离散数学 图论-通路与回路

合集下载

离散数学 7-1图概念7-2路与回路

离散数学 7-1图概念7-2路与回路
若一条路中所有的边e1, …, en均不相同,称作迹 。 若一条路中所有的结点v0, v1,…, vn均不相同,称作通路 。 闭的通路,即除v0=vn之外,其余结点均不相同的路,称作圈。
例如
路:v1e2v3e3v2e3v3e4v2e6v5e7v3 迹:v5e8v4e5v2e6v5e7v3e4v2 通路:v4e8v5e6v2e1v1e2v3
学习本节要熟悉如下术语(22个): 路、 路的长度、 回路、 迹、 通路、 圈、 割点、
连通、连通分支、 连通图、 点连通度、
点割集、
边割集、 割边、 边连通度、 可达、 弱分图、
单侧连通、 强连通、 弱连通、 强分图、 单侧分图 掌握5个定理,一个推论。
7-2 路与回路



无向图的连通性
7-1 图的基本概念


图的定义
点的度数
特殊的图 图同构
三、特殊的图
1、多重图 定义7-1.4:含有平行边的图称为多重图。 2、简单图:不含平行边和环的图称为简单图。 3、完全图 定义7-1.5:简单图G=<V,E>中,若每一对结点 间均有边相连,则称该图为完全图。 有n个结点的无向完全图记为Kn。 无向完全图:每一条边都是无向边 不含有平行边和环 每一对结点间都有边相连
3、图的分类:
①无向图:每条边均为无向边的图称为无向图。 ②有向图:每条边均为有向边的图称为有向图。
③混合图:有些边是无向边,有些边是有向边的图称
为混合图。
v1 (孤立点) v5 V1’ v1 环
v2
v4 v3 (a)无向图
V2’
V3’ (b)有向图 V4’
v2
v4 v3 ( c ) 混合图
4、点和边的关联:如ei=(u,v)或ei=<u,v>称u, v与ei关联。 5、点与点的相邻:关联于同一条边的结点称为邻 接点。

离散数学图论(图、树)常考考点知识点总结

离散数学图论(图、树)常考考点知识点总结

离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。

离散数学 教案 第八章 图论

离散数学 教案  第八章 图论

西南科技大学
6
计算机科学与技术学院
Discrete Mathematics 为方便起见,在无向图中往往用字母ei表示 边。例如,在上图中,用e1表示边(v2,v2),e2 表示边(v1,v2)等。 对于一个确定的图,我们不关心顶点的位置, 边的长短与形状,因此,所画出的图的图形可 能不唯一。 定义 一个有向图G是一个二元组<V,E>,即 G=<V,E>,其中
西南科技大学
4
计算机科学与技术学院
Discrete Mathematics 定义 一个无向图G是一个二元组<V,E>,即 G=<V,E>,其中
(1). V是一个非空的集合,称为G的顶点集, V中元素称为顶点或结点;
(2). E是无序积 的一个多重子集 (元素可重复 出现的集合为多重集),称E为G的边集,E中元 素称为无向边或简称边。 在一个图G=<V,E>中,为了表示V和E分别 为G的顶点集和边集,常将V记成V(G),而将E 记成E(G)。
由于2m,
为偶数,所以
也为偶数。
可是,vV1时,d(v)为奇数,偶数个奇数之和才能 为偶数,所以|V1|为偶数。结论得证。
西南科技大学
17
计算机科学与技术学院
Discrete Mathematics 对有向图来说,还有下面的定理: 定理 设G=<V,E>为有向图, V={v1,v2,…,vn} , |E|=m,则
(5).设E´ E且E´ ≠Φ ,以E´为边集,以E´中边
关联的顶点的全体为顶点集的G的子图,则称G´是由 边集E´导出的G的子图。
西南科技大学
26
计算机科学与技术学院
Discrete Mathematics 例如,在下图中,(2),(3)均为(1)的子图;(3)是 生成子图;(2)是顶点子集{v1,v2}的导出子图,也

离散数学图的基本概论

离散数学图的基本概论

简单通路: = v0 e1 v1 e2… ek vk为通路且边e1 e2… ek 互不相同,又称之为迹,可简用v0 v1 … vk 来表示。 简单回路 (v0 = vk)又称为闭迹。
初级通路或基本通路: = v0 e1 v1 e2… ek vk为通路 且顶点v0 v1… vk 互不相同。 基本回路: v0 = vk。 初级通路一定是简单通路,但简单通路
不一定是一条初级通路。
例8.6 就下面两图列举长度为5的通路,简 单通路,回路,简单回路,再列举长 度为3的基本通路和回路。
e3 v5
e7 v4
v1
e2
e1 v2
e6 e4
e5 v3
e1 v5 e8 e4
v4
v1
e3
e2 v2
e6 e5
e7 v3
(1)
(2)
解:试对照定义,自己做一做!如:
(1)中 v1e1v2e2v5e3v1e1v2e4v3 为v1到v3的通路;
021?01ijn11iiij??????mmjm从而?12im1jijvdm?????mmvvddmm??????i?????1i?niinmijij11从而有从而有1?im1jijvdm??????由mij的定义知?11jmvdm????????i???1i??n1inm1jij1通路数与回路数的矩阵算法
平行边:无向图中,关联一对结点的无向边 多于一条,平行边的条数为重数; 有向图中,关联一对顶点的无向边 多于一条,且始、终点相同。
多重图:包含平行边的图。
简单图:既不包含平行边又不包含环的图。
二、度
度:(1) 在无向图G = < V, E >中,与顶点v(vV) 关联的边的数目(每个环计算两次),记 作:d(v)。

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

图论中的行走和路线问题教案

图论中的行走和路线问题教案

图论中的行走和路线问题教案引言:图论是离散数学中一个重要的分支,研究了图的性质、特征和应用。

本文将介绍图论中的行走和路线问题,并针对这些问题给出相应的解决方法和教学案例。

一、行走问题在图论中,行走问题是研究在图中如何通过边从一个顶点到达另一个顶点的问题。

行走问题分为以下几种情况:1.1 通路与回路通路是指在图中通过一系列的边从一个顶点到达另一个顶点的路径,而回路是从一个顶点出发,经过若干个其他顶点,最后回到出发点的路径。

教学案例:请同学们在一个简单的图中找出从顶点A到顶点D的通路和回路,并描述各条路径的具体走法。

1.2 连通图与连通分量连通图是指在图中,任意两个顶点之间存在通路的图。

而连通分量是指将一个图分解成多个连通子图,每个子图都是连通的。

教学案例:给定一个图,请同学们判断它是不是连通图,并找出它的所有连通分量。

1.3 欧拉图和哈密顿图欧拉图是一种图,它可以通过遍历每条边一次且仅一次来返回到原点。

而哈密顿图是一种图,它可以通过遍历每个顶点一次且仅一次来返回到原点。

教学案例:请同学们在一个图中找出是否存在欧拉路径和哈密顿路径,并给出具体的路径表达式。

二、路线问题路线问题是研究在图中如何选择路径以满足一定条件的问题。

路线问题分为以下几种情况:2.1 最短路径和最长路径最短路径是指在图中找到两个顶点之间的最短路径,而最长路径则是找到两个顶点之间的最长路径。

教学案例:请同学们在一个有向带权图中找到从顶点A到顶点B的最短路径和最长路径,并计算出路径的权值和。

2.2 哈密顿路径和旅行商问题哈密顿路径是指在一个图中,通过遍历每个顶点一次且仅一次来返回到原点的路径。

旅行商问题是指在一个带权完全图中,找到一条最短哈密顿路径以经过每个顶点一次且仅一次。

教学案例:请同学们在一个带权完全图中找到旅行商问题的解决方案,并计算出路径的权值和。

结语:图论中的行走和路线问题是一个广泛应用于实际问题求解的数学工具。

通过学习图论中的相关概念和解决方法,同学们可以在解决实际问题时得到帮助。

离散数学第十四章图论基本概念

8
握手定理
定理14.1 设G=<V,E>为任意无向图,V={v1,v2,…,vn}, |E|=m, 则
n
d(vi ) 2m
i 1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
定理14.2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
(3) 初级通路(路径)与初级回路(圈): 中所有顶点各异,则 称 为初级通路(路径),又若除v0=vl,所有的顶点各不相 同且所有的边各异,则称 为初级回路(圈)
(4) 复杂通路与回路:有边重复出现
20
几点说明
表示法 ① 定义表示法 ② 只用边表示法 ③ 只用顶点表示法(在简单图中) ④ 混合表示法
3
有向图
定义14.2 有向图D=<V,E>, 只需注意E是VV 的多重子集 图2表示的是一个有向图,试写出它的V 和 E
注意:图的数学定义与图形表示,在同构(待叙)的意义下 是一一对应的
4
相关概念
1. 图 ① 可用G泛指图(无向的或有向的) ② V(G), E(G), V(D), E(D) ③ n阶图
定义14.17 G=<V,E>, EE E是边割集——p(GE)>p(G)且有极小性 e是割边(桥)——{e}为边割集
25
点割集与割点
例3 {v1,v4},{v6}是点 割集,v6是割点. {v2,v5} 是点割集吗? {e1,e2},{e1,e3,e5,e6}, {e8}等是边割集,e8是 桥,{e7,e9,e5,e6} 是边割 集吗?
3. 非负整数列d=(d1, d2, …, dn)是可图化的,是可简单图化的.

离散数学 图论-通路与回路

2、简单通路和初级通路的关系
有向图中的每一条初级通路,也都必定是简单通路。 反之不成立 回路也可分为简单回路和初级回路。
3、通路的表示:
可仅用通路中的边序列表示:e1e2…ek 也可仅用通路中所经过的结点的序列表示:v1v2v3…vk
4、性质: 1)定理 在n阶图D中,若从顶点vi到vj(vi≠vj)存在通路,则从vi到vj存在长度 小于或等于(n—1)的通路 若大于n-1,则存在相同节点(有回路),将回路删去可得 2)在n阶图D中,若从顶点vi到vj存在通路,则vi到vj一定存在长度小于或等于 n—1的初级通路(路径) 3)定理 在一个n阶图D中,若存在vi到自身的回路,则一定存在vi到自身长度 小于或等于n的回路. 4)在一个n阶图D中,若存在vi到自身的简单回路,则一定存在长度小于或等 于n的初级回路.
(3)A(D)中所有元素之和为D中长度为1的(边)通路总条数。 主对角线的元素值为图中结点vi长度为1 的环的条数
利用A(D)确定出D中长度为L的通路数和回路数,就需要用到邻接矩阵的幂次运算 (4)A2中的元素值bij是结点vi到vj长度为2 的通路条数:
说明:由矩阵的乘积定义 bij = ∑k aik * akj 由此可推断,A3矩阵中的Cij元素值,表示了从到长度恰为3的通路条数目 (5)定理14.11 设A为有向图D的邻接矩阵,V={v1,v2,…,vn} 为D的
注:三种图的关系:强连通图一定是单向连通图,反之不成立
单向连通图一定是弱连通图.反之不成立
6、有关强连通图与单向连通图的判定 (1)定理: 设有向图D=<V,E>,V={v1,v2,…,vn}.
D是强连通图当且仅当D中存在经过每个顶点至少一次的回路. (2) 定理 设D是n阶有向图

离散数学第五版第五章(耿素云、屈婉玲、张立昂编著)

称+(G),+(G),-(G),-(G)分别为G的最大出度、 最小出度、最大入度和最小入度。
12
5.1 无向图及有向图
五、握手定理(定理5.1-5.2)
设G=<V,E>为任意无向图,V={1,2,……,n},|E|=m,则
n
d ( i ) = 2 m
i =1
设D=<V,E>为任意有向图,V={1,2,……,n},|E|=m,则
20
5.1 无向图及有向图
例5:下列图中那些图具有子图、真子图、生成子图的
关系?
e4 2
1 e5
e1 3
e3 4 e2
(1)
2 e4
1
e5
(2)
e4 1 2
e1 3
e3 4
(3)
1 e1
e3
2
e2 3
1 e1
e3
2
3
1 e1
2
e4
(4)
(5)
(6)
21
5.1 无向图及有向图
23
5.1 无向图及有向图
例3: (1)画出4阶3条边的所有非同构的无向简单图。 (2)画出3阶2条边的所有非同构的有向简单图。
24
5.1 无向图及有向图
例4:下列图中那些图互为同构?
e a
b
d
c
1
4
5
2
3
(1)
(2)
(3)
(4)
(5)
(6)
25
第五章 图的基本概念 5.1 无向图及有向图 5.2 通路、回路、图的连通性 5.3 图的矩阵表示 5.4 最短路径及关键路径
十一、补图的定义(定义5.9)

通路和回路

通路和回路1. 图的矩阵表示矩阵表示便于我们把图存入计算机中,也便于对图进行代数运算。

定义1.1邻接矩阵(adjacent matrix )以各顶点为行标和列标的方阵A ,其中项A ij =连接顶点i 和j 的边的个数。

关联矩阵(incidence matrix )以各顶点为行标和以各边为列标的矩阵M ,其中若顶点i 与边j 相关联,则M ij =1,否则M ij =0。

例1.2邻接矩阵:关联矩阵:2. 通路与可达关系定义2.1 通路(walk ):在无向图中,通路是相邻的边顺次组成的序列。

在有向图中,通路中相邻的边还必须满足,前一条边的终点是下一条边的起点。

位于通路最左端的顶点称为该通路的起点(initial vertex ,start vertex ),位于最右端的顶点称为该通路的终点(final vertex )。

若a ,b 分别是某通路的起、终点,则称从顶点a 可达顶点b ,记为a→b 。

通路的长度:非加权图中,一条通路的长度是指其中边出现的次数。

在加权图中,一条通路的长度是指其中出现的所有边(包括重复出现的边)的权重之和。

路径(trail ):所含边互不相同的通路称为路径。

简单路径(path ,复数为paths ):所含顶点互不相同的通路称为简单路径。

课本第289页定理14.11.定理2.2 在图G 的邻接矩阵A 的k 次幂A k 中,A ij 表示从顶点i 到j 的所有长度为k 的通路的总数。

v 2 v 3e 5 e 1推论2.3 2k+++A A A定义2.4 可达矩阵。

3.最短路径问题最短路径:距离:d(u,v)=从u到v的最短路径的长度。

约定:d(u,u)=0;若u不可达v,则d(u,v)=+∞问题描述:给定一个加权无向图G=(V,E,W),其中每条边e的权重W(e)为非负实数,找出从某顶点s到另外一个顶点之间的最短路径。

Dijkstra算法:由E. W. Dijkstra与1959年给出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)有向图关联矩阵的性质 (1) ∑mij= 0,j=1,2,…,m,从而∑∑mij = 0,这说明M(D)中所有元 素之和为0. (2) M(D)中,负1的个数等于正1的个数,都等于边数m,这正是有向图握手定 理的内容(入度之和等于出度之和). (3)第i行中,正1的个数等于d+(vi)(结点的入度),负1的个数等于d-(vi) (结点的出度). (4)平行边所对应的列相同 3、有向图的邻接矩阵 1)定义:设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 令: aij为顶点vi邻接到顶点vj边的条数 称(aij))nxn为D的邻接矩阵,记作A(D),或简记为A. 2)邻接矩阵的性质 (1)每列元素之和为结点的入度,即 ∑aij = d+(vi),i=1,2,…,n 所有列的和 ∑∑aij = ∑d+(vi) = m ,等于边数 每行元素之和为结点的出度,所有行的和也等于边数 (2)邻接矩阵中元素 aij 反映了有向图中结点vi到vj通路长度为1的条数
§14.4
图的矩阵表示
一、图的矩阵表示 用矩阵表示图之前,必须将图的顶点或边标定成顺序,使其成为标定图 1、无向图的关联矩阵 1)定义14.24 设无向图G=<V,E>,V={v1,v2,…,vn}。 E={e1,e2,e3,…em},令mij为顶点vi与边ej的关联次数,则称(mij)nxm为G的 关联矩阵,记作 M(G). 2)关联矩阵的性质: 关联矩阵是n行(结点数)m列(边数)的矩阵
2、结点的相互可达 若vi → vj 且vj → vi 则称vi与vj是相互可达的,记作: vi ↔ vj 规定vi ↔ vi . 3、 结点的可达关系为V上的二元关系,但不是等价关系(不满足对称性)。 相互可达关系为V上的二元关系,且是V上的等价关系. 有向图中顶点之间的可达关系既无对称性,也无反对称性 4、有向图中结点的距离 定义:设D=<V,E>为有向图 ∀ vi,vj ∈V,若 vi → vj,称vi到vi长度最短的通路为vi到vj的短程线 短程线的长度为vi到vj的距离,记作d<vi,vj> 注:该定义与无向图中顶点vi与vj之间的距离d(vi,vj)的区别:无对称性 一般地:d<vi,vj> ≠ d<vj,vi> (可能d<vi,vj> 不存在) 5、弱连通图、单向连通图和强连通图 定义1 设D={V,E)为一个有向图. 若D的作为无向图是连通图,则称D是弱连通图,简称为连通图. 定义2 设D={V,E)为一个有向图, 若∀ vi,vj ∈V , vi → vj与vj→ vi至少成立其一,则称D是单向连通图. 若∀ vi,vj ∈V,均有vi ↔ vj,则称D是强连通图 注:三种图的关系:强连通图一定是单向连通图,反之不成立 单向连通图一定是弱连通图.反之不成立
离散数学
通路与回路
§14.2
1、通路
通路、回路
1)定义:给定有向图D中的任何一个边序列L,如果其中的任何一条边的终点, 都是继之出现的边(如果存在的话)的始点,则称这样的边的序列是图G的通 路。 若序列中首尾结点相同,则称L为回路。 2)定义:有向图D中,边序列中的各条边全都是互不相同的通路,称为简单通 路。(无重复边) 3)定义:相同,则称通路为初级回路或圈。(无重复点) 4)定义:序列中边的条数称为它的长度
2、简单通路和初级通路的关系
有向图中的每一条初级通路,也都必定是简单通路。 反之不成立 回路也可分为简单回路和初级回路。
3、通路的表示:
可仅用通路中的边序列表示:e1e2…ek 也可仅用通路中所经过的结点的序列表示:v1v2v3…vk
4、性质: 1)定理 在n阶图D中,若从顶点vi到vj(vi≠vj)存在通路,则从vi到vj存在 长度小于或等于(n—1)的通路 若大于n-1,则存在相同节点(有回路),将回路删去可得 2)在n阶图D中,若从顶点vi到vj存在通路,则vi到vj一定存在长度小于或等 于n—1的初级通路(路径) 3)定理 在一个n阶图D中,若存在vi到自身的回路,则一定存在vi到自身长 度小于或等于n的回路. 4)在一个n阶图D中,若存在vi到自身的简单回路,则一定存在长度小于或等 于n的初级回路.
6、有关强连通图与单向连通图的判定 (1)定理: 设有向图D=<V,E>,V={v1,v2,…,vn}. D是强连通图当且仅当D中存在经过每个顶点至少一次的回路. (2) 定理 设D是n阶有向图 D是单向连通图当且仅当D中存在经过每个顶点至少一次的通路.
例2.设有向图D是单向连通图,但不是强连通图,问在D中至少加几条边所 得图D’就能成为强连通图? 作业:P292 16、17、18、39、40(1、2)、43
返回
结点数相同边数相同 结点的度相同 但是两个图 不同构 返回
(b),(c) 互为补图
自补图
返回
4、有向图的可达矩阵 1)定义:设D=<V,E>为有向图, V={v1,v2,…,vn} 令 1 vi可达vi pij = 0 否则 称(pij)nxn为D的可达矩阵,记作P(D),简记为P 2)可达矩阵的性质 (1)主对角线元素均为1 (每个结点自身可达) (2)可通过图的邻接矩阵A的n-1次幂Bn-1得到(将其非零元素换为1,主 对角线元素均设为1即可)
以上概念均可用在无向图G中 §14.3 图的连通性
一、无向图的连通性 1、结点的连通: 设无向图G=<V,E>,∀ u,v ∈V,若u,v之间存在通 路,则称u,v是连通的,记作u ~ v,∀ u ∈V,规定u~u 2、结点的连通关系是等价关系 若定义:~ ={<u,v> ┃u,v∈V且 u与v之间有通路} 此关系是自反,对称的,传递的,因而~是V上的等价关系
(1)M(G)每列元素之和均为2,这正说明每条边关联两个顶点(环所关联的两个端 点重合). ∑mij = 2 (j = 1,2,…,m) (2)M(G)第i行元素之和为结点vi的度数,i=1,2,…n (3) 所有行的和(即矩阵所有元素之和)等于边数的2倍(该例10=边数5的2倍 )。 ∑d(vi)=∑∑mij= ∑2 = 2m,这个结果正是握手定理的内容(即各顶 点的度数之和等于边数的2倍) . (4)第j列与第k列相同,当且仅当边ej与ek是平行边. (5) 某行i的和为0(即 ∑mij = 0),当且仅当vi是孤立点. 2、有向图的关联矩阵 定义:设有向图D=<V,E>中无环,V={v1,v2,…,vn}。 E={el,e2,…,em}, 令 1 vi为边ej的起点 mij = 0 vi为边ej不关联 -1 vi为边ej的终点 则称(mij)nxm,为D的关联矩阵,记作M(D)
(3)A(D)中所有元素之和为D中长度为1的(边)通路总条数。 主对角线的元素值为图中结点vi长度为1 的环的条数 利用A(D)确定出D中长度为L的通路数和回路数,就需要用到邻接矩阵的幂次运算 (4)A2中的元素值bij是结点vi到vj长度为2 的通路条数: 说明:由矩阵的乘积定义 bij = ∑k aik * akj 由此可推断,A3矩阵中的Cij元素值,表示了从到长度恰为3的通路条数目 (5)定理14.11 设A为有向图D的邻接矩阵,V={v1,v2,…,vn} 为D的顶 点集, 则A的L次幂AL(L≥1)中元素cij为D中vi到vj长度为L的通路数, 其中cii为vi到自身长度为L的回路数 ∑∑cij(所有元素之和)为D中长度为L的通路总数, 其中 ∑cii为D中长度为L的回路总数. 推论 设BL=A + A2十…+AL (L≥1), 则BL中元素 bij为D中长度小于或等于L的通路数, 其中主对角线上元素值为D中长度小于或等于L的回路数
3、无向图的连通图 定义14.13 若无向图G是平凡图或G中任何两个顶点都是连通的,则称G 为连通图,否则称G为非连通图或分离图 4、结点之间的距离 1)定义:设u,v为无向图G中任意两个顶点 若u ~ v,称u,v之间长度最短的通路为u,v之间的短程线 短程线的长度称为u,v之间的距离,记作 d(u,v) 当u,v不连通时,规定d(u,v)= ∞ . 2)无向图结点的距离有以下性质: 1.d(u,v) ≥ 0,u = u时,等号成立. 2.具有对称性:d(u,v )=d( v,u). 3.满足三角不等式:∀ u,v ,w ∈ V(G),则 d(u,v)+d(v,w) ≥ d(u,w) 二、有向图的连通性 1、结点的可达性 定义: 设D=<V,E>为一个有向图.∀ vi,vj ∈V,若从vi到vj存在通路 则称vi可达vj, 记作vi → vj 。 规定vi总是可达自身的,即vi → vi.
无向图G: V={v1,v2, v3 } E ={ (v1,v2), (v1,v2), (v2,v2), (v2,v2), (v3,v2), (v3,v2), (v1,v3), }
有向图D: V={v1,v2, v3 } E ={ <v1,v2>, <v2,v1>, <v2,v1>, <v2,v3>, <v3,v3>, <v3,v3>, }
相关文档
最新文档