并进行三 维重建,同时将图像传给放射治疗计划系统, 进而对肿瘤实现精确定位的专用CT机。
8
近距离后装治疗机
• 现代后装治疗机主要包括:治疗计划系 统和治疗系统。
• 现代近距离治疗的特点: • 放射源微型化,程控步进电机驱动; • 高活度放射源形成高剂量率治疗; • 微机计划设计。
9
*辐射源种类和照射方式 辐射源种类
1.放射性同位素放出的α、β、γ射线 2.X 线治疗机和各类加速器产生的不同 能量的 X 线 3.各类加速器产生的电子束、质子束、 中子束、负π介子束以及其他重粒子束。
14
康普顿效应:
• 随着入射光子能量
的增加 ( 200kV-2
MV),光子与轨道
上电子相撞,光子
将部分能量转移给
电子,使电子快速
前进(反冲电子),
而光子本身则以减
低之能量,改变方
向,继续前进(散射
光子),这种现象叫
做康普顿效应。
15
电子对效应:
• 入射光子能量大 于1.02MV时, 光子可以与原子 核相互作用,使 入射光子的全部 能量转化成为具 有一定能量的正 电子和负电子, 这就是电子对效 应。
如60Coγ射线。
21
• *半价层 (Half Value layer,HVL):是指置 于X射线束通过的路径上,使其照射量减少 一半所需某种物质的厚度。
• *照射野:射线束经准直器后垂直通过模体 的范围,用模体表面的截面大小表示照射野 的面积。临床剂量学规定,模体内50%同等 剂量曲线的延长线交于模体表面的区域定义 为照射野的大小。
模拟定位机
• X线模拟定位机:是用来模拟加速器或60Co治 疗机机械性能的专用X线诊断机。
• 作用:模拟各类治疗机实施治疗时的照射部位 及范围,进行治疗前定位。
• CT模拟机:是利用CT获取患者图像并进行三 维重建,同时将图像传给放射治疗计划系统, 进而对肿瘤实现精确定位的专用CT机。
8
近距离后装治疗机
• 现代后装治疗机主要包括:治疗计划系 统和治疗系统。
• 现代近距离治疗的特点: • 放射源微型化,程控步进电机驱动; • 高活度放射源形成高剂量率治疗; • 微机计划设计。
9
*辐射源种类和照射方式 辐射源种类
1.放射性同位素放出的α、β、γ射线 2.X 线治疗机和各类加速器产生的不同 能量的 X 线 3.各类加速器产生的电子束、质子束、 中子束、负π介子束以及其他重粒子束。
14
康普顿效应:
• 随着入射光子能量
的增加 ( 200kV-2
MV),光子与轨道
上电子相撞,光子
将部分能量转移给
电子,使电子快速
前进(反冲电子),
而光子本身则以减
低之能量,改变方
向,继续前进(散射
光子),这种现象叫
做康普顿效应。
15
电子对效应:
• 入射光子能量大 于1.02MV时, 光子可以与原子 核相互作用,使 入射光子的全部 能量转化成为具 有一定能量的正 电子和负电子, 这就是电子对效 应。
如60Coγ射线。
21
• *半价层 (Half Value layer,HVL):是指置 于X射线束通过的路径上,使其照射量减少 一半所需某种物质的厚度。
• *照射野:射线束经准直器后垂直通过模体 的范围,用模体表面的截面大小表示照射野 的面积。临床剂量学规定,模体内50%同等 剂量曲线的延长线交于模体表面的区域定义 为照射野的大小。
肿瘤放射治疗学基础知识培训课件

物 理 手 段
3/10/2021
放射治疗
生 物 效 应
肿瘤放射治疗学基 础知识
1
粒子射线
电子线(线) 粒子 中子 负π介子 质子
线性能量传递(LET)
单位轨迹上能量传递的水平
低LET射线: X射线 (<10kev/μm) 射线
电子线
光子射线
X 射线 射线
3/10/2021
高LET射线: 中子
(≥10kev/μm) 粒子
3/10/2021
肿瘤放射治疗学基 础知识
14
再氧合
• 乏氧细胞的放射敏感性
氧浓度
较富氧细胞低2.5-3倍
• 分次放射治疗后,富氧
细胞杀灭,乏氧细胞再
血
充氧,放射敏感性增加
管
3/10/2021
肿瘤放射治疗学基 础知识
富氧
坏死 乏氧
15
再增殖(再群体化)
• 在肿瘤体积不断消退的同时,残存的10%存活克隆源性细胞 已在快速成长。
•靶受到放射损伤后将直接或间接引起细胞死亡
•“单击单靶杀灭”:假设单次打击细胞内的单个关
键靶点即可引起细胞的死亡(又称为α型细胞死亡
)
•“单击多靶杀灭” :假设细胞内有n个靶, 只有把
n个靶全部打中,
3/10/2021
细肿胞瘤才放础射会知治死识疗亡学(基又称β型23细胞死亡)
3/10/2021
肿瘤放射治疗学基 础知识
19
放射敏感性的分类
• 高度敏感:精原细胞瘤、白血病、恶性淋 巴瘤
• 中度敏感:基底细胞癌、鳞状细胞癌、非 小细胞肺癌
• 低度敏感:大部分脑瘤、软组织肿瘤、骨 肉瘤及恶性黑色素瘤
3/10/2021
3/10/2021
放射治疗
生 物 效 应
肿瘤放射治疗学基 础知识
1
粒子射线
电子线(线) 粒子 中子 负π介子 质子
线性能量传递(LET)
单位轨迹上能量传递的水平
低LET射线: X射线 (<10kev/μm) 射线
电子线
光子射线
X 射线 射线
3/10/2021
高LET射线: 中子
(≥10kev/μm) 粒子
3/10/2021
肿瘤放射治疗学基 础知识
14
再氧合
• 乏氧细胞的放射敏感性
氧浓度
较富氧细胞低2.5-3倍
• 分次放射治疗后,富氧
细胞杀灭,乏氧细胞再
血
充氧,放射敏感性增加
管
3/10/2021
肿瘤放射治疗学基 础知识
富氧
坏死 乏氧
15
再增殖(再群体化)
• 在肿瘤体积不断消退的同时,残存的10%存活克隆源性细胞 已在快速成长。
•靶受到放射损伤后将直接或间接引起细胞死亡
•“单击单靶杀灭”:假设单次打击细胞内的单个关
键靶点即可引起细胞的死亡(又称为α型细胞死亡
)
•“单击多靶杀灭” :假设细胞内有n个靶, 只有把
n个靶全部打中,
3/10/2021
细肿胞瘤才放础射会知治死识疗亡学(基又称β型23细胞死亡)
3/10/2021
肿瘤放射治疗学基 础知识
19
放射敏感性的分类
• 高度敏感:精原细胞瘤、白血病、恶性淋 巴瘤
• 中度敏感:基底细胞癌、鳞状细胞癌、非 小细胞肺癌
• 低度敏感:大部分脑瘤、软组织肿瘤、骨 肉瘤及恶性黑色素瘤
3/10/2021
放射治疗技术物理学基础PPT课件

第7页/共43页
(一)穿透作用
X射线透视和摄影的物理基础
第8页/共43页
(二)电离作用
X射线损伤和治疗的物理基础
第9页/共43页
(三)荧光作用
X射线透视的物理基础
第10页/共43页
常用的放射线: 1、高能X射线 2、Co60γ射线 3、高能电子线 4、质子射线 5、中子射线
第11页/共43页
(一)穿透力强
第12页/共43页
(二)保护皮肤
•剂量建成效应:百分深度剂量在体模内 存在吸收剂量最大值,这种现象称之为 剂量建成效应 。
第13页/共43页
(三)骨和软组织具有同等吸收
第14页/共43页
•(四)旁向散射小 •(五)经济、可靠 •(六)缺点:
• 1、能量单一 • 2、深度剂量偏低 • 3、半衰期短,需定期更换放射源 • 4、放射性核素不断有射线释放,防护复杂,工作人员受量相对较大 • 5、存在半影问题,使野外的正常组织受一定的剂量影响
临床处方剂量的计算
1MU=1cGy
• 戈瑞(符号:Gy):是用于衡量由电离辐射导 致的能量吸收剂量(简称吸收剂量)的物理单 位,它描述了单位质量物体吸收电离辐射能量 的大小。一戈瑞﹙1 Gy﹚表示每公斤物质吸收 了一焦耳的辐射能量。
第40页/共43页
• 高能X射线的作用 (透视、摄影、损伤、治疗) • 高能电子线的作用 (表浅、偏心、淋巴结) • 临床剂量学四原则 (准、均、高、低) • 高能X射线百分深度剂量的影响因素 (射线的质、射野面积、源皮距) • 电子线的最大特性 (易于散射)
第30页/共43页
• 1、放射线的临床剂量学原则 • 2、高能X射线的百分深度剂量及影响
因素 • 3、60钴γ射线的百分深度剂量及影响
(一)穿透作用
X射线透视和摄影的物理基础
第8页/共43页
(二)电离作用
X射线损伤和治疗的物理基础
第9页/共43页
(三)荧光作用
X射线透视的物理基础
第10页/共43页
常用的放射线: 1、高能X射线 2、Co60γ射线 3、高能电子线 4、质子射线 5、中子射线
第11页/共43页
(一)穿透力强
第12页/共43页
(二)保护皮肤
•剂量建成效应:百分深度剂量在体模内 存在吸收剂量最大值,这种现象称之为 剂量建成效应 。
第13页/共43页
(三)骨和软组织具有同等吸收
第14页/共43页
•(四)旁向散射小 •(五)经济、可靠 •(六)缺点:
• 1、能量单一 • 2、深度剂量偏低 • 3、半衰期短,需定期更换放射源 • 4、放射性核素不断有射线释放,防护复杂,工作人员受量相对较大 • 5、存在半影问题,使野外的正常组织受一定的剂量影响
临床处方剂量的计算
1MU=1cGy
• 戈瑞(符号:Gy):是用于衡量由电离辐射导 致的能量吸收剂量(简称吸收剂量)的物理单 位,它描述了单位质量物体吸收电离辐射能量 的大小。一戈瑞﹙1 Gy﹚表示每公斤物质吸收 了一焦耳的辐射能量。
第40页/共43页
• 高能X射线的作用 (透视、摄影、损伤、治疗) • 高能电子线的作用 (表浅、偏心、淋巴结) • 临床剂量学四原则 (准、均、高、低) • 高能X射线百分深度剂量的影响因素 (射线的质、射野面积、源皮距) • 电子线的最大特性 (易于散射)
第30页/共43页
• 1、放射线的临床剂量学原则 • 2、高能X射线的百分深度剂量及影响
因素 • 3、60钴γ射线的百分深度剂量及影响
放射肿瘤学基础--ppt课件可修改全文

• 将受不同剂量原位照射的肿瘤细胞注入 受体动物后所形成的肺集落数与0剂量照 射形成的肺集落数相比,可求出各照射 剂量下的存活分数,并绘制出肿瘤细胞 经体内照射后的剂量存活曲线。
ppt课件
8
5、体内-体外测定技术
• 采用体外集落形成方法,测定体内照射 后肿瘤细胞存活率的方法。
• 方法:将受不同剂量体内局部照射的肿 瘤取出,分别制备单细胞悬液,将一定 数量的细胞种入培养皿中,在离体条件 下培养10~14天后,存活细胞可形成集 落,计数集落,计算出存活的肿瘤细胞 数,与0剂量下存活的肿瘤细胞数相比,
ppt课件
44
二、与化学药物治疗联合应用
• 1、细胞对化疗药物和电离辐射反应 的比较
• 敏感性不同 • 细胞的SLD和PLD不同 • 氧效应不同 • 抗拒性不同
ppt课件
45
二、与化学药物治疗联合应用
• 2、与化学药物联合应用的理论基础 • • 空间协作 •
ppt课件
46
三、与增温治疗联合应用
第十章
放射肿瘤学基础
ppt课件
1
第一节: 肿瘤模型体系
➢常见的肿瘤模型包括: • 1、移植性实体瘤动物模型 • 2、人类肿瘤异种移植模型 • 3、多细胞球状体体外肿瘤模型
ppt课件
2
一、移植性实体瘤动物模型
• 肿瘤的传代方式:从一代动物移植 到下一代。
• 实验动物:兄妹交配近亲繁殖。
• 方法:无菌分离肿瘤细胞,给同系 受体动物每只皮下接种1×104~106 个肿瘤细胞,数天或数周接种部位 出现可触及的肿瘤。
ppt课件
3
➢特点:
• 重复性、稳定性、定量性好 • 因常用小鼠故对人体缺乏反应性
➢实体瘤的评价参数:
ppt课件
8
5、体内-体外测定技术
• 采用体外集落形成方法,测定体内照射 后肿瘤细胞存活率的方法。
• 方法:将受不同剂量体内局部照射的肿 瘤取出,分别制备单细胞悬液,将一定 数量的细胞种入培养皿中,在离体条件 下培养10~14天后,存活细胞可形成集 落,计数集落,计算出存活的肿瘤细胞 数,与0剂量下存活的肿瘤细胞数相比,
ppt课件
44
二、与化学药物治疗联合应用
• 1、细胞对化疗药物和电离辐射反应 的比较
• 敏感性不同 • 细胞的SLD和PLD不同 • 氧效应不同 • 抗拒性不同
ppt课件
45
二、与化学药物治疗联合应用
• 2、与化学药物联合应用的理论基础 • • 空间协作 •
ppt课件
46
三、与增温治疗联合应用
第十章
放射肿瘤学基础
ppt课件
1
第一节: 肿瘤模型体系
➢常见的肿瘤模型包括: • 1、移植性实体瘤动物模型 • 2、人类肿瘤异种移植模型 • 3、多细胞球状体体外肿瘤模型
ppt课件
2
一、移植性实体瘤动物模型
• 肿瘤的传代方式:从一代动物移植 到下一代。
• 实验动物:兄妹交配近亲繁殖。
• 方法:无菌分离肿瘤细胞,给同系 受体动物每只皮下接种1×104~106 个肿瘤细胞,数天或数周接种部位 出现可触及的肿瘤。
ppt课件
3
➢特点:
• 重复性、稳定性、定量性好 • 因常用小鼠故对人体缺乏反应性
➢实体瘤的评价参数:
肿瘤放射治疗学(详细)PPT精选课件

47
姑息性放 疗目的
减轻痛苦, 缓解症状, 延长生存期; 若不能延长生命, 但可暂时抑制肿
瘤生长; 通过简单的治疗, 减轻病人心理负担。
48
高姑息放疗
姑息性放疗 两种情况
肿瘤范围广而一 般状况较好的病人, 给与较高剂量放疗,
达到较好疗效
低姑息放疗
一般状况较差的病人, 给与较低剂量放疗,
达到缓解症状, 减轻痛苦、止痛止血
5
4 局部有多个淋巴 结转移
手术很难 彻底切除
51
术前放疗 剂量
低剂量 短时间 放疗剂量 15-20Gy/3-10天
中等剂 量常规 放疗剂量 30-40Gy 3-4周
高剂量 常规 放疗剂量 50-60Gy/5-6周
52
术中 放疗
术中可以充分暴露肿瘤,
优
在直视下确定照射范围,准确性高。 可以把肿瘤以外组织器官
14
内照射
将放射源密封,直接放入 被治疗的组织内或放入人 体的天然腔内,如鼻、咽、 食管、宫颈等部位进行照 射,叫组织间放疗,和腔 内放疗,又称近距离治疗。
15
放射治疗设备
16
17
18
19
放射治疗模拟定位机
20
21
模拟定位机功能
提供有关肿瘤和重要 器官的影响信息
用于治疗方案的验证 和模拟
除不彻底
根治性 手术后复发 高危病人辅助治疗
保留器 官和功能的局部 肿瘤切除手术后 的根治性放射治疗
55
放射反应
56
表
处
现
理
皮肤
干性反应
反应及 湿性反应
处理
全皮坏死
皮肤红斑 色素沉着 皮肤脱屑 表皮脱落
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
8
60Co治疗机
原理:利用放射性同位素60Co发射出的γ 射线治疗肿瘤,平均能量1.25MeV,与一 般深部X射线机相比有一下特点
特点:①能量较高,射线穿透力强;② 皮肤反应轻;③康普顿效应为主,骨吸 收类似于软组织吸收;④旁向散射少, 放射反应轻;⑤经济可靠,维修方便。
缺点:需定时换源;环境污染
-
17
康普顿效应:
当光子与原子内 一个轨道电子发生相互 作用时,光子损失一部 分能量,并改变运动方 向,电子获得能量而脱 离原子,这种现象叫做 康普顿效应。在 0.03~25MeV的范围占 优势,骨和软组织的吸 收剂量相近
-
18
电子对效应:
入射光子能量 大于1.02MV时,光 子可以与原子核相 互作用,使入射光 子的全部能量转化 成为具有一定能量 的正电子和负电子 ,这就是电子对效 应。在25~100MeV 的范围占优势。
2、X射线直线加速器
直线加速器是通过高能电子线打靶产生X射线, 主要用到的能量有6MV、8MV和10MV。
3、电子、质子及其他重粒子加速器
一般用到的电子线能量为4~25Mev,重粒子一
般在回旋加速器中产生。
-
3
-
4
电离
电离:原子的核外电子与外界相互作用 获得足够的能量,挣脱原子核对它的束 缚,造成原子的电离。
直接电离:由带点粒子通过碰撞直接引 起的物质的原子或分子的电离称为直接 电离。
间接电离:不带电粒子通过它们与物质 相互作用产生 的次级带电粒子引起的原 子电离称为间接电离。
-
5
射线特点
1.带点粒子可直接致电离辐射 2.不带电粒子只能间接致电离辐射 3.带电粒子均有有效射程
-
6
射线质的表示
射线质:即射线能量,表示射线穿射物质的本领。
任何物质。
-
23
名词解释
放射源(S) 一般规定为放射源前表面 的中心,或产生辐射的靶面中心。
照射野 射线束经准直后垂直通过模体的 范围。
临床剂量学中规定模体内50%等剂量线 的延长线交于模体表面的区域定义为照射野 的大小
-
24
参考点 规定模体表面下射野中心轴 上某一点作为剂量计算或测量参考的点。 400kV以下X射线参考点取在模体表面,对 高能X(γ)射线参考点取在模体表面下射 野中心轴上最大剂量点位置
现代近距离治疗的特点: 1、放射源微型化,程控步进电机驱动; 2、高活度放射源形成高剂量率治疗; 3、微机计划设计。
-
11
模拟定位机
X线模拟定位机是用来模拟加速器或60Co 治疗机机械性能的专用X线诊断机。
作用:模拟各类治疗机实施治疗时的照 射部位及范围,进行治疗前定位。
-
12
CT 模拟定位机
-
19
放射物理学有关名词及概念
-
20
照射量(X)
照射量 (X)是X(r)辐射在质量为dm的空气中 释放的全部次级电子完全被空气阻止时,空气 中形成的同一符号离子总电荷的绝对值dQ与 dm的比值,即:
X = dQ / dm
单位:库仑/千克 (C/kg)。原用单位是伦琴(R) 1R = 2.58×10-4 C/kg
肿瘤放射物理学基础
-
1
主要内容
一、放射源的种类 二、常用放疗设备及照射方式 三、射线与物质的相互作用 四、放射物理学有关名词及概念 五、常用射线剂量学特点 六、治疗计划评价 七、放射防护常识-2放来自源的种类1、放射性同位素
放疗中主要用产生α、β、γ射线的放射性同位 素, 用γ射线居多,如钴-60、铱-192等。
-
9
医用直线加速器
原理:利用微波电场沿直线加速电子然 后发射,或打靶产生X线发射,治疗肿瘤 的装置。
特点:
– 1、可产生不同能量的X线 (4~25MV) – 2、可产生不同能量的电子线 (3~25MV) – 3、照射野均匀性好 – 4、安全性好
-
10
近距离后装治疗机
现代后装治疗机主要包括:治疗计划系 统和治疗系统。
原用单位rad,1rad = 1cGy
吸收剂量使用与任何类型和任何能量的电 离辐射,以及适用于任何受照物质。
-
22
比释动能(K)
比释动能是不带电电离粒子在质量为dm的物质 中所释放的所有带电粒子的初始功能之和。 K=dEtr/dm
单位:焦耳/千克 (J/kg)。 专用名 Gray(Gy),1 Gy = 1 J/kg; 比释动能只适用于间接致电离辐射,适用于
-
14
外照射技术分类
1、固定源皮距(SSD)照射 2、等中心定角(SAD)照射 3、旋转(ROT)照射
-
15
内照射的分类
1、腔内照射 2、组织间插植照射 3、管内照射 4、表面施源器照射
-
16
射线与物质的相互作用
光电效应:
能量为hv光子与物 质原子的轨道电子发生 相互作用,把全部能量 传递给对方,光子消失, 获得能量的电子挣脱原 子束缚成为自由电子, 这种现象叫做光电效应。 (光电效应在10~30keV的 范围占优势,骨吸收高 于肌肉和脂肪)
照射量是用以衡量光子辐射致空气电离程度 的一个量,不能用于其他类型辐射和其他物质。
-
21
吸收剂量(D)
吸收剂量是单位质量物质吸收电离辐射的平均 能量。即电离辐射给予质量为dm介质的平均能 量dE。
D = dE / dm
单位:焦耳/千克 (J/kg)。
专用名 Gray(Gy),1 Gy = 1 J/kg=100cGy;
中低能X射线:通常用半价层表示。
半价层 (HVL):为使X(r)射线光子的强度减低
一半时所需要的某种材料吸收体的厚度。 高能X射线:通常用电子的标称加速电位表示,
单位为百万伏,兆伏 (MV) 如 6MV-X 线。 放射线同位素:通常用核素名+辐射类型表示,
如60Coγ射线。
-
7
常用放疗设备
60Co治疗机 医用直线加速器 模拟定位机 CT 模拟定位机 近距离后装治疗机 其他
源皮距(SSD)放射源到模体表面的 射野中心处距离
源瘤距(STD)放射源到肿瘤内所考 虑点的距离
肿瘤的正确定位 提供照射野的剂量分布 产生数字模拟影像 帮助设计合适的照射野 在病人皮肤上标记等中心点
-
13
基本照射方式
外照射
位于体外一定距离集中照射人体的某一部位, 叫体外远距离照射,简称外照射。
内照射
将放射源密封直接放入被治疗的组织内或放 入人体的天然腔内进行照射,叫近距离照射,简 称内照射。