01_振动及其分类-课件·ppt
大学物理-振动和波ppt课件

• a, , x 依次超前 /2; a, x 反相(谐振动特点)
可编辑课件PPT
8
曲线描述
x xt图
xA co ts
vx Acostπ2
axA 2costπ
A
o
T
A
Av vt 图
o
T
t
t
x a
A
A
a at图
o
A
t A2
o
Tt
2A T
A2
可编辑课件PPT
可编辑课件PPT
22
曲线描述
x xt图
xA co ts
vx Acostπ2
axA 2costπ
A
o
T
A
Av vt 图
o
T
t
t
x a
A
A
a at图
o
A
t A2
o
Tt
2A T
A2
可编辑课件PPT
23
四. 谐振系统的能量
1. 谐振系统的动能和势能
由
d2x dt2
2 x
及
d2x dt2
d
dt
d
dx
有 d2xdx, 同乘以m
A
o A Ax
2
0.2m 6s1(负号表示速度沿 Ox轴负方向)
可编辑课件PPT
41
(3)如果物体在 x0.05m处时速度不等于零,
而是具有向右的初速度 v00.30ms,1求其运动方程.
解 A' x02v022 0.070m7
tan'v0 1 x0
'π 或3π
44
o π 4 x
大学物理振动课件

大学物理振动课件•振动基本概念与分类•简谐振动特性分析•非简谐振动处理方法目录•波动现象与波动方程•光学中振动与波动应用•声学中振动与波动应用•总结回顾与拓展延伸01振动基本概念与分类振动定义及特点振动的定义物体在平衡位置附近所做的往复运动称为振动。
振动的特点周期性、重复性、稳定性。
振动分类方法自由振动、受迫振动。
按振动系统分类简谐振动、非简谐振动。
按振动规律分类直线振动、扭转振动。
按振动方向分类物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐振动。
简谐振动的定义回复力与位移成正比,且方向相反;加速度与位移成正比,且方向相反;速度与位移成反比。
简谐振动的特点不满足简谐振动条件的振动称为非简谐振动。
非简谐振动的定义回复力不满足与位移成正比的规律;加速度与位移的关系不满足简谐振动的规律;振动图像不是正弦或余弦曲线。
非简谐振动的特点简谐振动与非简谐振动02简谐振动特性分析简谐振动方程建立与求解建立简谐振动方程通过受力分析和牛顿第二定律,建立简谐振动的微分方程。
对于一维简谐振动,方程形式为$mfrac{d^2x}{dt^2} + kx = 0$,其中$m$ 为振子质量,$k$ 为弹性系数。
方程的求解通过求解微分方程,得到简谐振动的通解为$x(t) = Acos(omega t + varphi)$,其中$A$ 为振幅,$omega$ 为角频率,$varphi$ 为初相位。
1 2 3表示振动物体离开平衡位置的最大距离,反映了振动的强弱程度。
振幅$A$表示振动物体完成一次全振动所需的时间,反映了振动的快慢程度。
周期$T$表示单位时间内振动物体完成全振动的次数,与周期互为倒数关系,即$f = frac{1}{T}$。
频率$f$振幅、周期、频率等参数意义相位差与波动传播关系相位差的概念两个同频率的简谐振动之间存在的相位之差。
当两个振动的相位差为$2npi$($n$为整数)时,它们处于同相;当相位差为$(2n+1)pi$ 时,它们处于反相。
《振动力学基础》课件

各自由度之间相互独立,可分别进行分析。
固有频率和主振型
多自由度系统具有多个固有频率和相应的主振型 。
连续系统的振动
分布参数系统
描述长弦、长杆等连续介质的振动,需要考虑空间位 置的变化。
集中参数系统
将连续介质离散化,用弹簧、质量等元件模拟,适用 于简单模型。
波的传播
连续系统中振动能量的传播形式,如声波、地震波等 。
线性振动和非线性振动
线性振动
满足叠加原理,各激励之间互不影响,系统响应与激励成正比。
非线性振动
不满足叠加原理,激励之间存在相互作用,系统响应与激励不成正 比。
周期性振动和非周期性振动
根据振动是否具有周期性进行分类。
CHAPTER 03
振动分析方法
频域分析法
01
频域分析法是一种通过将时间域的振动问题转换为频率域的振动问题 ,从而利用频率特性来分析振动的方法。
CHAPTER 02
振动的基本原理
单自由度系统的振动
自由振动
无外力作用下的振动,系统具有固有频率和固有振型。
强迫振动
在外力作用下产生的振动,其频率与外力频率相同或相近。
阻尼振动
由于系统内部摩擦或外部阻尼作用导致的振动,能量逐渐耗散。
多自由度系统的振动
耦合振动
多个自由度之间相互影响,振动频率和振型较为 复杂。
汽车悬挂系统和路面激励会导致车内振动,影响乘客舒适性。
船舶与海洋工程
船舶和海洋结构的振动会影响其性能和安全性,需要进行有效的振 动控制。
建筑领域
结构健康监测
对建筑物和桥梁等大型结构进行振动监测,可以评估其健康状况和 安全性。
地震工程
地震引起的振动对建筑结构的影响非常大,需要进行抗震设计和分 析。
(优质)大学物理(振动学)PPT课件

)
速度 振幅
m
A
加速度 振幅
a m
2 A
5
三条特征
简 谐
F kx
简简
振
谐谐
动
振
的 普 遍
(
d2 dt
x
2
2
x
0
)
动 三 条
振 动 的 定
定
判义
义
据式
式 x Acos(t )
6
二点说明
(1)特征方程成立的条件: 坐标原点取在平衡位置 (2)证明一种振动是简谐振动的一般步骤
a)确定研究对象,找平衡位置 b)建立以平衡位置为原点的坐标系 c)进行受力分析
d)利用牛顿定律或转动定律写出物体在任一位置 的动力学方程
e)根据判据判断该振动是否为简谐振动
7
二 描述简谐振动的物理量 x Acos(t )
1、振幅:表示物体离开平衡位置的最大距离——A
2 周期 频率 圆频率 回到原来的运动状态 r,,a T :完成一次全振动所用时间 x( t T ) x( t )
(优质)大学物理(振动学)PPT 课件
1
弹簧振子的振动
l0 k
A
x0 F 0
m
x
o
A
2
7.1 简谐振动的描述
一、简谐振动的特征方程
弹
k km F m
簧
振
子
ox
物体所受合外 力为零的位置
平衡位置
k
x
x 0o x
m F
m
1 回复力 F kx
x
竖 直
F
mg
k(x
x 0
)
kx
斜放
3
《振动》学习课件

t 5s 6
x=0.12cos( t )m
3
2
3
A o
x
2
这就是谐振动质点从x=-0.06m, 且向x轴负方向运动时刻回
到平衡位置所需的最短时间。
18
例5: 质点作谐振动, t=0时向右通过A点,经2s第一次通过B
点,再经2s质点第二次通过B点,A=B,AB=10cm,求振动
x0 2m, υ0 2 2m / s, 求振动方程。
解:
2 2,
T
A
x02
2 0
2
2,
arctan( 0 ) arctan(1) x0
且 x0<0, 0<0
显然 在第2象限 + 3
4
4
代入:x =Acos( t+ ) x 2cos(2t 3 )m
4
8
2. 旋转矢量法(几何表示法)
x0 =Acos v0 = - Asin
6
x0 =Acos v0 = - Asin
于是可求得:
A
x02
2 0
2
arctan( 0 ) x0
Ⅱ
x0<0, 0<0
x0<0,0>0
Ⅲ
注意!
Ⅰ
x0>0, 0< 0
x0>0, 0>0
Ⅳ
学会根据x0和0的正负正确判断 所在象限,如图期T=s, t=0时,
位置:x =Acos( t+ ) 速度: Asin(t )
• ( t+ )=0, x=A,=0 ——正最大 • ( t+ )=+/2, x=0, < 0 ——平衡位置 • ( t+ )= , x= -A, =0 ——负最大 • ( t+ )= 3/2, x=0, > 0 ——平衡位置 • ( t+ )=2 , x=A, =0 ——正最大
振动的基本知识课件

振动的基本知识
9
多频率成分的产生
• 每个振源都要产生自己独特的振动频率成分 或振动形态。
• 对已知的设备,找到了它所产生的各振动频 率成分,也就知道了振源所在。
• 对一台机器所进行的振动分析1/3 是由其振 动频率成分查找振源。
• 其余2/3 的振动分析是从已知机器的历史中 找到问题所在。
• 参考脉冲也用于测量转子的转速。
振动的基本知识
43
振动相位
• The relationship of the movement of part of a machine to a reference – for example the position of the shaft as it rotates
• 传感器质量小, 可测很高振级。
• 现场测量要注意 电磁场、声场和 接地回路的干扰。
振动的基本知识
50
非接触式位移传感器
振动的基本知识
51
加速度传感器的频响特性
振动的基本知识
52
波德图和极坐标图
波德图(Bode Plot)和极坐标图(Polar Plot)两者所含信息相同,都表示基频振动 的幅值和相位随机器转速的变化规律。
风机转速 = 5 Hz or 300 RPM
振动的基本知识
17
一个简单振动试验--提高频率
➢风机转速提高一倍 ➢波形图中的波形靠得很近 ➢风机转速 = 10 Hz or 600 RPM
振动的基本知识
18
一个简单振动试验--提高幅值
➢由于加在风机叶片上的不平衡重量,当 风机转速提高后,其振动幅值增加 ➢波形的高度是幅值.
• Phase indicates how a machine is moving
高中物理选修课件第一章机械振动归纳与整理

应的措施进行补偿和校正。
02
雷达技术
在雷达技术中,多普勒效应被应用于目标检测和跟踪。通过测量反射回
来的雷达波的多普勒频移,可以确定目标的运动速度和方向,从而实现
目标的精确跟踪和定位。
03
声学技术
在声学技术中,多普勒效应被应用于声音的定位和识别。通过测量声音
的多普勒频移,可以确定声源的位置和运动状态,从而实现声音的精确
受迫振动:在外力作用下发生的振动 ,如共振现象中的受迫振动。
周期性振动与非周期性振动
01
周期性振动
02
非周期性振动
物体在平衡位置附近做周期性往复运动,如单摆、弹簧振子等。
物体的运动不具有周期性,即不重复出现相同的运动状态,如阻尼振 动、随机振动等。
02
简谐运动规律及特性
简谐运动定义及条件
定义
物体在一条直线上做周期性往返 运动,且在一定范围内位移与时 间关系符合正弦或余弦函数规律 ,这种运动称为简谐运动。
计算振动周期和频率
通过测量波动图像上相邻两个峰值或 谷值之间的时间间隔,可以计算出振 动的周期和频率。
06
多普勒效应及其在生活中 的应用
多普勒效应定义及原因
定义
多普勒效应是指波源和观察者之间有相对运动时,观察者接收到的波的频率会发生变化的现象。
原因
当波源和观察者之间有相对运动时,观察者接收到的波的频率会因为波源和观察者之间的距离变化而 发生变化。当波源向观察者靠近时,观察者接收到的波的频率会变高;当波源远离观察者时,观察者 接收到的波的频率会变低。
03
阻尼振动、受迫振动和共 振现象
阻尼振动现象及原因
阻尼振动现象
振幅逐渐减小的振动。
原因
大学物理机械振动课件

03 阻尼振动
阻尼振动的定义与特点
定义
阻尼振动是指振动系统受到阻力 作用,使得振动能量逐渐减少的
振动过程。
特点
随着时间的推移,振幅逐渐减小, 频率逐渐降低,直至振动停止。
阻尼力
阻尼振动过程中,系统受到的阻力 称为阻尼力,它与振动速度成正比, 方向与振动速度方向相反。
阻尼振动的描述方法
微分方程
阻尼振动的运动方程通常表示为二阶常微分方程,形式为 `m * d²x/dt² + c * dx/dt + k * x = 0`,其中 m、c、k 分别为质量、
振动压路机
利用共振原理来提高压实效果。
振动输送机
利用共振来输送物料,提高输送效率。
受迫振动与共振的能量转换
能量转换过程
外界周期性力对系统做正 功,系统动能增加;阻尼 使系统能量耗散,系统势 能减小。
转换关系
在振动过程中,外界对系 统的总能量输入等于系统 动能和势能的变化之和。
影响因素
阻尼系数、驱动力频率、 物体固有频率等。
能量耗散途径
阻尼振动的能量耗散途径 主要包括与周围介质之间 的摩擦、空气阻力、内部 摩擦等。
能量耗散的意义
阻尼振动的能量耗散有助 于减小系统振幅,避免因 过大振幅导致的结构破坏 或噪声污染等问题。
04 受迫振动与共振
受迫振动的定义与特点
定义:在外来周期性力的持 续作用下,物体发生的振动
称为受迫振动。
确定各简谐振动的振幅、相位差和频 率,在复平面内绘制振动相量,通过 旋转和位移操作找到合成振动的相量 表示。
振动合成的能量法
描述
能量法是通过分析各简谐振动的能量分布和转化,来研究振 动合成过程中的能量传递和平衡。