轴对称讲义(全)

合集下载

轴对称讲义(吴思颖)

轴对称讲义(吴思颖)

泽仕学堂学科教师辅导讲义
观察下面的图形有什么共同的特征?
请你想一想:将上图中的每一个图形沿某条直线折叠,直线两旁的部分能完全重合吗?
轴对称图形定义:
如果一个平面图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形就叫做
对称轴.
轴对称图形
对称轴
练习:下面的图形是轴对称图形吗
练一练:下面的字母哪些是轴对称图形?找出对称轴?
B C
、右图是从镜中看到的一串数字,这串数字应为、下列图形中是轴对称图形的在括号里画“√”。

二、选择题。

、下列英文字母中,是轴对称图形的是()
、下图是一些国家的国旗,其中是轴对称图形的有()
A、4个
B、3个
C、2个
D、1个
、下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有(
A、2个
B、3个
C、4个
D、5个
、下列图形中,对称轴最多的是()。

)种画法。

9、找出下面图形中是轴对称图形,并且有两条对称轴的是()
....
、画出下列图形的对称轴。

、已知图中的图形都是轴对称图形,请你画出它们的对称轴.
、画出下面图形的对称轴,使得他们是轴对称图形。

、试找出如图所示的每个正多边形的对称轴的条数,并填下表格中.
正多边形的边数 3 4 5 6 7 8
主任签字:
泽仕学堂教务处。

轴对称图形_讲义

轴对称图形_讲义

课题轴对称与轴对称图形学习目标与考点分析1.通过学习轴对称与轴对称图形的区别和联系,进一步发展学生抽象概括能力。

2.通过轴对称与轴对称图形的学习,让学生关注生活,学会观察、增强交流。

3.经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。

学习重点1、由具体情境抽象出轴对称与轴对称图形的概念.2、比较观察轴对称与轴对称图形之间的区别与联系。

学习方法引导、分析、探究学习内容与过程情境引入:1.剪纸活动出示剪的飞鸟图案你能说出老师是如何剪出这幅图案?教师示范:将纸对折,沿所画的线条剪出飞鸟。

同学也试一试,看谁剪出的图案最美。

指导学生观察这些图案有何共同点。

对折后两部分完全重合,也就是说这两部分是对称的。

自古以来,对称图形被认为是平衡和谐之美,我们时时刻刻生活在一个充满对称的世界之中,从动物到植物,从小巧精致的艺品到雄伟壮丽的建筑,大多都是对称的,下面让我们共同感受一下对称的美。

2.图片展示建筑脸谱第三讲轴对称剪纸国旗摩洛哥约旦英国肯尼亚点评:通过剪纸、欣赏生活中的对称美,培养学生的操作能力,强化学生的交流意识,激发学生探求新知的欲望。

3.探究1(轴对称图形)对折就有——折痕折痕可以看成——直线把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形是轴对称图形。

4.探究2(对称轴的条数)下列图形是否是轴对称图形,找出轴对称图形的所有对称轴。

思考:正三角形有条对称轴正四边形有条对称轴正五边形有条对称轴正六边形有条对称轴正n边形有条对称轴当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?小结:一个轴对称图形的对称轴的条数不一定是一条。

圆无数条对称轴5.练一练(1)生活中有许多轴对称图形,你能举例吗?引导:数字,英文,汉字(2)推理游戏下面一个应该是什么形状?6.探究3(轴对称)(1)动手操作你能用两块大小、形状完全一样的直角三角形拼成轴对称图形吗(2)多媒体演示:将中的两个三角形均速向两边移动变成提问:这两个三角形有什么关系?多媒体演示两个三角形对折重叠的过程。

轴对称作图及应用(讲义)(含答案)

轴对称作图及应用(讲义)(含答案)

轴对称作图及应⽤(讲义)(含答案)轴对称作图及应⽤(讲义)课前预习1. 作⼀条线段等于已知线段.已知:如图,线段a .求作:线段AB ,使AB =a .作法:(1)作射线AP ;(2)以_________为圆⼼,_______为半径作弧,交射线AP 于点B .___________即为所求.2. 作⼀个⾓等于已知⾓.已知:如图,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .OAB作法:(1)作射线O′A′;(2)以________为圆⼼,_______为半径作弧,交OA于点C ,交OB 于点D ;(3)以____为圆⼼,____为半径作弧,交O′A′于点C ′;(4)____________,__________作弧,交前弧于点D ′;(5)过点D ′作射线O′B′.∠A′O′B′_____________.证明:如图,连接________,________.在___________和___________中,______________________________________________________??(已作)(已作)(已作)∴____________________()∴____________________a知识点睛1.五种基本作图:①作⼀条线段等于已知线段;②作⼀个⾓等于已知⾓;③作已知⾓的⾓平分线;④作已知线段的垂直平分线;⑤过平⾯内⼀点,作已知直线的垂线.精讲精练1.作已知线段的垂直平分线.已知:线段MN.求作:直线AB,使AB垂直平分MN.N作法:(1)分别以_______,______为圆⼼,___________为半径作弧,两弧相交于点A和点B;(2)_______________________________________._______________________________________.2.(1)过直线上⼀点,作已知直线的垂线.已知:A为直线MN上⼀点.求作:直线AB,使AB⊥MN.A作法:①________________________________________________________________________________________________;②________________________________________________________________________________________________;③________________________________________________._________________________________________________.(2)过直线外⼀点,作已知直线的垂线.已知:A为直线MN外⼀点.求作:直线AB,使AB⊥MN.AM N作法:①________________________________________________;②________________________________________________________________________________________________;③________________________________________________________________________________________________;④________________________________________________._________________________________________________.3.作已知⾓的⾓平分线.已知:如图,∠AOB.求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB).AOB作法:(1)________________,__________________作弧,交OA于点M,交OB于点N;(2)分别以______,______为圆⼼,______________为半径作弧,两弧在________________交于点P;(3)_________________________.______________________________.4.作已知⾓的四等分线.已知:如图,∠AOB.求作:射线OP,OQ,OM,使∠AOP=∠POQ=∠QOM=∠MOB(即OP,OQ,OM四等分∠AOB).AOB5.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2C.图1与图3 D.图2与图3A BCD图1AB CD图2图3DCBA6.电信部门要修建⼀座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条⾼速公路m,n的距离也必须相等,发射塔P应修建在什么位置?(不写作法,保留作图痕迹)7. 如图,在Rt △ABC 中,∠B =90°,分别以A ,C 为圆⼼,⼤于12AC 长为半径作弧,两弧相交于点M ,N ,作直线MN ,分别交AC ,BC 于点D ,E ,连接AE ,则:(1)∠ADE =_________.(2)AE _______EC ;(填“=”“>”或“<”)(3)当AB =3,BC =4时,△ABE 的周长为______.MNED CBAA BCD NM第7题图第8题图8. 如图,在△ABC 中,按以下步骤作图:①分别以点B ,C 为圆⼼,以⼤于12BC 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠B =25°,则∠ACB 的度数为___________.9. 如图,在△ABC 中,∠C =90°,∠CAB =50°.按以下步骤作图:①以点A 为圆⼼,⼩于AC 的长为半径画弧,分别交AB ,AC 于点E ,F ;②分别以点E ,F 为圆⼼,⼤于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 边于点D .则∠ADC 的度数为_________.GC B A10. 如图,已知点D ,E 分别在∠CAB 的边AB ,AC 上,观察图中作图痕迹,若PD =6,则PE 的最⼩值是() A .2B .3C .6D .12EDC BAP11. 如图,在四边形ABCD 中,AD ∥BC ,AD =BC ,AB =CD ,已知CD =8,BC =10,按以下步骤作图:①以点C 为圆⼼,适当长度为半径作弧,分别交BC ,CD 于M ,N 两点;②分别以点M ,N 为圆⼼,以⼤于12MN 的长为半径画弧,两弧在四边形ABCD 的内部交于点P ;③连接CP 并延长交AD 于点E ,交BA 的延长线于点F ,则AE 的长为() A .2B .3C .4D .5PF EDC BAMN12. 如图,在四边形ABCD 中,AD ∥BC ,已知∠B =60°,AB =4.以点A 为圆⼼,任意长为半径画弧分别交边AB ,AD 于点M ,N ,再分别以点M ,N 为圆⼼,以⼤于12MN 的长为半径画弧,两弧相交于四边形ABCD 内⼀点P ,连接AP 并延长交BC 边于点E ,连接DE .当BE =2EC 时,BC 的长为_________.P13.如图,在△ABC中,以点A为圆⼼,AC的长为半径作弧,与BC交于点E,分别以点E,C为圆⼼,⼤于12EC的长为半径作弧,两弧相交于点P,作射线AP交BC于点D.若∠B=45°,∠C=2∠CAD,则∠BAC的度数为()A.80°B.75°C.65°D.30°E DCBAPCB Al1l21第13题图第14题图14.如图,直线l1∥l2,点A在直线l1上,以点A为圆⼼,适当长度为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC.若∠ABC=70°,则∠1的⼤⼩为()A.20°B.35°C.40°D.70°15.已知:如图,线段AB的端点A在直线l上(AB与l不垂直),请在直线l上另找⼀点C,使△ABC是等腰三⾓形.这样的点能找⼏个?请你找出所有符合条件的点.16.已知:如图,线段AB的端点A在直线l上,AB与l的夹⾓为60°,请在直线l上另找⼀点C,使△ABC是等腰三⾓形.这样的点能找⼏个?请你找出所有符合条件的点.【参考答案】 ? 课前预习1. 点Aa 长线段AB 图略2. 作法:(1)作射线O′A′;(2)以点O 为圆⼼,任意长为半径作弧,交OA于点C ,交OB 于点D ;(3)以点O′为圆⼼,OC 长为半径作弧,交O′A′于点C ′;(4)以点C ′为圆⼼,CD 长为半径作弧,交前弧于点D ′;(5)过点D ′作射线O′B′.∠A′O′B′即为所求.证明:如图,连接CD ,C ′D ′.在COD △和C O D '''△中OC O COD O D CD C D ''=??''=??''=?(已作)(已作)(已作)SSS COD C O D '''∴△≌△() ?∴∠A′O′B′=∠AOB精讲精练 1. 图略(1)点M ,点N ,⼤于12MN 长(2)作直线AB 直线AB 即为所求 2. (1)图略①以点A 为圆⼼,任意长为半径作弧,交直线MN 于C ,D 两点;②分别以点C ,点D 为圆⼼,⼤于12CD 长为半径作弧,两弧交MN 上⽅于⼀点B ;③作直线AB .直线AB 即为所求.(2)图略①在MN 下⽅任取⼀点P ;②以点A 为圆⼼,AP 长为半径作弧,交MN 于C ,D 两点;③分别以点C ,点D为圆⼼,以⼤于12CD长为半径作弧,两弧交MN下⽅于⼀点B;④作直线AB.直线AB即为所求.3.(1)以点O为圆⼼;任意长为半径;(2)点M;点N;⼤于12MN长;AOB内部;(3)作射线OP;射线OP即为所求.4.略5. C6.略7.(1)90°;(2)=;(3)78.105°9.65°10.C11.A12.613.B14.C15.略16.略。

初二数学讲义(轴对称)(详细答案)

初二数学讲义(轴对称)(详细答案)

初二数学讲义(轴对称)知识梳理1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

3、轴对称图形与轴对称的区别与联系:(1)区别:轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系:把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

5、线段的垂直平分线:(1)定义:经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

(2)性质:线段垂直平分线上的点与线段两端点的距离相等。

(3)判定:与线段两端点距离相等的点在线段的垂直平分线上。

6、等腰三角形:(1)定义:有两条边相等的三角形,叫做等腰三角形。

底角只能是锐角。

(2)性质:①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。

②“等边对等角”:等腰三角形的两个底角相等。

③三线合一:顶角平分线、底边上的中线和地边上的高相互重合。

(3)判定方法:①定义法:有两条边相等的三角形是等腰三角形。

②判定(“等角对等边”):有两个角相等的三角形是等腰三角形。

7、等边三角形:(1)定义:三条边都相等的三角形,叫做等边三角形。

说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。

(2)性质:①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线”,有三条。

②三条边上的中线、高线及三个内角平分线都相交于一点。

③等边三角形的三个内角都等于60°。

(3)判定方法:①定义法:三条边都相等的三角形是等边三角形。

八年级数学上册《轴对称》讲义

八年级数学上册《轴对称》讲义

轴对称知识点一、轴对称图形轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点二、轴对称1.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形与轴对称的区别:轴对称是指两个图形,而轴对称图形是一个图形.知识点三、轴对称与轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.类型一、轴对称变换1.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为(1,6)A -,(5,3)B -,(3,1)C -.(1)ABC ∆关于y 轴对称的图形△111A B C (其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点(1,0),且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形△222A B C (其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标.类型二、线段垂直平分线知识点① 线段垂直平分线的性质2. 如图,已知ABC ∆,AB 、AC 的垂直平分线的交点D 恰好落在BC 边上.(1)判断ABC ∆的形状;(2)若点A 在线段DC 的垂直平分线上,求AC BC的值.知识点② 线段垂直平分线的判定3. 如图所示,在ABC ∆中,AB AC =,BE CD =,且BD 与CE 相交于点O ,求证:点O 在线段BC 的垂直平分线上.类型三、利用轴对称的性质求图形的面积4. 在ABC ∆中,90BAC ∠=︒,点A 关于BC 边的对称点为A ',点B 关于AC 边的对称点为B ',点C 关于AB 边的对称点为C ',若1ABC S ∆=,求A B C S '''.类型四、“将军饮马”问题5. 如图,点P、Q为MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.类型五、角平分线与线段垂直平分线的综合6. 如图,在△ABC中,AD是∠BAC平分线,线段AD的垂直平分线分别交AB于点F,交BC的延长线于E(1)在图①中,连接DF,证明DF//AC(2)在图①中,连接AE,证明∠EAC=∠B(3)如图②,若线段CD上存在一点M,使∠MPD=∠ACD,AM与EF交于点P,连接DP 并延长与AC交于点N,求证:AN=DM.①②【复习巩固】一.选择题(共7小题)1.如图,ABC ∆中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求EAF ∠的度数为何?( )A .113︒B .124︒C .129︒D .134︒2.如图所示,在四边纸片ABCD 中,//AD BC ,//AB CD ,将纸片沿EF 折叠,点A ,D 分别落在A ',D '处,且A D ''经过点B ,FD '交BC 于点G ,连接EG ,若EG 平分FEB ∠,//EG A D '',80D FC '∠=︒,则A ∠的度数是( )A .65︒B .70︒C .75︒D .80︒3.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .AP BN =C .M AP M BP ∠=∠D .ANM BNM ∠=∠4.如图,在ABC ∆中,AB 边的中垂线DE ,分别与AB 边和AC 边交于点D 和点E ,BC 边的中垂线FG ,分别与BC 边和AC 边交于点F 和点G ,又BEG ∆周长为16,且1GE =,则AC 的长为( )A .13B .14C .15D .165.如图,50∠的平分线BE交AD于点E,连接∠=︒,AD垂直平分线段BC于点D,ABCABC∠的度数是()EC,则AECA.115︒B.75︒C.105︒D.50︒6.如图,四边形ABCD中,AB AD=,点B关于AC的对称点B'恰好落在CD上,若110∠=︒,BAD则ACB∠的度数为()A.40︒B.35︒C.60︒D.70︒7.如图,P是AOB∠两边上的点,点P关于OA的对称点Q恰∠外的一点,M,N分别是AOB好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若 2.5PN=,PM=,3 MR=,则线段QN的长为()7A.1 B.1.5 C.2 D.2.5二.解答题(共3小题)8如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得PA PB+的值最小,画出图形并证明.9.如图,OBC ∆中,BC 的垂直平分线DP 交BOC ∠的平分线于D ,垂足为P .(1)若60BOC ∠=︒,求BDC ∠的度数;(2)若BOC α∠=,则BDC ∠= (直接写出结果).10.如图,ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .(1)若60A ∠=︒,24ABD ∠=︒,求ACF ∠的度数;(2)若5BC =,:5:3BF FD =,10BCF S ∆=,求点D 到AB 的距离.。

轴对称图形讲义

轴对称图形讲义

一、知识梳理1、轴对称与轴对称图形(1)如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形.这条直线叫做对称轴.(2)关于某条直线对称的两个图形是全等图形.(3)关于一条直线成轴对称的两个图形中,对应点的连线被对称轴垂直平分.2、轴对称的性质及应用(1)性质:对称轴是对称点连线段的垂直平分线.对应线段相等,对应角相等. 对称轴即是垂直平分线.线段垂直平分线(即对称轴)上的点到线段两端点的距离相等.(2)应用:找对称轴;创造轴对称图案.可应用线段垂直平分线的性质证明:线段相等和垂直;作图找点.3、线段、角的轴对称性(1)线段的垂直平分线:线段是轴对称图形,•它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线(简称中垂线).线段的垂直平分线是到线段两端距离相等的点的集合.它有两条对称轴,分别为:线段的中垂线,线段本身所在的直线.M PA BN (2)角是轴对称图形,角平分线所在直线是它的对称轴.角平分线上的点到角的两边距离相等;角的内部到角的两边距离相等的点,在这个角的平分线上.4、等腰三角形的轴对称性(1)等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴. (2)等腰三角形的两个底角相等(简称“等边对等角”).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”). (3)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).符号语言:点P 在线段AB 的垂直平分线MN上 PA=PBB C (4)直角三角形斜边上的中线等于斜边的一半(如上图). (5)直角三角形中30°角所对的直角边是斜边的一半。

符号语言:(6)三边相等的三角形叫做等边三角形或正三角形。

等边三角形是轴对称图形,并且有3条对称轴。

等边三角形的每个角都等于60°。

(7)等边三角形的判定依据:三条边都相等的三角形是等边三角形。

轴对称图形讲义

轴对称图形讲义

心悦教育老师学科辅导讲义讲义编号学员编号年级课时数学员姓名辅导科目学科教师课题授课时间重点、难点教学内容轴对称与轴对称图形【学习目标】1、认识轴对称与轴对称图形;2、会画出对称轴,找出对称点;3、能设计简单轴对称图案、标志;【课前预习】1、什么是轴对称?什么是轴对称图形?2、收集生活中的轴对称和轴对称图形的图片?3、轴对称与轴对称图形有何区别与联系?【例题分析】例题1:(1)请把以下图形进行分类。

说说你分类的依据?(2)观察两类图形,他们各有什么共同特征?例题2:实验1、折纸印墨迹。

你发现折痕两边的墨迹形状一样吗?为什么?两边墨迹的位置与折痕有什么关系?实验2、把一张纸对折,然后从折痕处剪出一个图形,想一想,展开后会是什么样的图形?位于折痕两侧的图案有什么关系?根据以上操作,说一说轴对称、轴对称图形各自的特征?【巩固练习】1、下列图形哪些是轴对称,哪些是轴对称图形?2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。

3、在对称图形中,对称轴两侧相对的点到对称轴的()。

4、下列图形中对称轴条数最多的是( )A.正方形B.长方形C.等腰三角形D.等腰梯形E.等边三角形F.角G.线段H.圆I.正五角星5、下面不是轴对称图形的是()。

①长方形②平行四边形③圆④半圆6、判断下面每组图形(如图所示)是否关于某条直线成轴对称。

【课后巩固】1、收集你身边的轴对称及轴对称图形。

2、学校要开运动会了,你设计一个具有轴对称的图案。

轴对称的性质【学习目标】1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线、对应线段相等、对应角相等的性质。

2、利用轴对称的基本性质解决实际问题。

【课前预习】1、_____并且_____一条线段的直线,叫做这条直线的垂直平分线。

2、成轴对称的两个图形_____。

3、如果两个图形成轴对称,那么对称轴是_________的垂直平分线。

轴对称新课讲义

轴对称新课讲义

轴对称新课讲义(一) 知识要点 1、 轴对称及轴对称图形轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们就说这个图形关于这条直线(或轴)对称。

如下左图,△ABC 是轴对称图形。

轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

如上右图,△ABC 与△A ’B ’C ’关于直线l 对称,l 叫做对称轴,A 和A ’,B 和B ’,C 和C ’是对称点。

规律方法小结:轴对称图形是指“一个图形”;轴对称是指“两个图形”的位置关系,在某种情况下,二者可以互相转换,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。

2、 线段的垂直平分线线段垂直平分线的定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(也称为线段的中垂线)。

如下左图,直线l 经过线段AB 的中点O ,并且垂直于线段AB ,则直线l 就是线段AB 的垂直平分线。

线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

如上右图,点P 是线段AB 垂直平分线上的点,则PA=PB 。

线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分A A ’B B ’C C ’ lABOlABP线上。

3、 轴对称和轴对称图形的性质两个图形成轴对称(或轴对称图形),则对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

判断:成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗? 4、 成轴对称的两个图形的对称轴的画法如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称
【知识要点】
1、轴对称图形:如果沿某条直线对折,对折的两部分是完全重合的,这样的图形为轴对称图形。

这条直线叫做这个图形的对称轴。

2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,说这两个图形为轴对称。

这条直线叫做这个图形的对称轴。

3、对称点:翻折后(图形重合时)能够互相重合的点。

4、垂直平分线(中垂线):垂直并且平分一条线段的直线。

结论1:线段垂直平分线上的点到这条线段两个端点的距离相等。

结论2:如果一个图形关于某一条直线对称,那么连接对称点的线段的垂直平分线就是该图形的对称轴。

【典型例题】
例1. 在下列十个汉字中,哪几个是轴对称图形?他们各有几条对称轴?
上下目天田土吕林显王
例2. 如图,下列图案是我国几家银行的标志,其中轴对称图形有()
A.1个B.2个C.3个D.4个
例3. 下列图形中是轴对称图形的有()
①矩形;②菱形;③平行四边形;④四边形;⑤等腰梯形;⑥直角梯形;⑦三角形;⑧等边三角形;⑨等腰三角形;⑩正六边形
A. 5个
B.6个
C.7个
D.8个
例3. 判断题
①两个关于某直线对称的图形是一模一样的。

()
A
Q
P
l2 l1
②两个图形关于某直线对称,对称点一定在直线的两旁。

()
③两个对称图形对应点连线的垂直平分线,就是他们的对称轴()
④平面上两个完全相同的图形一定关于某直线对称()
例4. 如图,l1、l2交于A点,P、Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等。

例5. 已知如图1,MN垂直平分线段AB,CD垂足分别为E、F,求证:AC=BD,∠ACD=∠BDC.
例6. 已知:在△ABC中,AB=AC,D是AB的中点,且DE⊥AB, △BCE周长为8,且AC-BC=2,求AB,BC的长。

例7. 如图,将一张长方形纸片ABCD沿EF折叠后,D′E与BC的交点为G,点D、C分别落在点D′、C′的位置上,若∠EFG=55°,求∠1,∠2的度数.
画图形的对称轴
【知识要点】
1. 任意两点总关于某一条直线对称,故画这两点的对称轴的方法是_____________
2. 对于复杂图形的对称轴的画法:可先找出轴对称图形或成轴对称的两个图形的任意一组对称点;再连结对称点;然后画出_________则这条________
画轴对称图形
【知识要点】
1、对于某些图形,先画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形;
2、平面直角坐标系中关于X轴和Y轴对称的图形的做法:先找出一些特殊点的对称点坐标,连接对称点,即可得到;
3、角平分线和垂直平分线的做法。

【典型例题】
例1. 找出下列轴对称图形的所有对称轴,并把它画出来.
例2. 下图中的各个图形是不是轴对称图形?如果是,画出它的一条对称轴.
例3. 看以下两个图形是否是轴对称图形?你能否画出它的对称轴?
例4.如图,连结B、B′的线段的垂直平分线是否还是你在上图中画的对称轴?
例5. 印制一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为4页,再对折一次为8页,连续对折三次为16页,……;然后再排页码.如果想设计一本16页码的毕业纪念册,请你按图1,图2,图3(图中的1,16表示页码)的方法折叠,在图中填上按这种折叠方法得到的各页在该面相应位置上的页码.
例6. 如图,∠AOB内一点P,试分别画出点P关于OA和OB的对称点P1和P2
例7. 画出下列图形关于直线L的对称图形.
例8. 下图中,直线L是一个轴对称图形的对称轴,画出这个图形关于直线L对称的另一半.
例9. 如图是台球桌面矩形网格示意图,图中的四个角各有一个入球孔,如果一个球按图中所示的方向被击出(球可以多次反射),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋
等腰三角形
【知识要点】
1、等腰三角形的两个底角相等;
2、等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称“三线合一”);
3、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

4、等边三角形:
①等边三角形的三个内角都相等,并且每一个角都等于60°;
②三个角都相等的三角形是等边三角形;
③有一个角是60°的等腰三角形是等边三角形。

5、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

【典型例题】
例1. 若等腰三角形的底边长为10cm,则腰长x的取值范围是.
例2. 若等腰三角形的一个角为40°,则另两个角为__________________。

例3. 等腰三角形一腰上的高与底边的夹角为45°,则这个三角形是()
A.锐角三角形
B.钝角三角形
C.等边三角形
D.等腰直角三角形
例4. 设α是等腰三角形的一个底角,则α的取值范围是()
A. 0<α<90°
B. α<90°
C. 0<α≤90°
D. 0≤α<90°
例5. 若等腰三角形的一个外角为120°,一边长为2cm,则另外两边长为
例6. △ABC中,∠ACB=90°,∠B=60°,AB+BC=6cm,则BC=
例7. 如图所示,△ABC 中,AB=AC ,∠BAC=120°,AD 是BC 边上的中线,点E 在AB 上,DE ⊥AB ,AD=8cm ,则AE= cm ,AC= cm
例8. 如图,△ABC 中,ABC ∠、ACB ∠的平分线交于点D ,EF 过点D ,分别交AB 、AC 于点E 、点F ,且EF//BC.
(1)求证:ED=EB;
(2)若△ABC 是边长为3的正三角形,求EF 。

例9. 如图,在△ABC 中,AB=AC ,BC=BD=ED=EA ,求∠A 的度数.
例10. 已知△ABC 是等腰直角三角形,AB=AC ,若AD=AB ,∠CAD=36°,求∠DBC 的度数。

例11. 如图所示,在四边形ABCD 中,AB=AD ,CD=23,∠A=60°,∠D=150°。

已知四边形的周长为32,求四边形ABCD 的面积.
B
E D
C
A
B
D
E
F
例12. 如图所示,P 是等边三角形ABC 内一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .
(1)观察并猜想AP 与CQ 之间的大小关系?并证明;
(2)若PA :PB :PC=3:4:5,连PQ .试判断△PQC 的形状并说明理由.
课题学习 最短路径问题
【典型例题】
例1. 如图,草原上两个居民点A,B 在河流L 的同旁,一汽车从A 出发到B ,途中需到河边加水,汽车在哪一点加水,可使行驶的路程最短?在途中画出该点。

例2. 图中A ,B 为公路L 同旁的两个村庄,在L 上找一点P .
(1)当P 到A ,B 等距离时,P 在何处? (2)当P 到两村距离之和最小时,P 在何处?
I
B
A
B
I

B
例3. 如图所示,一牧人带马群从A 点出发,先到草地边缘MN 放牧,再带马群到河边缘PQ 去给马饮水,试问:牧人应走哪条路线才能使总路程最短?
例4. 草原上有两个居民点A ,B 在河流的同旁,如图所示,•暑假里小颖和父母去旅游恰好路过此地,他们的汽车从居民点A 到B ,途中需要到河边加水,•为了使行驶的路程最短,小颖设计出了汽车应在河边的某一特定位置加水,你能找出这个特定位置在河边的什么地方吗?说明理由.
例5. 如图所示,E 、F 分别是△ABC 的边AB 、AC 的两定点,在BC 上求一点M ,使△MEF 的周长最短。

A
Q
N
M
C
【思考题】
例6. 如图,已知:A、B两点在直线MN的同侧,且AB//MN,在MN上求一点P,使:(1)|PA-PB|最小
(2)|PA-PB|最大
(3)PA+PB最小
例7. 当A、B两点在直线MN的两则,点A、点B到MN的距离不相等,在MN上求一点P,使:
(1)|PA-PB|最小
(2)|PB-PA|最大
(3)PA-PB最小。

相关文档
最新文档