人教A版高中数学必修一《函数的奇偶性》教案

合集下载

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿《函数的奇偶性》说课稿1一、教材分析函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。

因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。

二。

教学目标1.知识目标:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性。

2.能力目标:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。

3.情感目标:通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。

三。

教学重点和难点教学重点:函数的奇偶性及其几何意义。

教学难点:判断函数的奇偶性的方法与格式。

四、教学方法为了实现本节课的教学目标,在教法上我采取:1、通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与已知的距离,激发学生求知欲,()调动学生主体参与的积极性。

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

五、学习方法1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

六。

教学程序(一)创设情景,揭示课题"对称"是大自然的一种美,这种"对称美"在数学中也有大量的反映,让我们看看下列各函数有什么共性?观察下列函数的图象,总结各函数之间的共性。

f(_)= _2 f(_)=__通过讨论归纳:函数是定义域为全体实数的抛物线;函数f (_)=_是定义域为全体实数的直线;各函数之间的共性为图象关于轴对称。

【高中数学】高一数学《函数的奇偶性》教案

【高中数学】高一数学《函数的奇偶性》教案

【高中数学】高一数学《函数的奇偶性》教案课题:1.3.2函数的奇偶性一、 3D目标:与技能:使理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境,培养学生的判断和推理能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的品质。

二、重点和难点:重点:函数的奇偶性的概念。

难点:功能对等的判断。

三、学法指导:学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对功能对等的全面体验和理解。

采用教学与实践相结合的方式,使学生在实践中学习,并及时巩固。

四、知识链接:1.学习轴对称图形和中心对称图形的定义:2.分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。

五、学习过程:函数的奇偶性:(1)对于函数,其域与原点对称:如果______________________________________,那么函数为奇函数;如果,那么函数是偶数函数。

(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

(3)对称区间上奇函数的增减;对称区间偶函数的增减。

六、达标训练:A1。

判断下列函数的奇偶性。

(1)f(x)=x4;(2)f(x)=x5;(3) f(x)=x+(4) f=a2、二次函数()是偶函数,则b=___________.B3。

已知,常数在哪里,如果是,那么_______.B4。

如果该函数是R上定义的奇数函数,则该函数的映像约为()(a)轴对称(b)轴对称(c)原点对称(d)以上均不对B5。

如果区间上定义的函数是奇数函数,则=__c6、若函数是定义在r上的奇函数,且当时,,那么当什么时候___d7、设是上的奇函数,,当时高中化学,,则等于()(a) 0.5(b)(c)1.5(d)d8、定义在上的奇函数,则常数____,_____.七、学习总结:本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。

函数的奇偶性教学设计

函数的奇偶性教学设计

1.3.2函数的奇偶性一、教材分析本节课是高普通高中课程标准试验教科书人教A版数学必修一第一章第三节第二小节函数的奇偶性。

本节内容属于函数领域的知识,是学生学过的函数概念的延续和拓展,又是后续研究其他具体函数的基础,是在高中数学起承上启下作用的核心知识之一。

二、学情分析在此之前,学生已经学习了图形的轴对称和中心对称,以及函数的单调性,这为本节课的学习起着铺垫作用。

从学生思维发展来看,高一学生的思维能力正在由形象经验型向抽象理论型转变,但是抽象概括能力比较薄弱,这对构造奇偶性的概念造成了一定的难度。

三、教学目标1.知识与技能:(1)理解偶函数和奇函数的概念(2)掌握用定义判断函数的奇偶性2.过程与方法:讲授法和观察法:通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题。

3.情感态度与价值观:通过对函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力力,渗透数形结合的数学思想。

四、教学重难点教学重点:奇偶函数的定义,用定义判断函数的奇偶性。

教学难点:弄清f(x)和f(−x)的关系,用定义判断函数的奇偶性。

五、教法学法教法:探究式、启发式、多媒体辅助学法:自主探究、合作交流六、教学过程1. 课题引入(1)生活中具有对称性的例子(2)根据对称性将函数图像分类(请同学回答) 2. 探究新知 (1)函数图像将以上函数图像分成两类,一类关于y 轴对称,一类关于原点对称。

(2)根据分类,完成函数值对应表,观察函数值特点关于y 轴对称x… -3 -2 -1 0 1 2 3 … f (x )=x 2 … 9 41 0 1 4 9 …x… -3 -2 -1 0 1 2 3 …f (x )=|x | … 3 210 1 2 3 …课课题引入引发学生兴趣f (x )=x 2f (−x )=x 2=f (x )Oxy||)(x x f f (−x )=|x |=f (x )yyOOxx课探究新知 课问题解决课小结 课作业布置 感受数学探究魅巩固深化学习内知识系统化举一反三灵活应偶函数的定义:如果对于函数f(x)的定义域内任意一个x,都有f(−x)=f(x),那么f(x)就叫做偶函数。

【公开课】高中数学人教A版(2019) 必修第一册第三章《函数的奇偶性》教案

【公开课】高中数学人教A版(2019) 必修第一册第三章《函数的奇偶性》教案

3.2.2函数奇偶性的教学设计一、教材分析《奇偶性》位于高中数学人教A版(2019)必修第一册第三章3.3.2节。

本节课是在学生学习函数单调性之后,教材从学生熟悉的函数图象情境出发,让学生从形的角度认识函数的奇偶性,从数的角度探究函数奇偶性的本质,再通过数形结合来解决函数的相应问题。

二、学情分析本节课是面对普通班的学生进行讲解的,他们数学基础相对一般,但部分同学思维比较敏捷,大多数同学对数学比较热爱。

学生对函数及对称图形有一定的知识储备,在前面经历过探究和学习函数单调性的过程,对于根据函数的图象转化为数字特征并抽象为数学概念有了初步认识,但是由于初步接触,有一定的困难,为了让大部分学生掌握本节课的知识与方法,能够实现教学目标,突出重点、突破难点,我制定了后面的教学方案。

三、教学目标(一)学科目标1.知识与技能:了解函数的奇偶性的概念和几何意义;学会判断函数的奇偶性;学会运用奇偶性研究函数的图象。

2.过程与方法:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合、分类讨论的思想。

3.情感态度与价值观:展示优美的函数图象加强学生对数学美的体验。

(二)核心素养目标1.数学抽象:函数的奇偶性的定义及图象的对称性;2.逻辑推理:根据偶函数的探究过程,探究和总结奇函数的概念;3.数学运算:判断函数奇偶性过程中的运算;4.直观想象:根据函数解析式画出函数图象、根据函数关于y轴对称画出大致图像研究函数的性质。

5.数学建模:通过具体函数实例,培养学生发现问题解决问题的能力。

四、教学重难点(一)重点:函数奇偶性的概念、简单性质及应用。

(二)难点:感悟数学奇偶性含义的数学抽象过程。

五、教学策略分析(一).通过观察所展示的函数图象及动态图象演示,让学生形成对奇(偶)函数的直观认识;通过数量关系刻画函数的对称性,得出奇(偶)函数的定义。

是学生在函数奇偶性的数学抽象过程中在轻松愉快的环境下掌握,从而突破教学难点。

人教A版高中数学必修一《函数的奇偶性》教案

人教A版高中数学必修一《函数的奇偶性》教案

函数的奇偶性人教A版必修一第一章第三节课题函数的奇偶性课型新授课课时安排一课时教学目标1、知识目标:〔1〕理解函数奇偶性的概念,掌握推断一些简单函数的奇偶性的方法;〔2〕能利用函数的奇偶性简化函数图像的绘制过程。

2、能力目标:(1)重视根底知识的教学、根本技能的训练和能力的培养;(2)启发学生能够发觉问题和提出问题,特长独立思考,学会分析问题和制造性地解决问题;(3)通过教师指导总结知识结论,培养学生的抽象概括能力和逻辑思维能力。

3、德育目标:通过自主探究,培养学生的动手实践能力,激发学生学习数学的兴趣,陶冶学生的情操,培养学生坚忍不拔的意志、实事求是的科学学习态度和勇于创新的精神。

教学重点函数奇偶性的概念及函数奇偶性的推断教学难点对函数奇偶性定义的掌握和灵敏运用教学方法1、教法依据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采纳以引导发觉法为主,直观演示法、设疑诱导法、类比法为辅的教学方法。

教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探究问题的积极状态,从而培养思维能力。

2、学法让学生在“观察一归纳一应用〞的学习过程中,自主参与知识的产生、开展、形成的过程,使学生掌握知识。

教学过程教学内容师生活动教学设计意图一、创设情境引入观察下面两张图片:①麦当劳的标志②风车问题1:图像有何共同特点?直观感受生活中的对称美。

通过让学生观察图片导入新课,让学生感受到数学来源于生活,数学与生活是紧密相关的,从而激发学生浓厚的学习兴趣。

新课二、师生互动探究新知问题2:你能回忆几类常见函数及图像吗?请找出哪些关于轴对称,哪些关于原点成中心对称。

O①()f x x=②1()f xx=O③2)(xxf=④axf=)(⑤xxf=)(问题3:如何从数学角度,用数学言语来描述这种对称性呢?1、探究定义请作出2)(xxf=的图像,求)(),(),2(),2(),1(),1(afafffff---。

高中数学人教A版 必修1《3.2.2函数的奇偶性》课件(16张PPT)

高中数学人教A版 必修1《3.2.2函数的奇偶性》课件(16张PPT)

一看
二找
三判断
看定义域 是否关于 原点对称
找 f x与
f x的
下结
关系

函数奇偶性的判断
变式训练1 判断下列函数的奇偶性:——定义法
(1)f x 4 x2 (2)f x x2x 1
x 1
(3)f x 0
按照奇偶性将函数分类为:
①奇函数 ②偶函数 ③非奇非偶函数 ④既奇又偶函数
函数奇偶性的判断 ——图象直观感知
利用奇、偶函数的和、差、积、商的奇偶性,以 及复合函数的奇偶性判断.
f x




gx




f x gx
f x gx
f x gx
f g(x)
研究题 借助几何画板绘制大量函数图象并归纳函数的单调
性与函数的奇偶性的关系。来自f(-x)=f(x)f(-x)=-f(x)
不同点
图象关于y轴对称 图象关于原点对称
补充:奇偶性是函数在其定义域上的整体性质
函数奇偶性的判断
例6 判断下列函数的奇偶性: ——定义法
(1)f x x4
偶函数 (2) f x x5 奇函数
(3)f x x 1
x
奇函数
(4)
f
x
1 x2
偶函数
归纳: 根据定义判断函数的奇偶性的步骤:
f x x2

9
4
1
0
14

9
gx 2 | x | … -1
0
1
2
1
0

-1
f 3 9 f 3 f 2 4 f 2 f 1 1 f 1
几何画板
当自变量取一对相反数时, 相应的两个函数值相等

《函数的奇偶性》示范公开课教学设计【高中数学人教版】

《函数的奇偶性》示范公开课教学设计【高中数学人教版】

《函数的奇偶性》教学设计本节讨论函数的奇偶性是描述函数整体性质的。

教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图像,让学生通过图像直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念。

因此教学时,充分利用信息技术创设教学情景,会使数与形的结合更加自然。

【知识与能力目标】1、使学生从形与数两个方面理解函数奇偶性的概念、图像和性质;2、判断一些简单函数的奇偶性。

【过程与方法目标】1、设置问题情境培养学生判断、观察、归纳、推理的能力。

在概念形成的过程中,渗透数形结合和特殊到一般的数学思想方法;2、通过对函数单调性定义的探究,培养学生的抽象思维的能力。

【情感态度价值观目标】经过探究过程,培养学生严谨论证的良好思维习惯;使学生经历从具体到抽象,从特殊到一般的理性认知过程。

【教学重点】函数奇偶性的概念及其判断。

【教学难点】函数奇偶性的掌握和灵活运用。

通过本节导学案的使用,引导学生对函数奇偶性有个初步的认识,带着问题学习。

(一)创设情景,揭示课题1、实践操作:(也可借助计算机演示)取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图像的图形,然后按如下操作并回答相应问题:○1以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图像,若能请说出该图像具有什么特殊的性质?函数图像上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图像,并且它的图像关于y轴对称;(2)若点(x,f(x))在函数图像上,则相应的点(-x,f(x))也在函数图像上,即函数图像上横坐标互为相反数的点,它们的纵坐标一定相等。

○2以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图像,若能请说出该图像具有什么特殊的性质?函数图像上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图像,并且它的图像关于原点对称;(2)若点(x,f(x))在函数图像上,则相应的点(-x,-f(x))也在函数图像上,即函数图像上横坐标互为相反数的点,它们的纵坐标也一定互为相反数。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。

2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。

3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。

二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。

2. 教学难点:函数奇偶性的性质及其应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。

五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。

2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。

3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。

4. 课堂练习:布置练习题,让学生巩固所学内容。

5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。

6. 课后作业:布置适量作业,巩固所学知识。

注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。

六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。

2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。

3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。

七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。

3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的奇偶性
人教A版必修一第一章第三节
函数的奇偶性课型新授课课时安排一课时1、知识目标:
(1 )理解函数奇偶性的概念,掌握判断一些简单函数的奇偶性的方法;
(2)能利用函数的奇偶性简化函数图像的绘制过程。

2、能力目标:
(1) 重视基础知识的教学、基本技能的训练和能力的培养;
(2) 启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;
(3) 通过教师指导总结知识结论,培养学生的抽象概括能力和逻辑思维能力。

3、德育目标:
通过自主探索,培养学生的动手实践能力,激发学生学习数学的兴趣,陶冶学生的情操,培养学生坚忍不拔的意志、实事求是的科学学习态度和勇于创新的精神。

1、教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法、类比法为辅的教学方式。

教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

2、学法
让学生在“观察一归纳一应用”的学习过程中,自主参与知识的产生、发展、形成的过程,使学生掌握知识。

教学内容师生活动教学设计意图观察下面两张图片:
创设情境引入
直观感受
生活中的对称
美。

①麦当劳的标志②风车
问题1:图像有何共同特点?
通过让学生观察
图片导入新课,让学生
感受到数学来源于生
活,数学与生活是密切
相关的,从而激发学生
浓厚的学习兴趣。

课题
教学
目标
教学函数奇偶性的概念及函数奇偶性的判断重点
教学
难点
对函数奇偶性定义的掌握和灵活运用
教学
方法
教学
过程
①定义
③ 举例 ④ 判断步骤 ⑤ 函数按奇偶性分类
教案设计说明:
本节课内容选自高中数学人教 A 版必修一第一章第三节,本节课主要引导 学生认识函数奇偶性的实质就是函数图像的对称性,它是研究函数性质的主要 方面。

如果我们已知一个函数的奇偶性,就可以推出它在整个定义域的图像和 性质。

在这一节中,数形有着密切的联系,因此,本节课没有一开始就给出定 义,而是通过给出图片让学生先有个直观认识。

为了引导学生由图形的直观认 识上升到数量关系的精确描述,先提示学生图形是由点组成的,找出其间的关 系后,建立奇偶函数的概念,再引导学生表述定义。

目的是为了培养学生的观 察、归纳、抽象的能力,让学生经历从直观到抽象、从特殊到一般、从感性到 理性的认知过程,同时渗透数形结合的数学思想。

最后,通过例题和练习进一 步加深学生对定义的理解。

教学过程中每个环节环环相扣,层层深入。

符合学 生对新知识的认知过程。

教案的设计“以人为本,以学定教”
,教师始终扮演 的
是组织者、引导者、参与者的角色,通过问题教学法,变“教的课堂”为“学 的课堂”,
五、 课外 作业 提升 能力
1、 教材P40练习1.
附加:f(x) . 1—x
x ―1
2、 已知函数f(x),定义域是x R , 且对任
意实数 a, b 都有
f(a b) f (a b) 2f (a) f (b), 求证:f (x)
为偶函数。

3、 是否存在整数a,b,c 的值,使函数
2
1
f(x) ax ——1是奇函数,并且
bx c
f(1) 2, f(2) 3,若存在,求出它
们的值,不存在则说明理由。

4、 你能将任一个函数表示为一个奇函 数
与一个偶函数之和吗?
由学生课后独 立完成。

其中第 1题为必做题,
2、3、4题为选
做题。

通过分层作业使 学生进一步巩固本节 课所
学内容,并为学 有余力和学习兴趣浓 厚的学生提供进一步 学习的机会。

第4题 则为下节课作好了铺 垫。

函数的奇偶性
偶函数
奇函数
板书
设计
②特点
关系式 图像
屏幕投影
学生成为课堂学习真正的主人。

学习函数的奇偶性的目的是为了让学生掌握奇、偶函数的图像特征,会用定义判断函数的奇偶性,能利用函数的奇偶性解决一些与现实生活有关的综合问题。

通过对函数奇偶性的理论研究,增强学生对数学美的体验,培养学生乐于求索的精神,形成科学、严谨的研究态度。

相关文档
最新文档