气象学与气候学
气象学与气候学课件

气候敏感性
地球系统对温室气体增加 的响应是复杂的,不同气 候系统对气候变化的敏感 性不同。
极端气候事件
极端天气
生态影响
极端天气事件如暴雨、洪涝、干旱、 台风、暴风雪等频发。
极端气候事件对生态系统产生影响, 导致物种灭绝、生物多样性减少等。
极端气候灾害
极端气候事件可能导致自然灾害如地 震、火山喷发、海啸等。
雷暴与龙卷风
总结词
雷暴和龙卷风是两种极端天气现象,它们的形成和发展 机制以及所造成的危害各不相同。
详细描述
雷暴和龙卷风是两种极端天气现象,它们的形成和发展 机制以及所造成的危害各不相同。
05
大气化学与污染
大气化学成分
主要成分
大气主要由氮气(约78%)和氧气( 约21%)组成,还有少量氩气、二氧 化碳、水蒸气和微量其他气体。
臭氧层
平流层中的臭氧层能够吸收对生物有 害的紫外线,保护地球上的生命。
大气污染及其来源
人为污染源
工业排放、交通尾气、农业活动(如 化肥和农药使用)、生活排放(如燃 烧化石燃料)等。
自然污染源
火山喷发、森林火灾、风力扬尘等。
大气污染对气候的影响
01
02
03
温室效应
大气中温室气体的增加导 致地球表面温度升高,引 发全球变暖。
加强气候变化教育,提高公众 对气候变化的认识和应对能力 。
07
气象学与气候学应用
气象灾害预警与防御
灾害恢复重建
气象灾害预警
通过气象观测和预测技术,及 时发布气象灾害预警信息,提 醒公众采取相应的防御措施。
灾害应急管理
建立气象灾害应急管理体系, 制定应急预案,组织应急救援 ,减轻灾害损失。
气象学与气候学

气象学与气候学什么是气象学?气象学是地球科学中一门研究大气现象的学科,主要研究大气层的组成、结构、运动及其与地球表面的相互作用。
气象学主要研究天气的形成、发展和变化规律,通过观测、测量和分析大气的各种现象,掌握天气与气候的基本规律。
气象学的研究内容包括气象观测、天气分析预报、气象灾害、气候变化等。
气象学的研究方法和技术气象学使用很多被广泛接受的研究方法和技术来获取天气和气候信息。
其中包括:1.气象观测:通过使用气象仪器和设备,对不同地区的大气条件进行观测和记录。
常见的观测数据包括温度、湿度、风速、降水量等。
2.模拟和数值模型:利用计算机模拟和数值计算的方法,通过气象方程和物理理论,对大气的运动和变化进行模拟,以预测天气和气候的变化。
3.卫星和雷达技术:利用卫星遥感和雷达技术,对大气中的云、降水等进行监测和观测。
这些技术能够提供全球范围内的气象信息。
4.气象雷达:通过发射雷达波束,并根据回波信号的属性,获取降水和风暴等天气现象的信息。
气象雷达在天气预报和防灾减灾中发挥重要作用。
5.气象卫星:使用卫星传感器对地球大气的特性进行观测,可以获取大范围的气象信息,包括云图、海温、水汽含量等。
气象学在日常生活中的应用气象学的研究成果在日常生活中有广泛的应用。
以下是一些常见的例子:1.天气预报:气象学通过观测和分析大气现象,预测未来一段时间内的天气情况,帮助人们合理安排日常生活和工作。
天气预报信息可以通过各种渠道获取,比如电视、手机应用程序等。
2.农业气象:农作物的生长和发展对气候条件有很大的依赖。
农业气象学研究农作物对气候的适应性和灾害防范,以优化农田管理和农作物的种植。
3.航空气象:航空气象是研究航空器在特定天气条件下的安全飞行问题。
通过气象观测和天气预报,航空公司和飞行员可以更好地预测和应对恶劣天气,确保航班的安全性。
4.城市规划和气候适应性:气象学可以帮助城市规划师更好地理解城市气候,优化城市设计,提高城市的气候适应性。
气象学与气候学周淑贞题库

气象学与气候学周淑贞题库
摘要:
1.气象学与气候学的概念与关系
2.气象学与气候学的研究内容与方法
3.气象学与气候学在实际应用中的重要性
正文:
气象学与气候学是两个密切相关但又有所区别的学科。
气象学主要研究大气的各种现象,包括天气、气候以及它们在短时间内的变化。
气候学则更侧重于研究气候的形成、演变以及长期趋势,从而预测未来的气候变化。
气象学与气候学的研究内容与方法各有侧重。
气象学主要通过观察、分析和模拟大气现象,例如台风、暴雨、干旱等,来研究大气的物理、化学和生物过程。
而气候学则通过对气象数据的长期观察和分析,研究气候的变化规律,以及气候对人类活动和自然环境的影响。
气象学与气候学在实际应用中都发挥着重要作用。
气象学为天气预报、防灾减灾以及大气环境保护提供了科学依据。
气候学则为气候资源开发、农业生产规划、城市建设以及应对全球气候变化等提供了重要的决策支持。
总的来说,气象学与气候学既有联系又有区别。
两者都研究大气现象,但研究的时间和尺度不同。
气象学关注短期的大气现象,而气候学则关注长期的气候变化。
气象学与气候学的区别与联系

气象学与气候学的区别与联系气象学和气候学是两个相互关联但又存在明显差异的学科。
本文将探讨气象学和气候学的区别与联系,并对它们在科学研究和实践中的作用进行分析。
一、气象学气象学是研究地球大气现象和气象要素的学科,旨在预测和解释气候的各种现象和变化。
它主要关注的是短期时间范围内的天气现象和气候要素,以及它们的变化规律和影响因素。
气象学的研究对象包括温度、湿度、气压、风力等各种气象要素,以及云、降水、雷雨等天气现象。
气象学的研究方法主要是通过建立观测站点并收集气象数据,利用数学模型和计算机模拟来解析和预测气象现象。
它的应用范围广泛,包括天气预报、农业、航空航天、海洋、环境保护等领域。
气象学的研究结果对于人们的日常生活和各项经济活动都具有重要意义。
二、气候学气候学是研究地球大气现象和气候变化的学科,旨在揭示气候现象和变化的规律及其与人类活动的关联。
它主要关注的是长期时间范围内的气候特征和气候系统,以及它们的变化趋势和影响机制。
气候学的研究对象包括气候要素的统计数据,如长期气温、降水、风力等平均值和变异性。
气候学的研究方法主要是通过收集历史气象数据、地质记录和遥感技术来分析和重建气候变化的过程与模式。
同时,气候学还利用地球系统模型进行气候的预测和模拟研究。
气候学的研究成果对于了解气候变化趋势、评估其对社会经济的影响以及制定相应的适应和减缓措施具有重要意义。
三、气象学与气候学的联系尽管气象学和气候学在研究对象、时间尺度和方法论上存在差异,但它们之间具有紧密的联系和相互依赖的关系。
首先,气象学提供了气候学研究的基础数据和观测手段。
气象观测站点收集的短期天气和气象要素数据为气候学的研究提供了重要的参考,同时也为气候变化的分析和预测提供了基础。
其次,气象学和气候学共同关注气候系统的驱动力和影响因素。
气候是由大气、海洋、陆地和生物等多个要素相互作用而形成的,而气象学和气候学都致力于研究这些要素之间的相互关系及其对气候变化的影响。
气象学与气候学题库

气象学与气候学题库
1. 什么是气象学和气候学?
答:气象学是研究大气现象、天气变化规律的学科。
气候学是研究地球表面及其周围的大气环境长期变化规律的学科。
2. 气象常规观测项目有哪些?
答:气象常规观测项目包括气温、气压、湿度、风、降水等。
3. 什么是气候系统?
答:气候系统是由地球大气、海洋、陆地表面、冰冻层、生物圈等组成的复杂的自然系统。
它们之间相互作用,共同影响着地球的气候变化。
4. 什么是温室效应?
答:温室效应是指地球大气中的温室气体吸收太阳辐射热能后向地面放散的过程,使得地表温度升高的现象。
5. 气候变化的主要原因是什么?
答:气候变化的主要原因包括自然和人为因素。
自然因素包括太阳辐射、火山喷发、地球轨道变化等;人为因素主要是人类工业发展、森林砍伐、能源消耗等行为导致的大气中温室气体含量的增加。
6. 什么是全球变暖?
答:全球变暖是指地球表面温度变暖的现象。
全球变暖的主要原因是温室气体的增加导致温室效应加强。
7. 如何应对气候变化?
答:应对气候变化需要采取积极措施,包括减少温室气体排放、推广清洁能源、加强环境保护、发展低碳经济等。
同时还需要加强气候变化的监测和预测,提高适应能力,减轻气候变化给人类社会和自然环境带来的影响。
气象学与气候学知识点大一

气象学与气候学知识点大一在我们的日常生活中,天气和气候是非常重要的因素。
我们经常听到人们讨论天气如何,但是对于气象学和气候学的背后知识,我们又了解多少呢?本文将带您一起探索大一阶段学习的气象学和气候学知识点。
一、气象学的基本概念气象学是一门研究大气现象的学科,涉及气象的各个方面,例如天气现象、气象仪器和预测技术等。
大气是指包围地球的空气层,它对人类和自然界都具有重要影响。
气象学的研究范围包括气候、天气系统、气候变化等。
二、大气的组成与结构大气主要由氮气、氧气、水蒸气、二氧化碳等组成。
其中,氮气和氧气占据了大气的绝大部分,分别约占78%和21%。
水蒸气是气象学中非常重要的成分之一,它对于天气和气候的形成起着关键性的作用。
大气按照其垂直结构可以被划分为对流层、平流层、中间层和热层等。
三、气象要素与观测气象要素是衡量大气现象的元素,例如温度、湿度、气压、风等。
了解气象要素有助于我们了解天气状况和变化趋势。
气象观测是获取气象要素信息的过程,主要利用气象仪器进行。
常用的气象仪器有温度计、湿度计、气压计和风向仪等。
通过观测气象要素的变化,我们可以预测天气状况,并为各个领域的决策提供科学依据。
四、天气系统及其形成天气系统是指在一定时间和地域范围内存在的一组相互联系的天气要素所组成的系统。
大气的不断变化和运动导致了各种天气形态的产生。
常见的天气系统有高压系统、低压系统和气旋等。
高压系统通常伴随着晴朗的天气,低压系统则往往带来多雨和阴天的天气。
气旋则是一种复杂的天气系统,可以引发风暴和降雪等极端天气。
五、气候与气候类型气候是指某一地区在较长时期内的天气状况统计结果。
气候与天气不同,天气是指短期内的气象状况,而气候则是对过去多年的统计数据进行分析得出的一种气象状况判断。
不同地区的气候有着明显的差异,主要由其地理位置、海洋环流、地形等因素决定。
基于这些因素,我们可以将气候划分为热带气候、温带气候和寒带气候等不同类型。
《气象学与气候学》课件
气象学基本概念和定义
1 气象要素
介绍气温、湿度、气压等气象要素的基本概念。
2 气象现象
解释雷暴、云层和气象灾害等常见气象现象。
3 气象学方法
探讨气象数据收集和分析的方法与技术。
大气成分和结构
成分
描述大气中主要的气体成分, 如氮氧等。
层次结构
解释大气分为不同的层次, 如对流层、平流层等。
影响因素
探讨影响大气成分和结构的 因素,如人类活动与自然过 程。
《气象学与气候学》PPT 课件
本课件将介绍气象学与气候学的基本概念和应用,从大气成分到气候变化, 让您深入了解气象科学在我们生活中的重要性。
气象学与气候学的概述
1 定义与关系
2 历史演变
了解气象学与气候学的区别与联系。
探索气象学与气候学领域的发展历程。
3 现代应用
展示气象学与气候学在社会中的广泛应用。
人为因素
分析人类活动对气候变化产生的影响,如温室气体排放。
全球气候变化的趋势和研究进展
1
温度上升
解释全球变暖和气温上升的趋势。
2
海平面上升
探究冰川融化导致海平面上升的现象。
3
极端天气
讨论频繁发生的极端天气事件,如飓风和洪灾。
计进行观测。 使用湿度计进行观测。 采用气压计进行测量。
气象预报的基本原理和方法
1
气象观测
收集气象数据以了解当前天气状况。
2
气象模型
利用数学模型预测未来天气情况。
3
预报技术
介绍各种预报技术,如数值天气预报。
气候变化的原因和影响
自然因素
探讨太阳辐射、地球运动等自然因素对气候变化的影响。
气象学与气候学-气象学、气候学的研究对象、任务和简史
云层薄而均匀,阳光透过 云层形成一个晕圈,在太阳 两侧的晕圈上出现两个光斑, 叫做“假日”。
b. 气象学的研究对象
——地球上的大气。
其中主要内容有: (1)大气一般的组成、范围、结构及各种要素等; (2)大气现象的发生、发展及能量来源; (3)探求大气现象的本质及其变化规律; (4) 将大气现象中的规律应用于实践。
农历六月,梅雨天气过后锋面 北移,长江中下游受单一的暖气团 控制,在副热带高压的控制下形成 炎热干燥的伏旱天气。蜀兵撤进树 林避暑,树栅连营,纵横七百里。 陆逊带领吴兵乘风猛之夜, 四处顺 风烧山,直杀得刘备七十万大军尸 横遍野。
3. 体育及旅游方面
慕士塔格山,海拔7509米, 位于东经75.1度,北纬38.5度, 在新疆阿克陶县与塔 什库尔
b.天气学的研究对象:
研究地球上的大气以及大气运动所 形成的天气及天气现象,也可以说它研究的 是地球上的天气。
天气系统
3.气候学
a.气候学的定义
气候学是在一定时段内由大量天气过程综合而得出 的大气过程,是该时间段内全部气候成分的平均成分的 平均统计特征, 广义上讲是大气科学、海洋学、地球物 理和地球化学、地理学、地质学、冰川学、天文学、生 物学以及有关的社会科学相互渗透和共同研究的交叉科 学。
短期天气过程:≤5天;
中期天气过程:5-10天; 长期天气过程:10天-3个月。 b. 气候:变化慢,周期长。 主要分:年、十年、百年、千年、万年 例如:大冰期-120万年; 明清时代的寒冷期长达500年。
经济地理学
中国经 济地理
世界经 济地理
地理学
自然地理学
区域地理
气象学与气候学
一、气象学与气候学1.天气是指某一地区在某一瞬间或某一短时间内大气状态(如气温、湿度、压强等)和大气现象(如风、云、雾、降水等)的综合。
天气过程是大气中的短期过程。
2.气候指的是在太阳辐射、大气环流、下垫面性质和人类活动在长时间相互作用下,在某一时段内大量天气过程的综合。
它不仅包括该地多年来经常发生的天气状况,而且包括某些年份偶尔出现的极端天气状况。
3.大气是由多种气体混合组成的气体及浮悬其中的液态和固态杂质所组成。
表1·1列举了其气体成分,其中氮(N2)氧(O2)和氩(Ar)三者合占大气总体积的99.96%,4.氧还决定着有机物质的燃烧、腐败及分解过程。
大气中的氮能够冲淡氧,使氧不致太浓,氧化作用不过于激烈5.臭氧的作用:臭氧能大量吸收太阳紫外线,使臭氧层增暖,影响大气温度的垂直分布,从而对地球大气环流和气候的形成起着重要的作用。
保护着地表生物和人类。
6.液体微粒是指悬浮于大气中的水滴和冰晶等水汽凝结物。
7.气象要素:是指表示大气属性和大气现象的物理量。
8.湿度:表示大气中水汽量多少的物理量称大气湿度。
9.水汽压:大气中的水汽所产生的那部分压力称水汽压(e)。
10.饱和空气的水汽压(E)称饱和水汽压,也叫最大水汽压2.相对湿度相对湿度(f)就是空气中的实际水汽压与同温度下的饱和水汽压的比值(用百分数表示)相对湿度直接反映空气距离饱和的程度。
11.饱和差:在一定温度下,饱和水汽压与实际空气中水汽压之差称饱和差(d)。
即d=E-e,d表示实际空气距离饱和的程度。
12.比湿:在一团湿空气中,水汽的质量与该团空气总质量(水汽质量加上干空气质量)的比值,称比湿(q)。
其单位是g/g,13.露点:在空气中水汽含量不变,气压一定下,使空气冷却达到饱和时的温度,称露点温度。
14.降水:是指从天空降落到地面的液态或固态水。
15.降水量指降水落至地面后(固态降水则需经融化后),未经蒸发、渗透、流失而在水平面上积聚的深度,降水量以毫米(mm)为单位。
气象学与气候学 复习资料
气象学与气候学复习资料气象学与气候学复习资料气象学和气候学是研究大气现象和气候变化的两个重要学科。
虽然它们有着密切的联系,但在研究对象和方法上有所不同。
本文将为大家提供一些关于气象学和气候学的复习资料,帮助大家更好地理解和掌握这两个学科。
一、气象学气象学是研究大气现象的学科,主要关注天气的形成、演变和预测。
它涉及的内容非常广泛,包括大气的物理性质、天气系统的结构和运动、气象观测和仪器等。
下面我们来看一些气象学的重要概念和知识点。
1. 大气层结:大气层结是指大气在垂直方向上的温度和湿度变化。
常见的大气层结类型有逆温层、正常层、辐射逆温层等。
了解大气层结对于预测天气和理解大气运动非常重要。
2. 天气系统:天气系统是指在一定时间和空间范围内形成的大气现象,如高压系统、低压系统、冷锋、暖锋等。
它们的形成和演变对于天气变化有着重要的影响。
3. 气象观测:气象观测是指对大气现象进行系统的监测和记录。
常用的气象观测参数包括温度、湿度、气压、风速和降水量等。
气象观测数据是进行天气预报和气候研究的重要依据。
4. 天气预报:天气预报是根据气象观测数据和气象模型进行的对未来天气情况的预测。
它可以帮助人们做出合理的决策,如出行安排、防灾减灾等。
二、气候学气候学是研究气候变化的学科,主要关注长期气候的统计规律和变化趋势。
它涉及的内容包括气候系统的组成、气候要素的测量和分析、气候变化的原因和影响等。
下面我们来看一些气候学的重要概念和知识点。
1. 气候要素:气候要素是指描述气候特征的物理量,如温度、降水量、风速、湿度等。
它们的变化可以反映气候的不同特征和变化趋势。
2. 气候类型:气候类型是根据气候要素的长期统计特征划分的。
常见的气候类型有热带雨林气候、温带季风气候、地中海气候等。
了解不同气候类型对于理解全球气候分布和变化具有重要意义。
3. 气候变化:气候变化是指长期气候的统计规律和变化趋势。
气候变化的原因包括自然因素和人类活动因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1—2章1)简述气候系统。
答:气候系统是一个包括大气圈、水圈、陆地表面、雪圈和生物圈在内的,能够决定气候形成、气候分布和气候变化的统一物理系统。
太阳辐射是气候系统的能源。
在太阳辐射的作用下,气候系统产生了一系列复杂的过程,这些过程在不同的时间尺度上和不同的空间尺度上有着密切的相互作用,各个组成部分之间,通过物质和能量交换,紧密地结合成一个复杂的、有机联系的气候系统。
2)名词解释:天气、气候、天气系统、天气过程、天气预报、气象要素、辐射通量密度、比辐射率答:天气:某地在某一瞬间或某一短时间内大气状态和大气现象的综合。
大气状态:大气的气压、气温和湿度等。
大气现象:大气中的风、云、雨、雪等现象。
气候:在太阳辐射、大气环流、下垫面性质和人类活动的长期作用下,在某一时段内大量天气的综合。
不仅包括该地多年的平均天气状况,也包括某些年份偶尔出现的极端天气状况。
天气系统:指引起天气变化和分布的高压、低压、高压脊、低压槽等典型特征的大气运动系统。
天气过程:天气系统的发生、发展、消失和演变的全过程。
天气预报:人们根据对天气演变规律的认识,利用多种观测及模拟手段,对未来一定时期内天气变化作出主、客观的判断。
气象要素:气象要素是指表示大气属性和大气现象的物理量,如气温、气压、湿度、风向、风速、云量、降水量和能见度等等。
辐射通量密度:单位时间内通过单位面积的辐射能量称辐射通量密度(E),单位是W/m2。
比辐射率:物体在温度T,波长λ处的辐射出射度M1(T,λ)与同温度,同波长下的黑体辐射出射度M2(T,λ)的比值。
由斯忒藩-波尔兹曼定律可知,比辐射率与同温度、同波长时该物体对电磁波的吸收率相同。
比辐射率公式:比辐射率是反映物体热辐射性质的一个重要参数,与物质的结构、成份、表面特性、温度以及电磁波发射方向、波长(频率)等因素有关。
3)哪些自然现象能证实大气圈的存在?答:a. 蓝色的天空。
这是由于大气中的一些非常细小物质成分,如气体、粉尘等,它们的直径较阳光的波长小得多,因此,蓝色的散射量较之于其他任何一种颜色能更多地被选择散射。
这种散射称瑞利散射。
b.白云。
如果形成散射粒子的形状是球形的,而且其直径并不比阳光的波长小,所有的波长都是平均地被散射的,这种散射称迈耶散射。
因此,云是白色的。
c. 风。
有风就说明有物质的存在,因为风是由于大气不同部位的压力差别造成的。
如果在真空中就不会有风了。
d.流星。
流星就是陨石穿过大气层时,由于其速度太快,与大气摩擦产生热使陨石燃烧起来。
否则我们的地球也与月球一样“千疮百孔”。
4)大气圈各层的主要物理特性是怎样的?答:a. 对流层厚度:平均11-13km,赤道17-18km,两极8-9km。
质量:约占大气圈质量的75%。
气温:从下向上是降温的,大气降温率是6.5℃/km,对流层顶约-83℃(低纬),高纬(-53℃)。
大气运动:垂直对流运动(地表面的不均匀受热)。
成分:几乎全部的水汽、尘埃。
大气现象:风、霜、雨、雪、雹、雾等。
b.平流层高度:从对流层顶到55km左右。
质量:几乎占大气圈质量的25%。
气温:从下向上是升温的(O3),到平流层顶可达-3 ℃。
大气运动:水平运动。
成分:几乎不含水汽、尘埃,存在臭氧层。
无天气现象。
c.中间层高度:从平流层顶到85km左右。
气温:从下向上是降温的,到中间层的顶温度降到-113—-83℃。
大气运动:垂直对流运动。
存在一个只有白天才出现的电离层(D)。
d.暖层(热层,热成层)高度:从中间层顶到800km。
气温:从下向上迅速升温,到500km高空,温度可增至2000K 。
存在多层的电离层(E、F、G),也称电离层,可反射无线电波。
在高纬度地区上空存在极光。
e.散逸层(外层)高度:从暖层顶到外层空间,气温随高度的增加很少变化。
物质多以原子、离子状态存在。
是地球物质向宇宙空间扩散的部位,大气圈与星际空间的过渡带。
5)试述湿度的定义及各种表示湿度的方法。
答:a.定义:表示大气中水汽量多少的物理量。
大气的湿度状况是决定云、雾、降水等天气现象的重要因素。
b.表示湿度的方法:水汽压(e):大气中所含水汽产生的压力(mb,hPa);绝对湿度(a):单位体积空气中水汽的含量(g/cm3,g/m3);——水汽密度饱和水汽压(E):在温度一定的情况下,单位体积空气中能容纳的水汽数量有一定的限度,如果水汽含量达到了这个限度,空气就呈饱和状态,这时的空气称为饱和空气。
饱和空气中的水汽压,称为饱和水汽压。
相对湿度(f):空气中实际水汽压与同温度下的饱和水汽压的百分比,表示空气距离饱和的程度。
f=e/E×100%比湿(q):在一团湿空气中,水汽质量与该团空气总质量的比值(g/g)。
即表示每一克湿空气中含有多少克的水汽。
q=mw/(md+mw)水汽混合比(γ):一团湿空气中,水汽质量与干空气质量的比值。
γ=mw/md式中,mw为该团湿空气中水汽的质量;md为该团湿空气中干空气的质量。
饱和差(d):某温度下饱和水汽压与实际水汽压之差。
d=E-e露点(Td):空气中水汽含量不变,在一定的气压下,若使空气达到饱和,只有降温,降到实际水汽压(e)变成饱和水汽压(E),此时的温度称为露点温度,简称为露点。
6)试推导虚温的公式,并说明虚温的意义。
答:公式推导;教材p20.虚温的意义是:在同一压强下,干空气密度等于湿空气密度时,干空气应有的温度。
7)何为辐射?辐射遵循哪些基本定律?答:辐射:自然界中的一切物体,只要其温度在-273℃以上,都在以电磁波的方式向外放射能量,这种传播能量的方式称为辐射。
遵循哪些基本定律:A. 基尔霍夫(Kirchhoff)定律。
B.斯蒂芬(Stefan)—玻耳兹曼(Boltzman)定律。
C. 维恩(Wein)位移定律。
8)试述瑞利散射和米散射的特点和区别。
答:瑞利散射与米散射①散射粒子的横向几何线度与入射光波长之比很小时(a/l<0.1),散射光强与入射光波长的关系服从瑞利散射定律。
②当该比值较大(a/l≈0.1~10)时,散射光强与波长的依赖关系逐渐减弱,并且,当该比值增大到一定程度后,散射光强随该比值的增大出现起伏,即交替达到极大值和极小值。
这种起伏的幅度亦随该比值的增大而逐渐减小。
(中间状态)③对于足够大的粒子,(a/l>10),散射光强基本上与波长无关,此时的散射称为大粒子散射,可看作是米散射的极限状态。
9)到达地面的太阳总辐射由哪两部分组成?试比较二者的不同?答:直接辐射:太阳以平行光线的形式直接投射到地面上。
散射辐射:经过散射后自天空投射到地面的。
直接辐射:两个主要因子:太阳高度角(①太阳高度角越小,等量的太阳辐射散步的面积就越大,地表单位面积上所获得的太阳辐射能就越小。
②太阳高度角越小,太阳光透过的大气层就越厚,削弱就越强,到达地面的太阳辐射就越小。
)和大气透明度(大气对太阳辐射的透射程度,主要影响因素有:水汽、水汽凝结物、尘埃杂质的多少。
)散射辐射:影响因素有:太阳高度角、大气透明度、云量。
太阳高度角增大时,到达近地面层的直接辐射增强,散射辐射也就相应地增强;大气透明度不好时,参与散射作用的质点增多,散射辐射增强;10)写出地面有效辐射、地面辐射差额、地气系统辐射差额的表达式。
答:地面放射的辐射(Eg)与地面吸收的大气逆辐射(δEa)之差,称为地面有效辐射。
以F0表示,则F0=Eg-δEa。
地面辐射差额:某段时间内单位面积地表面所吸收的总辐射和其有效辐射之差值,称为地面的辐射差额Rg(表示单位水平面积、单位时间的辐射差额)Rg=(Q+q)(1-a)-F0。
地气系统辐射差额Rs=(Q+q)(1-a)+qa-F∞。
11)试述绝热变化与非绝热变化的区别与联系。
答:空气与外界有热量交换,称为非绝热变化;非绝热变化(六种方式)1、传导。
2、辐射。
3、对流。
4、湍流。
5、蒸发凝结(包括升华、凝华)。
6、平流空气与外界没有热量交换,称为绝热变化。
绝热变化有两个过程:(1)绝热增温过程:气块下降、吸热,温度升高的过程。
(2)绝热冷却过程:块上升、放热,气温下降的过程。
12)试推导干绝热和湿绝热直减率。
答:教材p40.13)什么是位温和假相当位温?答:位温:把各层中的气块循着干绝热的程序订正到一个标准高度:1000hPa 处,这时所具有的温度称为位温。
假相当位温:当气块中含有的水汽全部凝结降落时,所释放的潜热,就使原气块的位温提高到了极值,这个数值称为假相当位温。
14)试述空气温度个别变化、平流变化和局地变化的概念和相互关系。
答:(1)个别变化:单位时间内个别空气质点温度的变化dT/dt称作空气温度的个别变化,即空气块在运行中温度随时间的绝热和非绝热变化。
(2)局地变化:某一固定地点空气温度随时间的变化称作空气温度的局地变化。
(3)平流变化:由于空气的移动所造成的某地温度的变化称为温度的平流变化。
(4)空气温。
度个别变化、平流变化和局地变化的相互关系:温度的局地变化是平流变化和个别变化之和15)如何通过γm,γd,γ判断大气的层结稳定度?答:(1)γ>γd 时,大气层结为绝对不稳定,且γ愈大,愈不稳定;(2)γ<γm<γd时,大气层结为绝对稳定,且γ愈小,愈稳定;(3)γm<γ<γd 时,大气为条件性不稳定,对于未饱和湿空气和干空气,大气层结是稳定的;对于饱和湿空气是不稳定的。
16)什么是逆温?简述几种主要逆温的形成过程。
答:在一定条件下,对流层中会出现气温随高度增高而升高的逆温现象。
①辐射逆温:由于地面强烈辐射冷却形成的逆温。
条件:晴朗无风或微风且少云或无云的夜晚,厚度从数十米到数百米,以冬季最强。
②湍流逆温:由于低层空气的湍流混合而形成的逆温。
形成过程:经过湍流混合后,气层的温度分布将逐渐接近于干绝热直减率。
空气升到混合层上部时,它的温度比周围的空气温度低。
混合的结果,使上层空气降温。
③平流逆温:暖空气平流到冷的地面或冷的水面上,会发生接触冷却,愈近地表面的空气降温愈多,而上层空气受冷地面的影响小,降温较少,于是产生了逆温现象。
④下沉逆温:因整层空气下沉而造成的逆温,称为下沉逆温形成过程:当某一层空气发生下沉运动时,因气压逐渐增大,以及因气层向水平方向的辐散,使其厚度减小。
如果气层下沉过程是绝热的,而且气层内各部分空气的相对位置不发生改变。
这样空气层顶部下沉的距离要比底部下沉的距离大,其顶部空气的绝热增温要比底部多。
⑤锋面逆温:冷暖空气团相遇时,较轻的暖空气爬到冷空气上方,在冷暖空气团交界面附近(即锋面附近)出现的逆温,称为锋面逆温。
⑥融雪逆温:在积雪地区,因暖空气流经冰、雪表面产生融冰、融雪现象,而冰雪的融化需要从近地面气层吸收大量的热量,从而使贴近地层的气温较低,形成逆温,这种逆温称为融雪逆温。