生活中的轴对称讲义
七年级数学下册《生活中的轴对称》课件华东师大版

对称点的确定
准确判断对称点的位置, 避免出现误差。
细节处理
在作图过程中注意细节的 处理,如线条的粗细、长 度等,以确保图形的准确 性和美观性。
03
生活中的轴对称实例
自然界中的轴对称
01
总结词
自然界中存在着许多轴对称的现象,这些现象不仅美丽,而且富有科学
意义。
02 03
详细描述
自然界中的许多生物,如蝴蝶、蜜蜂、蜻蜓等,它们的身体结构呈现出 明显的轴对称特征。这种对称性有助于保持生物体的平衡和稳定性,使 其能够更好地适应自然环境。
旋转与轴对称
旋转
在平面内,将一个图形绕某一点转动 一定的角度,而不改变其形状和大小 。
旋转与轴对称的联系
旋转也是轴对称的一种特殊情况,当 对称轴为无穷远时,图形关于该直线 对称,即为旋转。
相似与轴对称
相似
两个图形如果形状相同、大小不同,则它们是相似的。
相似与轴对称的联系
相似是轴对称的一种特殊情况,当对称轴为无穷远时,两个图形关于该直线对 称,即为相似。
图片展示
故宫、凡尔赛宫等建筑物的轴对称设计图。
艺术作品中的轴对称
总结词
在绘画、雕塑等艺术作品中,轴对称的应用能够创造出和谐、平衡的艺术效果。
详细描述
艺术家们经常利用轴对称的原理来创作出具有美感的艺术作品。例如,在绘画中,通过将画面分成左右两部分,并使 这两部分在形态、色彩等方面保持对称,可以创造出和谐、平衡的艺术效果。
轴对称在生活中的应用
80%
建筑设计
许多建筑利用轴对称设计,以增 加美观和稳定性。例如,中国的 故宫、天坛等建筑群。
100%
自然界中的轴对称
自然界中存在许多轴对称的物体 和现象,如雪花、蝴蝶翅膀等。
生活中地轴对称(知识点总结材料 基础 变式 提高)

实用标准文案知识要点梳理轴对称分类轴对称图形 轴对称生活中的轴对称轴对称实例角平分线 线段的垂直平分线 等腰三角形 等边三角形轴对称的性质轴对称的性质 镜面对称 的性质图 案设计 轴对称的应用镶边与剪纸 一、轴对称图形 1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴 对称图形,这条直线叫做对称轴。
2 、理解轴对称图形要抓住以下几点: (1)指一个图形; (2)存在一条直线(对称轴); (3)图形被直线分成的两部分互相重合; (4)轴对称图形的对称轴有的只有一条,有的则存在多条; (5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形; 【例 1】要 在 一 块 长 方 形 的 空 地 上 修 建 一 个 既 是 轴 对 称 图 形 , 又 是 中 心 对 称 图 形 的花坛,下列图案中不符合设计要求的是( )文档大全实用标准文案二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段 ;轴对称图形轴对称区别 是一个图形自身的对称特性是两个图形之间的对称关系对称轴可能不止一条对称轴只有一条共同点 沿某条直线对折后都能够互相重合如果轴对称的两个图形看作 一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。
【例 2】下 列 四 个 判 断 : ① 成 轴 对 称 的 两 个 三 角 形 是 全 等 三 角 形 ; ② 两 个 全 等 三角 形 一 定 成 轴 对 称 ;③ 轴 对 称 的 两 个 圆 的 半 径 相 等 ;④ 半 径 相 等 的 两 个 圆 成 轴 对称,其中正确的有( )三、角平分线的性质 1、角平分线所在的直线是该角的对称轴。
《生活中的轴对称》课件

线关于线的对称
要点一
总结词
线关于线的对称性质
要点二
详细描述
如果两条直线m和n关于直线l对称,则它们与直线l的夹角 相等,且它们的方向向量与直线l的交点是同一点。
05
总结与思考
轴对称的意义
轴对称是数学中的一个重要概念,它描述了一个物体或图 形关于某一直线或轴的对称关系。在现实生活中,轴对称 的应用非常广泛,它不仅存在于自然现象和人造物体中, 还涉及到艺术、工程和科学等领域。
详细描述在建筑、平面设Fra bibliotek和服装设计等领域 ,轴对称被广泛应用于设计实践中。 这种对称性能够给人带来稳定感和美 感,使设计作品更加吸引人。
工程设计
总结词
轴对称在工程设计中具有实际的应用 价值,它能够提高结构的稳定性和安 全性。
详细描述
在桥梁、建筑和机械设计中,轴对称 结构能够有效地分散载荷,提高结构 的强度和稳定性。这种对称性还有助 于减少风阻和振动,提高设备的运行 效率和安全性。
数学研究
总结词
轴对称是数学研究中的重要概念,它对于几何学、代数学和物理学等领域的发展有着深远的影响。
详细描述
在几何学中,轴对称被用于研究图形的对称性质和变换;在代数学中,对称群理论是研究对称性的重 要工具;在物理学中,对称性原理被用于描述自然界的规律和现象。轴对称的概念在这些领域中具有 广泛的应用价值。
未来,轴对称的应用将更加多元化和交叉化,它不仅涉及到数学和物理学等传统领域,还将拓展到生 物学、医学、工程学和信息科学等领域。通过跨学科的合作和应用,轴对称将为人类带来更多的创新 和突破。
如何发现生活中的轴对称
观察周围环境
在日常生活中,可以多观察周围的环境,寻找具有轴对称特征的物体和现象。例如,建筑 物、自然界中的山水、花鸟等都可能存在轴对称。
轴对称图形_讲义

课题轴对称与轴对称图形学习目标与考点分析1.通过学习轴对称与轴对称图形的区别和联系,进一步发展学生抽象概括能力。
2.通过轴对称与轴对称图形的学习,让学生关注生活,学会观察、增强交流。
3.经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。
学习重点1、由具体情境抽象出轴对称与轴对称图形的概念.2、比较观察轴对称与轴对称图形之间的区别与联系。
学习方法引导、分析、探究学习内容与过程情境引入:1.剪纸活动出示剪的飞鸟图案你能说出老师是如何剪出这幅图案?教师示范:将纸对折,沿所画的线条剪出飞鸟。
同学也试一试,看谁剪出的图案最美。
指导学生观察这些图案有何共同点。
对折后两部分完全重合,也就是说这两部分是对称的。
自古以来,对称图形被认为是平衡和谐之美,我们时时刻刻生活在一个充满对称的世界之中,从动物到植物,从小巧精致的艺品到雄伟壮丽的建筑,大多都是对称的,下面让我们共同感受一下对称的美。
2.图片展示建筑脸谱第三讲轴对称剪纸国旗摩洛哥约旦英国肯尼亚点评:通过剪纸、欣赏生活中的对称美,培养学生的操作能力,强化学生的交流意识,激发学生探求新知的欲望。
3.探究1(轴对称图形)对折就有——折痕折痕可以看成——直线把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形是轴对称图形。
4.探究2(对称轴的条数)下列图形是否是轴对称图形,找出轴对称图形的所有对称轴。
思考:正三角形有条对称轴正四边形有条对称轴正五边形有条对称轴正六边形有条对称轴正n边形有条对称轴当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?小结:一个轴对称图形的对称轴的条数不一定是一条。
圆无数条对称轴5.练一练(1)生活中有许多轴对称图形,你能举例吗?引导:数字,英文,汉字(2)推理游戏下面一个应该是什么形状?6.探究3(轴对称)(1)动手操作你能用两块大小、形状完全一样的直角三角形拼成轴对称图形吗(2)多媒体演示:将中的两个三角形均速向两边移动变成提问:这两个三角形有什么关系?多媒体演示两个三角形对折重叠的过程。
轴对称讲义(全)

轴对称【知识重点】1、轴对称图形:假如沿某条直线对折,对折的两部分是完整重合的,这样的图形为轴对称图形。
这条直线叫做这个图形的对称轴。
2、轴对称:把一个图形沿着某一条直线翻折过去,假如它能够与另一个图形重合,说这两个图形为轴对称。
这条直线叫做这个图形的对称轴。
3、对称点:翻折后(图形重合时)能够相互重合的点。
4、垂直均分线(中垂线):垂直而且均分一条线段的直线。
结论 1:线段垂直均分线上的点到这条线段两个端点的距离相等。
结论 2:假如一个图形对于某一条直线对称,那么连结对称点的线段的垂直均分线就是该图形的对称轴。
【典型例题】例 1. 在以下十个汉字中,哪几个是轴对称图形?他们各有几条对称轴?上下目天田土吕林显王例 2. 如图,以下图案是我国几家银行的标记,此中轴对称图形有()A.1 个B.2个C.3 个D.4个例 3. 以下图形中是轴对称图形的有()①矩形;②菱形;③平行四边形;④四边形;⑤等腰梯形;⑥直角梯形;⑦三角形;⑧等边三角形;⑨等腰三角形;⑩ 正六边形A. 5 个个个 D.8 个例 3. 判断题②两个图形对于某直线对称,对称点必定在直线的两旁。
()③两个对称图形对应点连线的垂直均分线,就是他们的对称轴()④平面上两个完整同样的图形必定对于某直线对称()例 4. 如图, l1、 l 2交于 A 点, P、 Q 的地点以下图,试确立M 点,使它到l 1、 l 2的距离相等,且到P、Q 两点的距离也相等。
l 1PAl2Q例 5. 已知如图1,MN 垂直均分线段 AB,CD垂足分别为E、F,求证:AC=BD,∠ ACD=∠BDC.例 6. 已知:在△ ABC中,AB=AC,D是 AB 的中点,且 DE⊥ AB, △ BCE周长为 8,且 AC- BC=2, 求 AB,BC的长。
例 7. 如图,将一张长方形纸片 ABCD 沿 EF折叠后, D′ E 与 BC 的交点为 G,点 D、C 分别落在点 D′、 C′的地点上,若∠ EFG=55°,求∠ 1,∠ 2 的度数.绘图形的对称轴【知识重点】1. 随意两点总对于某一条直线对称,故画这两点的对称轴的方法是_____________2.对于复杂图形的对称轴的画法:可先找出轴对称图形或成轴对称的两个图形的随意一组对称点;再连结对称点;而后画出_________则这条 ________画轴对称图形【知识重点】1、对于某些图形,先画出图形中的一些特别点(如线段端点)的对称点,连结这些对称点,就能够获得原图形的轴对称图形;2、平面直角坐标系中对于X 轴和 Y 轴对称的图形的做法:先找出一些特别点的对称点坐标,连结对称点,即可获得;3、角均分线和垂直均分线的做法。
《生活中的轴对称》课件

生活中的轴对称
什么是轴对称
- 轴对称是一种图形的特征, 左右或上下对称。
- 通过一个轴线将图形分为两 个完全相同的部分。
- 轴对称中的基本概念如轴线 和对称中ቤተ መጻሕፍቲ ባይዱ。
轴对称的应用
- 生活中的轴对称:自然界中 的形状和生物体。
- 建筑物中的轴对称:古代建 筑和现代建筑的设计。
- 艺术中的轴对称:绘画、雕 塑和摄影中的艺术创作。
轴对称的实践
- 用手绘制轴对称图形:练习 构图和对称性。
- 制作一个轴对称的模型:用 纸板和其他材料创建。
- 判断物体是否是轴对称的: 观察和分析图像和实物。
轴对称的重要性
轴对称在日常生活中 的应用
家居摆放、服装设计、厨房烹 饪。
轴对称在科学研究中 的作用
1 轴对称是生活中随处 2 轴对称在各个领域中 3 希望通过本课程能够
可见的重要概念
都有广泛的应用和发
更好地认识和理解轴
无论是自然界还是人类创
展前景
对称的意义和作用
造的事物,轴对称都扮演
从日常生活到工业制造,
通过学习和实践,提升对
着重要角色。
轴对称的应用潜力仍有很
轴对称的认知和创造能力。
多待发掘。
物理学、化学、生物学和天文 学。
轴对称在工业制作中 的重要性
汽车制造、电子产品、品牌标 志。
轴对称的发展趋势
新材料的开发和使用
研发更轻、更坚固的材料,推动 轴对称设计的创新。
机器人应用轴对称的机制
利用轴对称技术改进机器人的运 动和操作。
未来轴对称技术的发展方向
探索更高级的轴对称概念和应用 场景。
结论
生活中常见的轴对称图形PPT课件

把一个图形沿着某一条直线对折过来, 对折的两部分能够完全重合,这个图形就叫 做轴对称图形
这条直线就是它的对称轴。 你能举例说一下生活中常见的轴对称图形 吗?
例题讲解
下列这些图形是不是轴对称图形?
√
×
×
√
√
×
例题讲解
下列这些图形是不是轴对称图形? 轴 对 称 的 性 质
沿一条直线折叠,直线两旁的部分能够完全重合. 1、翻折前后图形的大小、形状不变。
将一张纸对折,任意剪出一个图形,然后展开,所得到的图形是一个轴对称图形吗?
3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线成轴对 称;
,折叠后对应的点叫对称点。
沿一条直线对折后能够完全重合的两个图形,称为这两个图形成轴对称,
√ 一、我们学习的图形的运动方式有哪些?
轴对称的性质
AB的 C 对应角 __是 _E_F_G__; _ BC的 A 对应角 __是 _F_G_E__; _
3.轴对称的性质 m
2、翻折前后图形的对应角的大小,对应线段的长度都相等。
,折叠后对应的点叫对称点。 如果把两个成轴对称的图形看成一个图形,那么这个图形就是_轴对称图形. 圆的对称轴有几条?它的对称轴是什么?
沿一条直线折叠,直线两旁的部分能够完全重合.
沿一条直线折叠,直线两旁的部分能够完全重合.
△ABC是一个等边三角形,它有没有对称轴,如果有的话,有几条?
两个成轴对称指的是两个图形
把一个图形沿着某一条直线对折过来,对折的两部分能够完全重合,这个图形就叫做轴对称图形
沿一条直线折叠,直线两旁的部分能够完全重合.
o 现在同学们就从我们生活周围的事物中来找一些轴对称的例子吧。
轴对称 (讲义及答案)

轴对称(讲义)课前预习1.剪纸艺术源远流长,是中华民族智慧的结晶,为我们的生活添加了别样的色彩.请欣赏以下美丽的剪纸图片,你发现它们有什么共同的特点?2.做一做,想一想在纸上画一条线段AB,并将线段对折,思考:(1)折痕两边的线段________(填“相等”或“不相等”);(2)折痕与线段AB____________(填“垂直”或“不垂直”);(3)在折痕上任找一点P,并连接AP,BP,沿着折痕对折,可发现AP_____BP (填“>”,“<”或“=”).3.如图,OP平分∠AOB,PM⊥OA于点M,PN⊥OB于点N,若PM=4 cm,则PN=______cm.PNMBA知识点睛1.如果把一个图形沿一条直线折叠后能够与另一个图形完全重合,则称这两个图形__________,这条直线叫做_________.2. 如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做__________,这条直线叫做_______.3. 在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴___________,对应线段________,对应角________. 4. 垂直平分线性质定理:___________________________________________________. 5. 角平分线性质定理:___________________________________________________.精讲精练1. 如图,在10×10的正方形网格中作图:作出△ABC 关于直线l 的对称图形△A 1B 1C 1.lC BA2.关于直线l 的对称图形3. 下列四个图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个4. 如图是用笔尖扎重叠的纸得到的成轴对称的两个图形,则AB 的对应线段是_________,EF 的对应线段是_________,∠A 的对应角是______.连接CE 交l 于点O ,则_____⊥_____,且________=________.l B D F HGE OCA A EB D CF第4题图 第5题图5. 如图,裁剪师傅将一块长方形布料ABCD 沿着AE 折叠,使点D 落在BC 边上的点F 处.若∠BAF =60°,则∠AEF =_____.6. 如图,先将正方形纸片ABCD 对折,折痕为MN ,再把点B 折叠到折痕MN上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样得到的△ADH 中( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠=D .AD DH AH ≠≠HN MEDCBAEBD第6题图 第7题图7. 已知:如图,在△ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于点D ,连接AD .若AC =4 cm ,BC =8 cm ,则△ADC 的周长为__________. 8. 已知:如图,在△ABC 中,DF ,EG 分别是AB ,AC 的垂直平分线,且△ADE的周长为32 cm ,则BC =__________.A GEDBF CP DNOMCA B第8题图 第9题图9. 已知:如图,点P 关于OA ,OB 的对称点分别为C ,D ,连接CD ,交OA于点M ,交OB 于点N .若△PMN 的周长为8,则CD 的长为_________. 10. 如图,MD ,ME 分别为△ABC 的边AB ,BC 的垂直平分线,若MA =3,求MC 的长度.MABC DE11. 如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =3,则PQ 的最小值是____________.QPMN A OA EB DC第11题图 第12题图12. 已知:如图,在Rt △ABC 中,∠ACB =90°,BD 是∠ABC 的平分线,DE ⊥AB于E ,若CD =3 cm ,AB =10 cm ,则△ABD 的面积为_________.13. 已知:如图,在△ABC 中,AD 是∠BAC 的平分线,AB =3 cm ,AC =2 cm ,则S △ABD :S △ACD =_________.ACD14. 已知:如图,在四边形ABCD 中,∠B =∠C =90°,DM 平分∠ADC ,AM 平分∠DAB .求证:MB =MC .ABCD M【参考答案】课前预习1. 都是左右两边对称的图形2. (1)相等(2)垂直(3)=3. 4 知识点睛 1. 成轴对称,对称轴 2. 轴对称图形,对称轴 3. 垂直平分,相等,相等4. 线段垂直平分线上的点到这条线段两个端点的距离相等5. 角平分线上的点到这个角的两边的距离相等 精讲精练 1. 作图略 2. 作图略 3. C4.GH,CD,∠GCE,l;OC,OE5.75°6. B7.12cm8.32cm9.810.MC=3提示:连接ME,由垂直平分线定理可得结论11.312.15cm213.3:214.证明略提示:过点M作ME⊥AD于点E,由角平分线定理可得结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永成教育一对一讲义教师: 学生:日期:2014 星期:时段:课题生活中的轴对称学习重点掌握轴对称的有关概念,掌握线段、角、等腰三角形的性质,并能灵活应用上述知识解题。
学习方法讲练结合一、轴对称现象目标:1、经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
2、会找出简单对称图形的对称轴,了解轴对称和轴对称图形的联系与区别。
热身训练1.如图所示的几个图案中,是轴对称图形的是()2.如图所示,下面的5个英文字母中是轴对称图形的有()A.2个B.3个C.4个D.5个3.如图所示的图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个学习过程:1、如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做_______图形,这条直线叫做_______。
2、对称轴是一条_______,有些轴对称图形可能有几条,甚至无数条对称轴。
3、把一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么就说这_______图形成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点。
4、轴对称图形与轴对称的区别:区别:轴对称是_______图形的位置关系,而轴对称图形是_______具有特殊形状的图形。
5.你认识世界上各国的国旗吗?如图7-4所示,观察下面的一些国家的国旗,是轴对称图形的有()A.甲乙丙丁戊B.甲乙丁戊C.甲乙丙戊D.甲乙戊6.小红将一正方形的红纸沿对角线对折后,得到等腰直角三角形,然后在这重叠的纸上剪出一个非常漂亮的图案,她拿出剪出的图案问小冬,打开后的图案的对称轴至少有()A.0条B.1条C.2条D.无数条7.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.8.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.9.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?•请指出这个图形,并简述你的理由.拓展:1.如图所示,以虚线为对称轴画出图形的另一半.回顾小结:1.如果一个图形沿某一条直线折叠后,直线两旁的部分能够,那么这个图形叫做轴对称图形,这条直线叫做。
2.对于两个图形,如果沿一条直线对折后,它们能,那么这两个图形成轴对称,这条直线就是。
3.轴对称是指两个图形之间的和关系。
而轴对称图形是对一个图形而言,轴对称图形是一个具有特殊形状的图形。
它们都有沿某条直线对折使直线两旁的图形能的特征.二、探索轴对称的性质目标:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
思考:轴对称有哪些性质?1.以下结论正确的是().A.两个全等的图形一定成轴对称B.两个全等的图形一定是轴对称图形C.两个成轴对称的图形一定全等D.两个成轴对称的图形一定不全等2.下列说法中正确的有().①角的两边关于角平分线对称;②两点关于连接它的线段的中垂线为对称;③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称.④到直线L距离相等的点关于L对称A.1个B.2个C.3个D.4个3.下列说法错误的是().A.等边三角形是轴对称图形;B.轴对称图形的对应边相等,对应角相等;C.成轴对称的两条线段必在对称轴一侧;D.成轴对称的两个图形对应点的连线被对称轴垂直平分.学习过程:(1)在轴对称图形中对应点所连的线段被对称轴_______。
(2)对应线段_______,对应角_______。
(3)轴对称图形变换的特征是不改变图形的_______和_______,只改变图形的_______。
(4)成轴对称的两个图形,它们的对应线段或其延长线相交,交点在_______上。
例1.已知Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称点是B′,•如图所示,则与线段BC相等的线段是______,与线段AB相等的线段是_______和_______.•与∠B相等的角是_______和_______,因此,∠B=________.例2.如图,牧童在A处放牛,其家在B处。
A、B到河岸的距离分别为AC、BD,且AC=BD,已知A到河岸CD 的中点的距离为500m。
(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走的路程最短?在图中作出该处并说出理由。
(2)最短路程是多少m?C D 河A B变式练习如图,在金水河的同一侧居住两个村庄A、B,要从河边同一点修两条水渠到A、B两村浇灌蔬菜,问抽水站应修在金水河MN何处两条水渠最短?例3.如图,矩形ABCD沿AE折叠,使点D落在BC边上的点F处,如果∠BAF=60°,那么∠DAE=_________.变式练习如图,把一长方形纸片ABCD沿BD对折,使C点落在E处,BE与AD交于点O,写出一组相等的线段________(不含AB=CD,AD=BC)。
拓展:5.如图,∠AOB一点P,分别画出P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,• 交OB于N,若P1P2=5cm,则△PMN的周长为多少?回顾小结:对应点所连的线段被对称轴、、 .三、简单的轴对称图形(一)MNA。
B。
EBAODC目标:1.等腰三角形的有关概念,探索并掌握等腰三角形的性质;2.了解等边三角形的概念,并探索等边三角形的性质。
思考:等腰三角形和等边三角形的性质? 热身训练△ABC 中,AB=AC 。
(1)若∠A=50°,则∠B=______°,∠C=______°; (2)若∠B=45°,则∠A=______°,∠C=______°; (3)若∠C=60°,则∠A=______°,∠B=______°; (4)若∠A=∠B ,则∠A=______°,∠C=______°。
学习过程:1、有两边相等的三角形是等腰三角形,它是_______图形。
2、等腰三角形顶角的_______、底边上的_______、底边上的_______重合(也称“_______”),它们所在的直线都是等腰三角形的_______。
3、等腰三角形的两个底角_______。
4、三边都相等的三角形是_______三角形,也叫做_______三角形。
5、如果一个三角形有两个角相等,那么它们所对的边_______。
例1、①等腰三角形的一个角是30°,则它的底角是______°②等腰三角形的周长是24cm ,一边长是6cm ,则其他两边的长分别是__________ 变式练习.(1)在△ABC 中,若BC=AC ,∠A=58°,则∠C=_____,∠B=________.(2)等边三角形的两条中线相交所成的钝角度数是_______.例2、如图,在△ABC 中,已知AB=AC ,D 是BC 边上的中点,∠B=30°,求∠BAC 和∠ADC 的度数。
变式练习.如图,P 、Q 是△ABC 的边BC 上的两点,且BP=PQ=QC=AP=AQ ,则∠BAC=_______.拓展:12.如图,∠ABC 与∠ACB 的平分线相交于F ,过F 作DE ∥BC 交AB 于D ,交AC 于E ,AB C D求证:BD+EC=DE.13.如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,求∠A的度数.回顾小结:(1)等腰三角形和等边三角形的轴对称性质(2)三线合一四、简单的轴对称图形(二)目标:1、角、线段是轴对称图形2、角的平分线、线段垂直平分线的有关性质思考:角平分线有什么特征?线段垂直平分线有什么特征?热身训练1.下列图形中,不是轴对称图形的是().A.角B.等边三角形C.线段D.平行四边形2.下列图形中,是轴对称图形的有()个.①直角三角形,②线段,③等边三角形,④正方形,⑤等腰三角形,⑥圆,⑦直角.A.4个B.3个C.5个D.6个3.下列说确的是().A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴C.两个全等的三角形组成一个轴对称图形;D.直角三角形一定是轴对称图形4.如图,CD⊥OA,CE⊥OB,D、E为垂足.(1)若∠1=∠2,则有___________;(2)若CD=CE,则有___________.学习过程:1、角是轴对称图形,它的对称轴是_______,角的平分线上的点到这个角的两边的距离_______。
2、线段是轴对称图形,它的一条对称轴是_______,另一条对称轴是线段所在的直线。
3、线段垂直平分线上的点到这条线段_______。
例1.如图,在△ABC中,BC=10,边BC的垂直平分线分别交AB,BC于点E和D,BE=6,求△BCE的周长.变式训练1。
如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长。
例2.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为_____.变式训练2.如图,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,则∠C=_________拓展:1.如图,在△ABC中,AB=AC,∠BAC=120°,D、F分别为AB、AC的中点,•DE•⊥AB,GF⊥AC,E、G在BC 上,BC=15cm,求EG的长度.ADCEBABCDE2.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E ,若△EDC 的周长为24,△ABC与四边形AEDC 的周长之差为12,求线段DE 的长回顾小结:(1) 角是 图形。
(2) 角平分线上的点到这个角的两边的 相等。
(3) 线段是轴对称图形。
(4) 垂直并且 线段的直线叫做这条线段的垂直平分线。
简称中垂线。
线段垂直平分线上的点到这条线段的 距离相等。
A B E D C。