高等代数课件(北大版)第七章-线性变换§7.7

合集下载

《高等代数》第七章 线性变换

《高等代数》第七章  线性变换

线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时

们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使

高等代数课件

高等代数课件
(1) a111 a212 ar1r
(r ) a1r1 a2r2 arrr (r1) a1,r11 ar,r1r ar1,r1r1 an,r1n
(n ) a1n1 arnr ar1,nr1 annn
这表明关于这个基的矩阵是
A1 O
A3 A2
|W关于W的基1, 2, …, r 的矩阵
定理7.3.3 设V是数域F上的一个n维向量空间, {1, 2, …, n} 是V的一个基, 对于V的每个线性变换, 让它对应于它关于基{1, 2, …, n}的矩阵A. 如此建立的对应关系是L(V)到Mn(F)的一个同构 (保持加法和纯量乘法的双射). 而且如果变换,分别对应于矩阵A,B, 则变换,的乘积对应于矩阵A,B的乘积AB. (保持乘法)
例 6 接例4. V3是L与H的直和. 取L上的一个非零向量1作为它
的基, 取H上的两个正交单位向量2, 3作为它的基, 那么1, 2, 3组
V3的一个基. 关于这个基的矩阵是
1 0
0
0 cos sin
0 sin cos
应该地, 如果V是它的子空间W1, W2, … , Ws的直和, 且每一个都 是的不变子空间. 用这些子空间的基组V的一个基. 则关于这个基
定理7.1.2 设是向量空间V到W的一个线性映射. 则有 (i) 是单射Im()=W. (i) 是满射Ker()={0}.
两个线性映射的合成映射是线性映射. 设U, V, W是数域F上的向量空间, : UV, :VW是线性映射. 则合成映射:VW是U到W线性映射.
如果线性映射:VW有逆映射 1, 则 1是从W到V的线性映 射.
(n ) a1n1 a2n2 annn
其中, (a1j, a2j,…, anj, )是(j )关于基1, 2, …, n的坐标 j=1,2, …,n,. 它们是唯一确定的. 以它为第j列, 做成一个矩阵:

高等代数第7章线性变换[1]PPT课件

高等代数第7章线性变换[1]PPT课件
设A,BL(V), 定义A与B的和为V的一个变
换, 使"aV, 有 (A+B)(a) =A(a)+B(a).
1、A + B 也是V的一个线性变换.
因为对于所有的a,bV和数k,lP,有
(A+B)(ka+lb) = A(ka+lb ) +B(ka+lb ) = kA(a)+lA(b)+kB(a)+lB(b) = k (A+B)(a)+l (A+B)(b)
精选
2、乘法适合结合律,即 (AB)C = A(BC)
因为映射的合成满足结合律 3、乘法不满足交换律,即一般地
AB BA 如求微分变换D 与求积分变换J , 有
DJ = E ,但一般地 JD E 4、单位变换的作用 AE = EA = A 5、零变换的乘法 OA = AO = O
精选
二、线性变换的加法及其性质
精选
2、(1)交换律 A +B =B +A (2)结合律 (A+B)+C =A+(B+C) (3)零变换 A+O =A (4)负变换 A+(-A) = O
其中 (-A)(a)= -A(a), 从而
(A - B) = (A+ (-B)) 3、分配律 A(B+C) = AB +AC
(A+B)C = AC+BC
D是一个线性变换,称为微分变换.
例7 闭区间[a, b]上所有连续函数全体 组成实数域R上的线性空间C0(a, b). 定义变换
x
则J是一个J(线f (性x))变=换精选.a f (t)dt
二、线性变换的简单性质

高等代数 讲义 第七章

高等代数 讲义 第七章

(στ ) δ
= σ (τδ )
D( f ( x )) = f ′( x )
J ( f ( x ) ) = ∫ f ( t )dt
x
(2) Eσ = σ E = σ ,E为单位变换 (3)交换律一般不成立,即一般地,
( DJ ) ( f ( x ) ) = D ∫0 f ( t ) dt
x
στ ≠ τσ .
2.线性变换保持线性组合及关系式不变,即
若 β = k1α1 + k2α 2 + L + krα r , 则 σ ( β ) = k1σ (α1 ) + k2σ (α 2 ) + L + krσ (α r ).
例4. 闭区间 [a , b]上的全体连续函数构成的线性空间
C ( a , b ) 上的变换
σ ( X ) = AX , τ ( X ) = XB ,
∀X ∈ P n×n
则 σ ,τ 皆为 P n×n 的线性变换,且对 ∀X ∈ P n×n , 有
(στ )( X ) = σ (τ ( X )) = σ ( XB ) = A( XB ) = AXB , (τσ )( X ) = τ (σ ( X )) = τ ( AX ) = ( AX ) B = AXB .
= σ (τ (α )) + σ (τ ( β )) = (στ )(α ) + (στ )( β ), (στ )( kα ) = σ (τ ( kα )) = σ ( kτ (α )) = kσ (τ (α )) = k (στ )(α )
§7.1 线性变换的定义
2.基本性质
(1)满足结合律:
例1. 线性空间 R[ x ]中,线性变换

高等代数第七章

高等代数第七章
l A ( X Y ) A( X Y ) AX AY l A ( X ) l A (Y ), l A ( kX ) A( kX ) k ( AX ) kl A ( X );


同样可验证 rA , A 为 n n 的线性变换. 注意:
A l A rA
1 2 + 1 n 1 L 2! ( n1)!
另一方面, 由 n 0 知
1 2 1 n 1 )n 0, ( 2! ( n1)!
即下述线性变换 幂零:
【例2】 设 E 3 为欧氏空间中 一切几何向量(有向线 段)所 构 成的三维线性空间, 为其中选定的一个 平面. 如图, 对于此空间中任何一个向量 , 我们用 R ( ) 表示向量 以平面 镜面的镜像 . 验证 R 为 E 3 的线性变换 , 且 R1 R .
【验证】 如图, 为平面 的法向; R ( ) 2 P ( ) ( ) 2 P ( ) ( 2 P )( ); R 2 P 为线性变换; P ( )
【定义1】 对于 , (V ), 我们如下定义它们的 乘积 : ( )( ) ( ( ))( V ), 即 : ( ) ( ( )).
【线性变换乘积的性质】 (如下有 , , (V ); k , l )
(3) dim (V ) n 2 ;
2. 线性变换代数*
(如下有 , , (V ); k , l ) ( )(k ) ( ( k )) (k ( )) k ( ( )) k ( )( ).
(2) ( ) ( ); (3) ( ) , ( ) ; (4) ( 为单位线性变换); (5) 0; (6) ( k ) ( k ) k ( ).

高等代数讲义ppt第七章 线性变换

高等代数讲义ppt第七章 线性变换

(4) 若A 是可逆的,则矩阵 A 也可逆,且A-1的矩阵是A-1。
例5 设 V是数域P上的n维线性空间,则L(V)与P n×n同构。
例6 设 A1,A2是 n 维线性空间 V 的两个线性变换,证明: A2V⊂A1V 的充要条件是存在线性变换 A 使得 A2=A1A 。
线性变换
§3 线性变换的矩阵
例4 设 A 是n维线性空间V的一个线性变换, A3=2E, B =A2-2A+2E, 证明:A,B都是可逆变换。
线性变换
§3 线性变换的矩阵
§3 线性变换的矩阵
定理1 设1, 2 , , n是线性空间V的一组基, 对V中任意n个向量 1,2 , ,n 存在唯一的线性变换 A∈L(V) 使任的何像得元,素只都要可选以取是适基当
线性变换
§1 线性变换的定义
二、线性变换的性质
性质1 设 A 是V的线性变换,则 A(0) 0, A( ) A()
性质2 线性变换保持线性组合与线性关系式不变。
性质3 线性变换把线性相关的向量组变成线性相关的向量组。
注意: 线性变换可能把线性无关的向量组变成线性相关的 向量组。
例3 设 1,2, ,r 是线性空间V的一组向量,A 是V的一个线
线性变换的加法满足以下运算规律:
(1) A + ( B + C ) = ( A + B ) + C
(2) A + B = B + A
线性变换
§2 线性变换的运算
定义2 设 A∈L(V),k∈P,对k与 A 的数量乘积 kA 定义为:
(kA) k A, V
结论2 对∀A ∈L(V),k∈P 有 kA∈L(V)。
Amn AmAn , (Am )n Amn, m, n N

高等代数7线性变换

⾼等代数7线性变换⾼等代数7 线性变换⽬录线性变换的定义线性空间V到⾃⾝的映射通常称为V的⼀个变换。

定义线性空间V的⼀个变换A称为线性变换,如果对于V中任意的元素α,β和数域P中的任意数k都有A(α+β)=A(α)+A(β)A(kα)+k A(α)线性变换A保持向量的加法和数量乘法。

恒等变换、单位变换 E(α)=α (α∈V)零变换0 0(α)=0 (α∈V)数乘变换设V是数域P上的线性空间,k是数域P上的某个数,定义V的变换:α→kα,α∈V这是⼀个线性变换,称为由数k决定的数乘变换。

简单性质1. 线性空间V的⼀个线性变换A,则A(0)=0,A(−a)=−A(a)2. 线性变换保持线性组合不变β=k1α1+k2α2+⋯+k rαr A(β)=k1A(α1)+k2A(α2)+⋯+k r A(αr)3. 线性变换把线性相关的向量组变成线性相关的向量组。

线性变换的运算线性变换作为映射的特殊情形可以定义乘法运算乘法设A,B是线性空间V上的两个线性变换,它们的乘积AB为(AB)(α)=A(B(α)) (α∈V)线性变换的乘积也是线性变换。

适合结合律 (AB)C=A(BC)⼀般是不可交换的单位变换E EA=AE=A加法设A,B是线性空间V上的两个线性变换,它们的和A+B为(A+B)(α)=A(α)+B(α) (α∈V)线性变换的和还是线性变换交换律 A+B=B+A结合律 (A+B)+C=A+(B+C)零变换0 A+0=A负变换 A+(−A)=0 .负变换也是线性的。

线性变换乘法对加法具有左右分配律A(B+C)=AB+AC(B+C)A=BA+CA数量乘法数域P中的数与线性变换的数量乘法为k A=KA(kl)A=k(l A)(k+l)A=k A+l Ak(A+B)=k A+k B1A=A线性空间V上全体线性变换,对于如上定义的加法与数量乘法,也构成数域P上的⼀个线性空间逆变换V上的变换A称为可逆的,如果有V的变换B存在,使 AB=BA=E这时,变换A称为A的逆变换,称为A−1如果线性变换A是可逆的,那么它的逆变换A−1也是线性变换。

高等代数--第七章 线性变换_OK


是 则
A,向量 在基 1,2,,n下的坐标 A 在基 1,2,,n 下的坐标 ( y1
(x1, x2 ,, xn , y2 ,, yn )
)
可以按公式
y1 x1
y2
A
x2
yn xn
计算
32
证明
由假设
x1
(1,2 ,,n )
x2
.
xn
于是
33
A (A 1, A 2,
46
A (B ()) A (B ( )) (A B )( ) (A B )( ),
(A B )(k) A (B (k)) A (kB ())
kA (B ()) k(A B )().
这说明AB是线性的。
既然一般映射的乘法适合结合律,线性变换
的乘法当然也适合结合律,即
(A B )C A (B C ).
A () (x12 , x22 , x32 )
判断 A 是否是一个线性变换
11
例7 定义在闭区间[a,b]上的全体连续函数组成
实数域上一线性空间,以C(a,b)代表. 在这个空间 中,变换
J ( f (x))
x
f (t)dt
a
是一线性变换.
12
简单性质:
1.设A 是V的线性变换,则
A (0) 0,A () A ().
1
1
.
1 0 1 2 0 1 1 2
43
我们可以得到
2
1
k
1
11 1k 1
1 1
1 0 1 2 0 1 1 2
1 11 k 2 1 1 2 0 1 1 1
1 k 1 2 1 k 1 k . 1 2 k 1 1 k k 1

高等代数第七章线性变换

高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。

二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。

只要取一组足够好的基,就可以得到足够好的矩阵。

某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。

三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。

高等代数【北大版】76

由第六章§5的结论3知, (1), ( 2 ),L , ( n ) 的秩
等于矩阵A的秩.
∴ 秩( )=秩 ( A).
§7.6 线性变换的值域与核
2. 设 为n 维线性空间V的线性变换,则
的秩+ 的零度=n 即 dim (V ) dim 1(0) n.
证明:设 的零度等于r ,在核 1(0)中取一组基 1, 2 ,L , r
线性无关.
设 kr1 ( r1 ) L kn ( n ) 0
则有 kr1 r1 L kn n 0
kr1 r1 L kn n 1(0) 即 可被 1, 2 ,L , r 线性表出.
§7.6 线性变换的值域与核
设 k11 k2 2 L kr r 于是有 k11 k22 L kr r, kr1 r1 L kn n 0 由于为 1, 2 ,L , n V的基.
二、有关性质
1. (定理10) 设 是n 维线性空间V的线性变换,
1, 2 ,L , n 是V的一组基, 在这组基下的矩阵是A,

1) 的值域 (V )是由基象组生成的子空间,即
(V ) L (1), ( 2 ),L , ( n )
2) 的秩=A的秩.
§7.6 线性变换的值域与核
证:1) V , 设 x11 x2 2 L xn n , 于是 ( ) x1 (1) x2 ( 2 ) L xn ( n )
第七章 线性变换
§1 线性变换的定义 §6 线性变换的值域与核
§2 线性变换的运算 §7不变子空间
Байду номын сангаас
§3 线性变换的矩阵 §8 若当标准形简介
§4 特征值与特征向量 §9 最小多项式
§5 对角矩阵
小结与习题
§7.6 线性变换的值域与核
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档