聚氨酯纳米复合材料(英语原文)

合集下载

pcu是什么材料

pcu是什么材料

pcu是什么材料PCU是一种聚氨酯复合材料,全称为聚氨酯复合材料(Polyurethane Composite Material)。

PCU材料是一种高性能、多功能的材料,具有优异的物理性能和化学性能,广泛应用于航空航天、汽车、建筑、电子、医疗器械等领域。

本文将从PCU材料的组成、特性和应用领域等方面进行介绍。

PCU材料由聚氨酯树脂、填料、增强材料和其他辅助材料组成。

聚氨酯树脂是PCU材料的主要成分,填料可以是玻璃纤维、碳纤维、钢丝等,用于增强PCU材料的强度和刚度。

辅助材料包括稳定剂、增塑剂、防老化剂等,用于改善PCU材料的加工性能和耐久性。

PCU材料具有优异的物理性能,包括高强度、高模量、耐磨损、耐腐蚀等特点。

同时,PCU材料还具有良好的加工性能,可以通过注塑、挤出、压延等工艺制备成型,适用于复杂形状的制品生产。

此外,PCU材料还具有优异的耐高温性能和耐低温性能,能够在-40℃至120℃的温度范围内稳定使用。

在航空航天领域,PCU材料被广泛应用于飞机结构件、航天器零部件等领域。

其高强度、轻质化的特性,使得PCU材料成为替代传统金属材料的理想选择,可以降低飞机重量,提高飞行性能。

在汽车领域,PCU材料被用于制造车身构件、内饰件、座椅等部件,具有减轻汽车重量、提高燃油经济性的优势。

此外,PCU材料还被广泛应用于建筑领域的隔热材料、电子领域的绝缘材料、医疗器械领域的医用材料等。

总的来说,PCU材料是一种具有广泛应用前景的高性能复合材料,其优异的物理性能和化学性能,使得其在航空航天、汽车、建筑、电子、医疗器械等领域都有着重要的应用。

随着科学技术的不断发展,PCU材料的研究和应用将会得到进一步推动,为各个领域的发展带来更多的可能性。

《水性聚氨酯-纳米SiO2复合材料制备及老化性能研究》范文

《水性聚氨酯-纳米SiO2复合材料制备及老化性能研究》范文

《水性聚氨酯-纳米SiO2复合材料制备及老化性能研究》篇一水性聚氨酯-纳米SiO2复合材料制备及老化性能研究一、引言随着科技的进步和环境保护意识的提升,环保型水性聚氨酯材料因具有优异的物理机械性能、良好的耐候性和环保性,在涂料、胶黏剂、皮革、纺织等领域得到了广泛应用。

近年来,通过引入纳米材料来改善水性聚氨酯性能已成为研究热点。

本篇论文以水性聚氨酯与纳米SiO2的复合材料为研究对象,通过实验对其制备过程和老化性能进行深入的研究。

二、材料与方法1. 材料水性聚氨酯(WPU)、纳米SiO2、助剂等。

2. 制备方法(1)将水性聚氨酯与适量的纳米SiO2混合,通过机械搅拌使其均匀分散;(2)加入适量的助剂,提高复合材料的稳定性和性能;(3)在适当的温度和压力下,将混合物进行热处理,制备出复合材料。

3. 实验方法采用红外光谱、扫描电镜等手段对复合材料的结构与性能进行表征;通过加速老化实验,研究其老化性能。

三、结果与讨论1. 复合材料的制备通过上述方法成功制备了水性聚氨酯/纳米SiO2复合材料。

实验过程中发现,纳米SiO2的加入能够显著提高水性聚氨酯的稳定性,并改善其力学性能和耐候性能。

2. 复合材料的结构与性能(1)红外光谱分析表明,纳米SiO2与水性聚氨酯成功复合,两者之间存在化学键合作用;(2)扫描电镜观察显示,纳米SiO2在水性聚氨酯基体中分散均匀,有效提高了基体的力学性能和耐候性能;(3)力学性能测试表明,与未添加纳米SiO2的水性聚氨酯相比,复合材料具有更高的拉伸强度和更好的抗冲击性能。

3. 复合材料的老化性能通过加速老化实验发现,水性聚氨酯/纳米SiO2复合材料具有优异的老化性能。

在紫外光、高温等恶劣环境下,复合材料的物理机械性能和耐候性能均表现出较高的稳定性。

这主要归因于纳米SiO2的加入,提高了水性聚氨酯的抗老化性能。

四、结论本篇论文通过实验研究了水性聚氨酯/纳米SiO2复合材料的制备过程及老化性能。

复合材料 英语

复合材料 英语

复合材料英语Composite Materials。

Composite materials, also known as composites, are engineered materials made from two or more constituent materials with significantly different physical or chemical properties. These materials are combined to produce a material with characteristics different from those of the individual components. The most common composites are made up of a matrix and a reinforcement. The matrix is a binder that holds the reinforcement together, while the reinforcement provides strength and stiffness to the composite.One of the key advantages of composite materials is their high strength-to-weight ratio. This means that composites are lighter than traditional materials such as steel or aluminum, yet they are just as strong or even stronger. This makes composites ideal for applications where weight reduction is critical, such as in aerospace and automotive industries. Additionally, composites can be tailored to have specific properties, such as high temperature resistance, electrical conductivity, or corrosion resistance, making them versatile for a wide range of applications.The most common types of composites include polymer matrix composites (PMCs), metal matrix composites (MMCs), and ceramic matrix composites (CMCs). PMCs are the most widely used composites and are made up of a polymer resin matrix reinforced with fibers such as carbon, glass, or aramid. PMCs are lightweight, corrosion-resistant, and have good fatigue properties, making them suitable for applications in the automotive, marine, and construction industries.MMCs are composites in which the matrix is a metal and the reinforcement can be either a metal or a ceramic material. These composites are known for their high strength, stiffness, and thermal conductivity, and are commonly used in aerospace, automotive, and sporting goods industries. CMCs, on the other hand, are composites in which the matrix is a ceramic material and the reinforcement can be a ceramic, metal, or polymermaterial. CMCs are known for their high temperature resistance, wear resistance, and corrosion resistance, and are used in aerospace, energy, and industrial applications.In recent years, there has been a growing interest in the development of bio-based composites, which are made from renewable resources such as natural fibers and biopolymers. These composites are environmentally friendly and have the potential to replace traditional composites in a wide range of applications. Additionally, the use of nanomaterials in composites has led to the development of nanocomposites, which have enhanced mechanical, thermal, and electrical properties compared to traditional composites.In conclusion, composite materials have revolutionized the way we design and manufacture products. Their unique combination of properties has made them indispensable in a wide range of industries, from aerospace and automotive to construction and consumer goods. As research and development in composite materials continue to advance, we can expect to see even more innovative applications and breakthroughs in the future.。

聚氨酯/层状硅酸盐纳米复合材料的研究进展

聚氨酯/层状硅酸盐纳米复合材料的研究进展

类是传统型复合材料 , 分散相硅酸盐 的颗粒尺寸较 大, P U无法插入片层 间, 仅形成简单的共混结构 , 多
数属 于微 米级 复合 材料 ; 第 二类 是 剥 离 型复 合材 料 , 硅酸盐 晶体片层 彼 此剥 离 , 呈无 序 状 态 , 均 匀分 散 在 P U基质 中纳米 复合 材料 , 一 般制 备 所 得 的层 状 硅酸 盐P u纳米复合材 料 的结构 为剥离 型 。 2 聚氨 酯/ 层 状硅 酸盐 纳米 复 合材料 的制备 方 法 合成 P U / 层 状硅 酸盐 纳 米复合 材 料 主要有 插 层 聚合 法 、 溶胶一 凝胶法、 共 混 法 等 方 法 。插 层 聚 合 法 是 制备 P U / 层 状硅 酸盐 纳米 复合 材 料 的重要 方 法, 是指 将 聚合 物单体 插 入到 层状 硅 酸 盐或 经 有 机
基体 中, 得到分散性 良好 的有机一 无机纳米 杂化材 料 。综合国内外相关文献的报 道 , 插层聚合法主要 有: 原位插层法 、 熔融插层法 、 溶液插层法。

6・
聚氨酯工业
第2 8卷
2 . 1 原 位插 层聚 合法
结 果表 明 , 随着有 机粘 土含 量 的增 加 , 动态储 能模 量
单 调增 加 。这 主 要 归 因 于 P U E 中软 段 和 硬 段 界 面
( 1 .太原理 工 大 学材 料科 学与工程 学院

太原 0 3 0 0 2 4 ) ( 2 .山西省 化 工研 究所
太原 0 3 0 0 2 1 )
要: 综 述 了近年 来 国 内外 纳米层 状硅 酸 盐改性 聚氨 酯 的最新研 究进展 状 况 。介 绍 了层 状硅 酸
盐 的结 构 、 聚氨 酯/ 层状硅 酸 盐纳 米复合 材料 的类型及 其微 观 结构 , 并对 聚氨 酯/ 层状硅 酸 盐 纳米 复

高分子英语课文翻译修订版

高分子英语课文翻译修订版

高分子英语课文翻译集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]unit1all polymers are built up from bonding together a single kind of repeating unit. At the other extreme ,protein molecules are polyamides in which n amino acide repeat units are bonded together. Although we might still call n the degree of polymerization in this case, it is less usefull,since an amino acid unit might be any one of some 20-odd molecules that are found in proteins. In this case the molecular weight itself,rather than the degree of the polymerization ,is generally used to describe the molecule. When the actual content of individual amino acids is known,it is their sequence that is of special interest to biochemists and molecular biologists.并不是所有的聚合物都是由一个重复单元链接在一起而形成的。

在另一个极端的情形中,蛋白质分子是由n个氨基酸重复单元链接在一起形成的聚酰胺。

尽管在这个例子中,我们也许仍然把n称为聚合度,但是没有意义,因为一个氨基酸单元也许是在蛋白质中找到的20多个分子中的任意一个。

复合材料英语定稿版

复合材料英语定稿版

复合材料英语HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】复合材料英语复合材料专业术语高性能的长纤维增强热塑性复合材料:(LF(R)T)Long Fiber Reinforced Thermoplastics玻璃纤维毡增强热塑性复合材料:(GMT)Glass Mat Reinforced Thermoplastics短玻纤热塑性颗粒材料:(LFT-G)Long-Fiber Reinforce Thermoplastic Granules 长纤维增强热塑性复合材料:(LFT-D)Long-Fiber Reinforce Thermoplastic Direct 玻纤:Glass Fiber 玄武岩纤维:Basalt Fibre (BF)碳纤维:CFRP 芳纶纤维:AFRP ( Aramid Fiber)添加剂:Additive 树脂传递模塑成型:(RTM)Resin Transfer Molding热压罐:autoclave 热压罐成型:autoclave moulding热塑性复合材料缠绕成型:filament winding of thermoplastic composite热塑性复合材料滚压成型:roll forming of thermoplastic composite热塑性复合材料拉挤成型:pultrusion of thermoplastic composite热塑性复合材料热压罐/真空成型:thermoforming of thermoplastic composite热塑性复合材料液压成型:hydroforming?of?thermoplastic?composite热塑性复合材料隔膜成型:diaphragm?forming?of?thermoplastic?composite离心浇注成型:centrifugal?casting?moulding泡沫贮树脂成型:foam?reserve?resin?moulding环氧树脂基复合材料:epoxy resin matrix composite聚氨酯树脂基复合材料:polyurethane?resin?matrix?composite热塑性树脂基复合材料:thermoplastic?resin?matrix?composite玻璃纤维增强树脂基复合材料:glass?fiber?reinforced?resin?matrix?composite 碳纤维增强树脂基复合材料:carbon?fiber?reinforced?resin?matrix?composite 芳纶增强树脂基复合材料:aramid?fiber?reinforced?resin?matrix?composite混杂纤维增强树脂基复合材料:hybrid?fiber?reinforced?resin?matrix?composite 树脂基复合材料层压板:resin?matrix?composite?laminate?树脂基纤维层压板:resin?matrix?fiber?laminate树脂基纸层压板:resin?matrix?paper?laminate树脂基布层压板:resin matrix cloth laminate树脂基木质层压板:resin?matrix?wood?laminate纤维增强金属层压板:fiber?reinforced?metallaminate吸胶材料:bleeding?materials;bleeder 脱模布:release?cloth喷射成型:spray-up?moulding 纤维缠绕成型:filament?winding?压机模压成型:press?moulding 拉挤成型:pultrusion?process预压时间:dwelling?time 预吸胶:debulking? 固化:curing加压时机:pressure?applying?opportunity 固化周期:curing?cycle固化温度:curing?temperature 脱模剂:mold?release?agent一、玻璃纤维:GFRP空心纤维:hollow fiber 非织造物:nonwovens, nonwoven fabric毡:mat 连续原丝毡:continuous strand mat, continuous filament mat短切原丝毡:chopped strand mat 干切原丝:dry chopped strands湿切原丝:wet chopped strands 复合毡:combination mat薄毡:veil,tissue 织物:fabric机织物:woven fabric 电子布:electronic fabric, PCB cloth无捻粗纱布/方格布:roving cloth, woven rovings 机织带:woven tape编织物:braided fabric 单向布:unidirectional fabric, UD网布:mesh fabric, scrim 非织造网布:nonwoven scrim, laid scrim陶瓷加工:ceramic processing 表格:tabulation 氧化铝陶瓷管:alumina tube 有机物:organics 化学品安全说明书:material safety data sheets (MSDS)天然橡胶:nature rubber 碳黑:carbon black 颗粒:particle中大颗粒增强复合材料:large-particle reinforced composites弥散强化复合材料:dispersion-strengthened composites原子或分子水平:atomic or molecular level增强机理:mechanism of reinforcement 直径:diameter晶须:whiskers 单晶:single crystals 硼:boron多晶或非晶体材料:polycrystalline or amorphous material片状结构:laminar composites 夹层结构:sandwich panels低密度:less-dense 硬度:stiffness 强度:strength 延展性:ductility冲击强度:impact resistance 断裂韧性:fracture toughness拉伸:tension 压缩:compression 脆性材料:brittle material延性材料:ductile material 弹性材料:elastic material拉伸试验:tensile test 树脂:resin 增强体:reinforcement耐磨性:abrasion resistance陶瓷加工:ceramic processing 表格:tabulation 氧化铝陶瓷管:alumina tube 有机物:organics 化学品安全说明书:material safety data sheets (MSDS)天然橡胶:nature rubber 碳黑:carbon black 颗粒:particle中大颗粒增强复合材料:large-particle reinforced composites弥散强化复合材料:dispersion-strengthened composites原子或分子水平:atomic or molecular level增强机理:mechanism of reinforcement 直径:diameter晶须:whiskers 单晶:single crystals 硼:boron多晶或非晶体材料:polycrystalline or amorphous material片状结构:laminar composites 夹层结构:sandwich panels低密度:less-dense 硬度:stiffness 强度:strength 延展性:ductility冲击强度:impact resistance 断裂韧性:fracture toughness拉伸:tension 压缩:compression 脆性材料:brittle material延性材料:ductile material 弹性材料:elastic material拉伸试验:tensile test 树脂:resin 增强体:reinforcement耐磨性:abrasion resistanceAcetyl||乙酰Acid-proof paint||耐酸涂料, 耐酸油漆Acrylic fiber||丙烯酸纤维Acrylic resin||丙烯酸树脂Active filler||活性填料Adapter assembly||接头组件Addition polyimide||加成型聚酰亚胺Addition polymer||加聚物Adjusting valve||调整阀,调节阀Adhersion assembly||粘合装配Adhersion bond||胶结Adjustable-bed press||工作台可调式压力机Adjuster shim||调整垫片Adjusting accuracy||调整精度,调校精度Admissible error||容许误差Admissible load||容许载荷Adsorbed layer||吸附层Advanced composite material||先进复合材料,高级复合材料Advanced development vehicle||试制车,预研样车AE(Automobile Engineering)||汽车工程技术Aeolotropic material||各向异性材料Aerated plastics||泡沫塑料, 多孔塑料Aerodynamic body||流线型车身Aft cross member||底盘/车架后横梁Air bleeder||排气孔Air clamp||气动夹具Air deflector||导流板;导风板,气流偏转板Air intake manifold||进气歧管Air servo||伺服气泵Air-tight joint||气密接头All-plastic molded||全塑模注的All polyster seat||全聚酯座椅Alligatoring||龟裂,涂膜皱皮,表面裂痕Amino resin||氨基树脂Angular test||挠曲试验Anti-chipping primer||抗破裂底漆(底层涂料)Apron||防护挡板Aramid fibre composites||芳胺纤维复合材料Assembly drawing||装配图Assembly jig||装配夹具Assembly part||装配件,组合件Autoclave forming||热压罐成型Autocorrection||自动校正Automatic compensation||自动补偿Automatic feed||自动进料Automobile instrument||汽车仪表板Automotive transmission||汽车传动装置,汽车变速器Auxiliary fasia console||副仪表板Axial strain||轴向应变Axle bushing||轴衬Axle fairing||底盘车桥整流罩A Stage||A 阶段(某些热固性树脂聚合作用的初期阶段)AAC(Auxiliary Air Control)||辅助空气控制ABC(Active Body Control)||主动式车身控制装置Abherent||阻粘剂Ability meter||测力计,性能测试仪ABL (Ablative)||烧蚀剂Ablation||烧蚀Ablative composite material||烧蚀复合材料Ablative insulative material||烧蚀绝热材料Ablative polymer||烧蚀聚合物Ablative prepreg||烧蚀性预浸料Ablative resistance||耐烧蚀性ABR(Acrylate Butadience Rubber)||丙烯酸丁二烯橡胶Abradant material||研磨材料,磨料Abrade||研磨;用喷砂清理Abrasion||磨耗Abrasion coefficient||磨耗系数Abrasion loss||磨耗量,磨损量Abrasion performance||磨耗性Abrasion-proof material||耐磨材料Abrasion resistant paint||耐磨涂料Abrasion test||磨损试验Abrasive blast system||喷砂清理系统Abrasive cloth||砂布Abrasive disc||砂轮盘,砂轮片Abrasive finishing||抛光Abrasive paper||砂纸Abrasive resistance||耐磨性ABS(Acrylonitrile Butadiene Styrene)resin||ABS树脂,丙烯腈-丁二烯-苯乙烯(热塑性)树脂ABSM(American Bureau of Standard Materials)||美国标准材料局Absolute dynamic modulus||绝对动态模量Absolute error||绝对误差Absorbent material||吸收性材料,吸收性物质,吸声材料,吸收剂Absorber||减振器,阻尼器,缓冲器ACA(Automotive Composite Alliance)||汽车复合材料协会ACC(Automatic Clutch Control)||自动离合器操纵控制Accelerant||促进剂,加速剂Accelerated aging test||加速老化试验,人工老化试验Accelerator pedal shaft||加速踏板轴Accelerator pump nozzle||加速泵喷嘴Acceptable life||有效使用寿命Acceptance test specification||验收测试规范Access panel||罩板,盖板Accessory||配件,附属品Accessory equipment||辅助设备Accessory kit||附件包,成套附件Accumulator can||储电池外壳Accumulator package||蓄压器组件,蓄压器单元Accuracy in calibration||校准精度Accuracy of finish||最终加工精度Accuracy of manufacture||制造精度Accuracy of positioning||定位精度Accuracy of repetition||重现精度,复制精度Acetal matrix composites||缩醛树脂基复合材料Acetal plastic||缩醛塑料,聚甲醛塑料Acetal resin||缩醛树脂Acetamide||乙酰胺Acetate fiber||醋酸纤维,乙酸纤维Acetone||丙酮Back corner panel||后围角板Back panel||后围板Back side panel||后侧板Back wall pillar||后围立柱Backer||衬料Baffler||挡板,阻尼器;导流叶片Bag Molding||气囊施压成型(袋模法) Baggage holder||行李架Barrier coat||阻挡层;防渗涂层Batch mixing||分批混合,批混Batching unit||分批加料装置Bearing assembly||轴承组合件Biaxial winding||双角缠绕, 双轴缠绕Binder fiber||粘合纤维Bipolymer||二元共聚物Bismaleimide composites||双马来酰亚胺复合材料Blank placement||坯料的放置Blanket||玻璃纤维毡;坯料Blanking press||冲压机, 冲割压力机Blending resin||掺合树脂BMC(Bulk Moulding Compound)||团状膜塑料BMI (Bismaleimide)||双马来酰亚胺Body back panel||车身后板Body back wall||车身驾驶室后围Body bracket||车身支架Body control module||车身控制模块Body frame (Body skeleton)||车身骨架Body front panel||车身驾驶室前围板Body monocoque||单壳体车身,单壳式结构车身Body outer panel||驾驶室覆盖件;驾驶室覆盖件Body structural member||车身结构件Body trim||车身装饰件Bonded riveted structure||胶铆结构Bonnet||发动机罩Brake||制动器Brake arrangement||制动装置Brinell hardness test||布氏硬度试验Brittle coating||脆性涂层Bulk coat||整体涂层Bulk heat treatment||整体热处理Bulk moulding compound||(增强塑料)预制整体模塑料Bumper bracket(holder)||保险杠托架Bus brake system||客车制动系Butt flange||对接法兰Butt joint||对接接头;对接Butterfly valve||节流阀,节气门BWI (Body In White)||白车身Cab deflector shield||驾驶室导流板Cab fairing||驾驶室整流罩Cab floor||驾驶室地板Cab mounting||驾驶室悬置CAD(Computer Aided Design)||计算机辅助设计CAE (Computer Aided Engineering)||计算机辅助工程设计Calibration tolerance||校准公差Calibrating instrument||校准仪表Camouflage paint||覆面漆, 盖面涂料, 伪假漆Cantilever beam impact test||悬臂梁冲击试验Carbon-felt reinforced carbon composites||碳毡增强碳复合材料Carbon fiber clutch||碳纤维离合器Carbon filament cloth||碳丝织物Case extension||外壳的伸出部分,延伸外壳Casing gasket||外壳密封垫Catalyst manifold||固化剂总成Catalyst pump||固化剂泵Catalyst ratio||固化剂比率Cavity||模槽,型腔;凹模Cavity block||阴模Cavity depth||模槽深度Cellular board||蜂窝状板,多孔板Cellular plastics||泡沫塑料,多孔塑料Centre boss||轮毂Centre pin||销轴,枢轴,主销Centrifugal casting moulding||离心浇铸成型Centrosymmetry||中心对称层板Ceramic matrix composites||陶瓷基复合材料Charge||填充气体,填充料Chasis||底盘;机壳,车架Chlorinated polyethlene||聚氯乙烯Chopped fiber||短切纤维Chopped random mat||短切无序毡Chopped strand||短切原丝CIRTM(Co-Injection RTM)||共注射RTMClamping fixture||夹具,夹紧装置Clamping force||夹持力,合模力Class A surface||A级表面Clear coat||透明涂层,透明罩漆,清漆层Clear coat finish||清漆涂层Clicker die||冲模Climb milling||同向铣削, 顺铣Clipping press||切边压力机Closure pressing speed||合模速度CMM(Closed Mould Moulding)||闭合模塑CMT(Compression Molding||挤压成型工艺CNC(Computerized Numerical Control)||电脑数值控制Coarse grinding||粗磨,用砂轮初加工Coating defect||涂层缺陷Collision test||碰撞试验,撞车试验Combination property||综合性能Concept design||概念设计Convection modulus||对流模量Convergence test||收敛试验Cooling fixture||冷却夹具Cooling tower||冷却塔Crazing||龟裂,细裂纹Cresol resin||甲酚树脂Cutting felt||毡的剪切Cutting-off bushing||环形下料模; 下料环Damped structure||阻尼缓冲结构Damper bracket||件振器支架Dashboard illumination||仪表板照明Dash trimming||前围板衬板Deburring||去毛刺,倒角,除飞边Deepdrawing forming||深拉成型Deflection test||挠曲试验Dent resistance||耐冲击性Design freedom||设计自由度Detail drawing||祥图,零件图Die assembly||压模装置Die casting||压模铸件,压模铸法Dimethyl fomamide||二甲基甲酰胺Dimethyl ketone||二甲基甲酮; 丙酮Dip pretreatment||浸渍预处理Die prime coat||浸渍打底漆Dimensional stability||尺寸稳定性Dip coating||浸涂Dip forming||浸渍成型Durability testing||耐久性试验,寿命试验Dwell||保压,暂停加压;滞留时间Dynamometer||测力计Edge effect||边缘效应,边界效应Edge feed||边缘进料Edge gate||侧浇口Ejection force||脱模力Ejector||起模杆Ejector guide pillar||推板导套Ejector housing||支架Elasticizer||增塑剂Elastomeric composites||高弹体复合材料Elongation at break||断裂延伸率Energy absorbing foam||吸能泡沫塑料Epoxy resin||环氧树脂Ether ketone||酮醚Explosion proof||防爆Exterior body panelling||车身外板部蒙皮Exterior trim||外饰,外饰件Fabric composites||织物复合材料Fabric impregnation||织物浸渍Fabric preform||织物预成型Fabric prereg||织物预浸料Fabrication parameter||制造参数Fabrication procedure||制造工序Fabricating machinery||加工设备Face plate coupling||法兰式连接Factory primer||工厂底漆,工厂防锈漆Fairing||整流罩,整流装置Fairing panel||前裙板Fascia bracket||仪表板支架Fascia mask||仪表板罩板Fastening clamp||夹紧装置,紧固夹子Fatigue tension test||拉伸疲劳性试验FCM(Fibrous Composite material)||纤维复合材料FEA(Finite Element Anlysis)||有限元分析Feed system||供料系统Feeding pump||供给泵Feeding speed||进给速度Female groove||凹模Female mould(tooling)||阴模Fender||翼子板;护板Fender apron||挡泥板Fender inner panel||翼子板内衬护板Fiber composite laminate||纤维复合材料层板Fiber mat layer||纤维毡层Finisher(Finishing component)||装饰件Flange||法兰, 凸缘Flange fitting||法兰式管接头Flash||毛边Flash mold||毛边模具Front sheet metal||车前板制件Fuselage fairing||机身整流装置Gage kit||仪表组,仪表套件Gas cavity||气泡,砂眼Gauge panel||仪表板Gear assembly||齿轮传动装置, 减速器Gearbox cover||变速器壳盖Gear bracket support||齿轮托支架Gel coat||胶衣,凝胶涂层Gel coat drum||胶衣圆桶Gel coat flow monitor||胶衣流量监控器Gel time||凝胶时间Glass fiber winding machine||玻璃纤维缠绕机Glass wool||玻璃棉Glass yarn||玻璃丝Guiding device||导向装置Gunk||预混料Gusset||角撑件Gutter channel||流水槽Hand lay-up ||手工铺叠,手工铺贴Hardness testing machine||硬度测试仪Hauling truck||拖车Header board outside panel||前板外板Headrest||靠枕Heat barrier material||隔热材料Heat forming||热成型High molecular material||高分子材料High pressure bag molding||高压袋成型工艺High pressure injection moulding||高压注射成型,高压注射模塑High-strength structural adhesives||高强度结构粘合剂此资源来自:如需转载,请注明出处,谢谢合作!~ High temperature coating||高温涂层Hose support||软管支架Hub assembly||毂组件Hub bearing||车轮轮毂轴承Hydraulic device||液压装置Hydraulic engine||液压发动机Hydrostatic strength||流体静力强度IMC(In-Mold Coating)||模具内部涂层Immersion paint||浸漆Immersion test||浸渍试验,浸泡试验Immovable support||固定刀架Impact analysis||碰撞试验撞击分析Impact bending||冲击挠曲Impact specimen||冲击试样Impegnate||浸渍Impelling strength||冲击韧性Injection head||注射头Injection-moulded composites||注射模塑复合材料Injection moulded part||注塑制件Injection nozzle||注射喷口,压注喷口Intermittent entry||间歇供给,不连续供给Intermittent failure||间接性故障Izod test||悬臂冲击试验Jack||千斤顶,起重器;传动装置Jack engine||辅助发动机Jackbit insert||切刀,刀具,刃口Jacket||护套,套管,保护罩,蒙皮Jar-proof||防震的Jaw||钳口;定位销Jell||胶凝,凝固,固结Jet milling||喷射研磨Jig||夹具,定位模具Jig-adjusted||粗调的Job program||工作程序Joining nipple||接合螺管Joining on butt||对头接合Joint face of a pattern||分模面Joint gate||分型面内浇口Joint packing||填充垫圈,接合填密Joint sealing material||填缝料Joint-shaped support||铰接支架Joint strenght||连接强度Jump welded tube||对缝焊管,焊接管Junction bolt||接合螺栓Junction point||接点Keeping life||保存期,产品有效期Kenel||型芯Ketene||乙烯酮, 烯酮Ketene dimethyl||二甲酮Ketimide||酰基酮亚胺Ketimine||酮亚胺Ketoamine||酮胺,氨基酮Ketol||乙酮醇Ketone||甲酮Keying strength||咬合强度Knife holder||刀具,刀架Knockout||脱模Knockout pin||脱模销Knockout plate||脱模板Knoop scale||努氏硬度标度Knuckle joint||铰链连接Koplon||高湿模量粘胶纤维Koroseal||氯乙烯树脂Lacquer||挥发性漆;涂漆Lacquer finish||喷漆,上漆,罩光Lacquer formation||漆膜形成,成漆Lacquer putty||腻子,整面用油灰Lacquering ||上清漆Laminate constructionthickness||结构层厚度Laminated panel||薄层状板Laminated plastics||层压塑料制品, 塑料层板Laminated thermosettingplastics||层压热固塑料Latex paints ||清漆Lay-up||(塑料,夹板的)铺叠成型Light-alloy body part||轻合金车身零件Lining ||衬里,衬垫Loaded haul cycle||载货行程Location bearing||定位轴承Location guide||固定导杆,定位导杆Location hole||定位孔Location tolerance||位置公差, 安装公差Locatin pin||定位销Lock bolt||锁紧螺钉Low pressure injection moulding||低压模塑成型Low shrink resin||低收缩树脂Luggage rack||行李架Machining accuracy||加工精度Machining center||加工中心Main shaft gear bushing||主轴齿轮衬套Mandrel ||卷芯,模芯;芯轴Manifold hood||歧管外罩Manual Lay-Up||人工手糊Manual spray-up||手工喷射Manual truck||手推车Manufacturing drawing||制造图纸Matched molds||合模Matrix ||基体,基质Mechanical properties||机械性能Metal bonding||金属粘结Metal-working machine||金属加工机床Methanol||甲醇Mismachining tolerance||加工误差Modular||组装式的Mofulus of elasticity||弹性模量Mould operation||模具操作Moulded plastics||模压塑料Moulding||嵌条;成型;装饰件Mount support||装配支架Multi-axial stress||多轴向应力Multi-tool machining||多刀切削加工||Needled mat||针刺毡,针织毡Non-ductile fracture||无塑性破坏Nontwisting fiber||不加捻纤维Notched izod test||带缺口悬臂梁式冲击试验Nozzle||管嘴,喷嘴Numerically controlled engine lathe||数控普通车床Nylon resin||尼龙树脂OEM (Original Equipment Manufacturer) ||原始设备生产商Offset cab||侧置驾驶室On-site forming||现场发泡On-site winding||现场缠绕成型Open molding||敞开式模塑法Opening mould||开模Optimized design||优化设计Orifice||注孔Orthophenyl tolyl ketone||邻苯基甲苯基酮Orthophthalic resin ortho||邻苯二甲酸树脂Osmotic pressure||渗透压力Outboard wing||外翼Outer panel skin||蒙皮Oven heating||烘箱加热,加热固化Over-engineering||过份设计的Over flow||溢流Over-spray||过喷Overhead traveling crane||高空移动行车Overhead-valve engine||顶置气门发动机Overhung trailer||外伸式拖车Oxide paint||氧化物涂料Package power||动力装置总成Packed ||紧密的,密实的;有密封的,有填料的Packing||衬垫;填料,密封填料;包装PAD(Paint As Required)||按需涂漆Paint base coat||上底漆Paint blemish||涂漆缺陷Paint blower||喷漆用压力机,喷漆枪Paint brush||涂漆刷Paint dilution||油漆稀释PE(Polyethlene)||聚乙烯Pedestal mounted||落地安装的Phenolic plastic||酚醛塑料Phenyl ketone||苯基甲酮Pit mounted||嵌入式安装Pivotal arm||枢轴Platic structural component||塑料结构零部件Plastic upholstery||(座椅)塑料蒙面Play compensation||间隙补偿PLC(Programmable Logical Controller) ||可编程序逻辑控制器Polycarbonate plastics||聚碳酸脂塑料Polyester resin||聚脂树脂Polyimide||聚酰亚胺Polymer||聚合物,高分子,多聚体Polyurethane foam||聚氨酯泡沫塑料Polyvinyl||聚乙烯的, 聚乙烯Polyvinyl fluoride||聚氟乙烯Prefabricated parts||成品零部件,制造好的零部件Propylene resin||丙烯类树脂Protecting lacquer||防护漆PSF(Polystyrene Foam)||聚苯乙烯泡沫塑料PTFE(Polytetrafluoroethylene)||聚四氟乙烯Pultrusion||拉挤成型Putty knife||油灰(腻子)刮铲QC(Quality Control)||质量控制QCS(Quality Control Standard)||质量管理控制标准QR(Quality Requirements)||质量规格(要求)Quality certification||质量认证Quantity production||大量(成批)生产,大规模生产Quantity production||大量(成批)生产,大规模生产Quarter panel brace||后侧围板支撑件Quarter panel lower extension||后侧围板下延伸部Quarter trim cap||后侧围装饰板盖Quarte wheel house||后侧围轮滚罩,后侧围车轮室Quasi-isotropic laminate||准各向同性层板Quench||淬火Rack truck||架子车, 移动架Radial dispersion||径向位移Radial loading||径向力(载荷) Radial pump||径向离心泵Radiation protective paint||防辐射涂料Radiator||散热器Rag||毛刺RARTM(Rubber-assisted RTM)||橡胶辅助RTM(用橡胶取代芯材的热膨胀RTM)Reactive resin||活性树脂, 反应型树脂Rear skirt rail||后围裙边梁Reciprocating engine||活塞式发动机, 往复式发动机Reinforcement||车身加强件,增强材料;构架Repeat accuracy||重复精确度Repeatability||设备重复定位精度Resin formulation||树脂配方Retaining nest||定位槽Return trip||回程,返回行程Rib||筋,加强筋RIFT(Resin Infusion Under Flexible Tooling)||挠性上模具树脂浸渍工艺RIM(Reaction Injection Molding)||反应注射模塑Safety hood||安全罩Sample testing||样品试验Sand wet||(车身/涂装)湿砂打磨Sandwich body||夹层结构车身Sandwich construction||夹层结构Sandwich panel||多层板,复合板Shaft assembly||轴组件Skin coat||表层;罩面层Solvent reclaim||溶剂的回收Stiffener||加强件Storage modulus||储能模量Stress at definite elongation||定伸应力Stretched actylic plastic||拉伸丙烯酸塑料String milling||连续铣削Stroke||(悬架)减振器,冲程Structural instrument panel||结构仪表板Structural layer||结构层Styrene||苯乙烯Styrofoam||聚苯乙烯泡沫塑料Surface mat||表面薄毡Synthetic resin paint||合成树脂涂料Tack strength||粘着强度Tail gate||(卡车等的)后挡板Teflon||聚四氟乙烯(塑料, 绝缘材料)TERTM(Thermal-Expansion Resin Transfer Molding)||热膨胀树脂传递模塑Thermoplastic plastics||热塑性塑料Thermoset resin||热固性树脂Thickening agent||增粘剂Trim waste||内饰废料Trimming orientation||修边定位Turbulent heating||湍流加热Turndown ratio||衰减比率Twisting stress||扭胁强, 扭应力U bolt||U形螺栓U bolt plate||U 形螺栓垫板Ultimate mechanical strength||极限机械强度Ultraviolent sensitive coating||紫外线感光涂层Undercoat paint||头道漆Uniaxial drawing||单轴拉伸Unsaturated polyester resin||非饱和聚酯树脂Unyielding support||不可压缩支架, 刚性支架Upper yield stress||上屈服应力Urethane coating||氨基甲酸乙酯涂层UVRTM(Ultra-violet RTM)||紫外线固化RTM(利用紫外线进行固化)VA RTM (Vacuum Assisted Resin Transfer Molding) ||真空辅助RTM Vacuum bag molding||真空袋模制法VARI(Vacuum Assisted Resin njection)||真空辅助树脂注射Variable speed||无级变速Ventilation duct||通风管Ventilator(Ventilating equipment)||通风装置Vibratory stress||振动应力VIMP (Variable Infusion Molding Process)||可变浸渍模塑Vinyl chloride resin||聚氯乙烯树脂VOC(Volatile Organic Compound)||挥发性有机化合物Volume modulus||体积模数Vortex generator||(车身)扰流器,导流板VRV(Vacuum Reducer Valve)||真空减压阀Warping stress||翘曲应力Waste utilization||废物利用,废物处理Water shield||防水罩,挡泥板;密封条Water tolerance||耐水性Wedge gripping||楔形夹具Wheel fender||翼子板Wing trussgrid||翼子(挡泥)板加强件Winding||缠绕Wingtip assembly||翼尖整流罩Wire drawing||拉丝Wiring press||卷边压力机, 嵌线卷边机Workpiece grippe||工件夹子(持器),机械手Woven roving fabric||(玻璃纤维)无捻粗纱布织物Xylenol Carboxylic Acid||二甲苯酚酸Xlylene||亚二甲苯基Xyster||刮刀X alloy||铜铝合金Xenidium||胶合板Xenidium||胶合板Xylene ||二甲苯Xylene resin||二甲苯树脂Yard-crane||移动吊车,场内移动起重机Yarn count||纱线支数,丝线支数Yarn strength||纱线强度,长丝强度Yield limit||屈服极限,屈服点Yield point under bending stress||弯曲应力下的屈服点Yield stress||屈服应力, 屈服点Yield stress controlled bonding||屈服应力粘结Zedeflon||四氟乙烯均聚物Zero checker||定零位装置, 零位校验Zero clearance||零间隙Zero compensation||零位补偿Zero initial condition||零初始条件Zero setting||(仪表)零位调整, 置零Zero shrinkage resin||零收缩树脂Zone control||区域控制。

纳米材料 英文介绍

纳米材料 英文介绍

• Enhancement of elastomeric properties:人造橡胶图片 -- for oil resistant HNBR(氢化丁腈橡胶) by the inclusion of Zinc(锌) di-methacrylate
• Thermal insulating coatings: --a layer of nanoporous(纳米多孔) silica(硅) on PI (聚酰亚胺)thin film coated by a 70nm thick Al films
பைடு நூலகம்
– Better elevated temperature behaviour
• Chemical-related properties – Enhanced corrosion and degradation resistance
APPLICATIONS OF NANOCOMPOSITES
• Automobiles: --Air intake cover, fuel tank and other under the hood components due to the improved mechanical and thermal stability
– Better damage tolerance • Physical-related properties
– Controlled thermal expansion and conductivity
– Directional electrical and magnetic properties
Thank you for your watching
Definition of Nanocomposites

碳纳米管_聚氨酯纳米复合材料的制备及性能

碳纳米管_聚氨酯纳米复合材料的制备及性能

第24卷第12期高分子材料科学与工程Vol.24,N o.122008年12月POLYMER MAT ERIALS SCIENCE AND ENGINEERINGDec.2008碳纳米管/聚氨酯纳米复合材料的制备及性能王平华,李凤妍,刘春华,杨 莺(合肥工业大学化工学院高分子科学与工程系,安徽合肥230009)摘要:采用可逆加成 断裂链转移(RA FT )聚合方法在碳纳米管表面接枝聚甲基丙烯酸甲酯和聚苯乙烯嵌段共聚物M WN T P(MM A b St),对碳纳米管进行改性。

采用直接共混法制备碳纳米管/水性聚氨酯纳米复合材料。

通过红外光谱(FT IR)和透射电镜(T EM )对嵌段共聚物的结构进行了表征。

碳纳米管加入对乳液成膜性影响不大。

热失重分析(T GA )和力学性能测试结果表明,当改性后的碳纳米管含量为聚氨酯固体份的0.75%时,复合材料的热稳定性、拉伸强度和断裂伸长率均较聚氨酯有所提高。

关键词:可逆加成 断裂链转移;碳纳米管;水性聚氨酯;纳米复合材料中图分类号:T B383 文献标识码:A 文章编号:1000 7555(2008)12 0184 04收稿日期:2007 10 23;修订日期:2007 12 20基金项目:国家自然科学基金资助项目(50573016)联系人:王平华,主要从事高分子结构设计与合成,纳米复合材料,塑料加工改性研究,E mail:phw ang@碳纳米管[1,2]自1991年发现以来,由于其独特的物理和化学性质而被越来越多的研究者关注。

近年来,国内外的研究者对碳纳米管/聚合物复合材料进行了研究,碳纳米管广泛应用于聚甲基丙烯酸甲酯[3,4]、聚苯乙烯[5]、环氧[6,7]、聚氨酯[8]等聚合物。

由于碳纳米管表面的特殊结构和纳米管间的强范德华力,致使其与聚合物基体复合时很难取得良好的分散,因此需要对碳纳米管进行各种物理、化学表面修饰。

本文基于RAFT 聚合方法[9]在碳纳米管的管壁接枝嵌段共聚物链,以增加与聚氨酯基体的相容性,采用直接共混法制备碳纳米管/水性聚氨酯纳米复合材料,并对其热性能和力学性能进行了研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Designed Monomers and Polymers12(2009)279–290www.brill.nl/dmpReviewPolyurethane NanocompositesIgor V.Khudyakov a,R.David Zopf a and Nicholas J.Turro b,∗a Bomar Specialties,Torrington,CT06790,USAb Chemistry Department,Columbia University,New York,NY10027,USAAbstractThis review describes the present state of science and technology of photopolymerizable(UV-curable) polyurethane(PU)nanocomposites which include nanosilica and organically-modified clay(organoclay).A number of documented improvements of properties of PU nanocomposites compared to the pristine PU are presented.Many data on the structure and properties of PU nanocomposites were obtained not only for UV-cured urethane acrylate oligomers,but also for nanocomposites produced in the dark reactions.These data are critically reviewed.There is an expectation in thefield of dramatic improvement of properties of PU nanocomposites under low loading(1–5wt%)of organoclay.©Koninklijke Brill NV,Leiden,2009KeywordsPolyurethane,organoclay,UV-cure,nanosilica,nanocomposite,montrillomonite1.IntroductionNanocomposites are polymers containing nanofillers[1–3].The microstructure of nanocomposites has inhomogeneities in the scale range of nanometers.Nanocom-posite materials cover the range between inorganic glasses and organic polymers [4].Fillers of polymers have been used for a long time with the goal of enhanced performance of polymers,and especially of rubber.The present paper provides a brief critical review of the literature and some our results on polyurethane(PU) nanocomposites studies.Polymer–clay nanocomposites were reported in the litera-ture as early as1961[5].Nanocomposites demonstrate often unusual and beneficial for the user properties.Scientific and technical literature report the improvement or enhancement of properties of polymer nanocomposites compared to the pristine polymers.This vague statement means an improvement of polymer properties from the standpoint of polymer application.However,different applications may have *To whom correspondence should be addressed.E-mail:njt3@©Koninklijke Brill NV,Leiden,2009DOI:10.1163/156855509X448253280I.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290quite different if not opposite requirements.Increase of polymer toughness(J/m3) is always considered as an improvement.2.Types of NanocompositesTwo types of nanofillers are under active investigation:nanoparticles and nanoclays. The main paradigm is that a valuable nanocomposite is one with the largest possible surface of nanofiller.In practice it means avoiding aggregation of nanoparticles and exfoliation of nanoclays,see below.Nanoparticles are commercially available from different sources.Sols of nanosilica as colloid solutions in water or in organic solvents are used in preparation of PU nanocomposites.Fumed silica is available as individual particles ranging from10–20nm to micrometers,and can be more or less successfully dispersed in a polymer[6,7].Layered alumosilicates clays and especially montrillomonite(bentonite)are widely used in nanocomposites.Silicates have a characteristic distance between galleries of1nm;the basal spacing of a gallery is also ca.1nm.Inorganic cations like Na+between galleries hold negatively charged galleries together.The replace-ment of the inorganic cations in the galleries of the native clay by alkylammonium (onium)salts or quarternary amines with long alkyl substituents(surfactants)leads to a better compatibility between the inorganic clay and hydrophobic polymer ma-trix.The replacement leads to an increase of the space between galleries facilitating intercalation of polymer molecules into the clay.Unless stated otherwise,in this paper we will describe only such onium salt modified montrillomonites.We term them organoclay.Three main types of nanocomposites are schematically presented in Fig.1.In most cases exfoliated nanocomposites with a high aspect ratio demonstrate en-hanced properties compared to the same pristine polymers or polymer with smectic ually the exfoliation of clay nanolayers in a polymer matrix requires polar-ity match between the clay surface and the prepolymer precursors to allow optimal access to the gallery[10].There is a number of ways to increase a degree of exfo-Figure1.A common pictorial presentation of three types of polymer composites with clay(top).Bot-tom left,conventional composite;bottom center,intercalated nanocomposite;bottom right,exfoliated nanocomposite.After Refs[3,8,9].I.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290281 liation in a nanocomposite,such as in situ polymerization,melt blending,solution blending,sonication,high shear mixing,melt intercalation,and some others[2,10]. The morphology of nanocomposites is usually studied by X-ray techniques(XRD), transmission electron microscopy(TEM)and scanning electron microscopy(SEM) [11].3.PU-Nanosilica CompositesPU nanocomposites with colloidal silica and alumina were prepared and their phys-ical properties were studied[12–15].The following is a straightforward way of preparation of nanocomposites.Colloidal silica of in organic solvent is blended with polyol,organic solvent is stripped off,and one obtains a sol of nanosilica in polyol.After that,polyol with silica reacts with diisocyanate with a formation of PU.The loading by nanosilica in some experiments was as high as50wt%[12–14].Silica sol can be added to monomers at the stage of polyester preparation by polycondensation[16].Nanosilica in PU can be prepared by in situ hydrolysis and condensation of silane-terminated oligomers[15].Note that everything should be done to avoid agglomeration of nanoparticles.Some beneficial properties of silica nanocomposites of PU were observed.Stor-age moduli of elastomers with nanosilica demonstrated an increase in the rubbery region with increasingfiller content[12].The density of PU nanocomposites is lower than the density of microcomposites(with distributed silica particles ofµm size)under the same loading(in wt%)[12].Nanosilica has a profound effect on ten-sile strength of PU composites under a high load[9,12,13].Elongation-at-break of PU nanocomposites demonstrated a strong dependence on a level of nanosilica.A pronounced effect of nanosilica on physical properties of PU nanocomposites was observed under load of10–20wt%[12,13].A dependence of physical properties of PU with nanosilica of different particle size was studied[15].It was found that maximum values of the glass-transition temperature(T g),tensile properties and abrasion resistance were obtained when the particle size of silica was about28nm[15].We were interested in the increase of abrasion resistance of the UV-cured ure-thane acrylates oligomers upon addition of colloidal silica.Colloidal silica of Nissan was added as a solution in methyl ethyl ketone(MEK)to polyol;MEK was stripped off,cf.,the beginning of this section.We obtained6.0wt%of sil-ica on solids in urethane acrylates oligomers.We did not observe any increase of abrasion-resistance of the UV-cured coating within the accuracy of our mea-surements.Apparently surface concentration of nanoparticles was too low to affect abrasion.No regular dependences are observed in one or another property of PU upon loading of nanoparticles.It was noticed,‘no regular pattern can be said to be emerging’[14].Usually these dependencies,‘property-loading’,have at least one maximum or minimum.282I.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–2904.PU-Organoclay CompositesA very impressive industrial application of nanocomposites was demonstrated by the Toyota Group in1988(see,e.g.,Ref.[17]).By using organoclay,they were able to polymerizeε-caprolactam in the interlayer gallery region of clay to form Nylon6-clay hybrid.At a loading of only4.2wt%the tensile modulus doubled,the tensile strength increased more than50%,and heat distortion temperature(HDT) increased by80◦C compared to the pristine polymer.The key to this extraordinary performance of Nylon6-clay nanocomposites was explained as the complete ex-foliation of the clay nanolayers in the polymer matrix[17].This remarkable result stimulated many chemists to search for dramatic improvement of polymer proper-ties upon addition of low level of organoclay.The effects of organoclays on the properties of PU were studied[1,3,18–33].PU were prepared by the following procedures:(i)distribution of clay in polyol with a subsequent reaction with diisocyanate;(ii)interaction of PU with clay in organic solvent with a subsequent evaporation of solvent;(iii)reaction of diisocyanate with hydroxyalkyl groups of organic modifier in the clay with a subsequent reaction with polyol.PU nanocomposites prepared with1–6wt%of clay demonstrate peaks on XRD patterns with a distance between galleries(basal spacing)in the range of1.6–3.2nm depending on the clay nature and its level[18].It is possible to conclude based on XRD and SEM and other spectroscopy,that polymer intercalated into the organ-oclay,it is not exfoliated,and organoclay is not homogeneously dispersed in a PU matrix[18].Many composites with an added non-exfoliated clay still demonstrate improved mechanical and physical properties and thermal stability,lower perme-ability of dioxygen compared to the pristine PU[18].At the same time presented data of property vs organoclay level are not simple in a series of similar nanocom-posites:it can be a curve with a maximum(minimum),it can be a permanent decrease or an increase of a property.This confirms the statement made in the pre-vious section on the lack of a regular pattern in property vs nanofiller load[18].It is documented that high temperature resistance of PU nanaocomposites is higher than that of pristine PU[18,19,27,30,33].Wang and Pinnavaia prepared PU nanocomposites by solvation of organoclay by polyolfirst.Loading of polyol with clay up to10–20wt%makes a pourable mixture [19].XRD demonstrates that intercalation of polyol into clay results in an increase of with basal spacing from1.8–2.3nm to3.2–3.9nm[19].Such spacing testifies of intercalation of polyol into clay.Formation of PU results in further increase of basal spacing up to more than5nm[19].The latter case may be considered as exfoliation of a clay or dispersal of nanolayers.Important,that onium ions of the clay were considered as active reagents for coupling with diisocyanate[19].Loading of PU with5–10wt%of clay results in a two-three times improvement of tensile prop-erties of a polymer,namely increase of strain-at-break,tensile modulus and tensile strength[19].I.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290283Common inorganicfillers are commonly used in PU chemistry to reduce for-mation cost and to increase stiffness,but the improvements in modulus for con-ventional PU composites are compromised by a sacrifice of elastomer properties. The nanocomposites reported in Ref.[19]exhibited an improvement in both elas-ticity and tensile modulus.Clay nanolayers,even when aggregated in the form of intercalated tactoids,strengthen,stiffen and toughen the matrix in the studied case. The enhancement in strength and modulus is directly attributed to the reinforce-ment provided by the disperse clay nanolayers.The improvement in elasticity is tentatively attributed to the plasticizing effect of onium ions,which contribute to dangling chain formation in the matrix,as well as to conformational effects on the polymer at the clay–matrix interface.A complete exfoliation of nanoclay was observed in PU nanocomposites with high concentration of nanoclay(up to40%)[23].In this work organoclay was ad-ditionally functionalized with diamine,which served a chain extender under PU nanocomposite formation.Tensile strength and elongation-to-break reaches max-imum at5wt%of nanofiller loading[23].Another study of PU nanocomposites demonstrates that the maximum values offlexural and tensile strengths are obtained at only few percent of a clay content[26].Several PU nanocomposites prepared in [18]were studied in the range of organoclay loading of0–8wt%.Tensile proper-ties demonstrate optimal properties at3–4wt%loading by different organoclays. Ultimate strength and initial modulus have increased in nanocomposites,as well as increased gas barrier properties,the thermal stability of one nanocomposite only increased with increasing clay content[18].A gradual increase of tensile strength with clay content increase up to5wt% of PU nanocomposites and only slight increase of glass-transition temperature(T g) and slight increase of thermal stability was observed for PU nanocomposites pre-pared in Ref.[31].It was concluded based on WAXD and TEM that PU intercalated into clay galleries[31].Organically-treated syntheticfluoromica,which is a layered silicate as well,of different size has a modest effect on the properties of PU nanocomposites[3].Ex-foliated in a solvent unmodified clay laponite as a hydrophilic compound interacts with polar soft segments(polyol)in PU like poly(ethylene oxide)or poly(propylene oxide)where as in PU with hydrophobic soft segments like poly(tetramethylene ox-ide)clay interacts with the hard domain(urethane links)[24].Thus,in thefirst case a decrease toughness and elongation-to-break is observed,whereas in the second case an increase of the same properties is observed[24].Such a study gives a better understanding of the nanoclay effect of PU nanocomposites properties.It is reasonable to expect that the formation of PU nanocomposites leads not only to improvement of all valuable for the user properties of the pristine PU. The PU nanocomposites studied in Ref.[27]demonstrated an increase in the elas-ticity,decrease in damping property,significant increase in thermal stability but demonstrated also a decrease of tensile modulus.Hysteresis results indicate that energy dissipation increases with an organoclay concentration increase[27].Films284I.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290of radiation-curable urethane acrylates demonstrate minor variation of Young’s modulus and tensile strength upon dispersion of organoclay in formulations in the concentration up to5wt%[28].Some onium salts of organoclay haveω-hydroxyalkyl substituents.The HO–CH2–group can be used to react with isocyanate and,that way,to drag OCN–R be-tween galleries or at least strengthen the interaction between urethane pre-polymer and clay[29,30].A twofold increase of tensile strength and tensile modulus in exfo-liated nanocomposites was obtained[29].In a quite similar way PU nanocomposites are formed by a reaction of IPDI not only with polyol but with HO–CH2–groups within galleries.Probably nanocomposites have an intercalated structure[34].PU nanocomposites with the photoinitiator(PI)2-hydroxy-2-methyl-1-phenyl-propane-1-one(Darocur1173)were prepared[30].This PI-PU nanocomposite was dispersed in polymerizable resins.Such initiator manifested high efficiency. XRD and TEM demonstrated formation of intercalated and exfoliated UV-cured nanocomposites with many good characteristics[30].Photopolymerization occurs inside the organoclay galleries[30].PU,as well as a number of other polymers,can demonstrate shape recovery after temporary applied stress(shape memory).PU nanocomposites demonstrated the lowest relaxation rate after removal of a stress1wt%of organoclay.The studied PU nanocomposites manifested the highest degree of clay exfoliation namely at 1wt%[33].PU nanocomposites with3and5wt%of organoclay relaxed faster than the pristine PU[33].A profound improvement of properties PU foam upon addition of5wt%of organoclay was observed[35].We used organoclay Cloisite®15A of Southern Clay Products[36]as received.A distance between the galleries in the Closite is3.15nm[21,22].Urethane acry-late oligomers were prepared the usual way:a reaction of polyol with diisocyanate with a subsequent capping of non-reacted isocyanate groups byω-hydroxyalkyl acrylates.Prior to that Cloisite was dispersed in polyol by prolong high shear mixing.Unfortunately,this Cloisite and several other studied nanoclays of a sim-ilar structure efficiently catalyze di-and,especially trimerization of common iso-cyanates at elevated temperatures[37]:(1) Formation of isocyanurate in the case of common diisocyanates TDI and IPDI was demonstrated by IR,with characteristic peaks at1695–1715cm−1[29].Polyol with dispersed organoclay and diisocyanates transforms into a solid or a very viscousI.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290285mon polyisocyanates and their abbreviated names.product.We have found that among several common commercially available poly-isocyanates only those presented in Scheme1do not react with itself and/or with clay under solventless preparation of PU nanocomposites.To the best of our knowledge,most of the publications,except Ref.[19],do not report disappearance of–NCO in the presence or organoclay by reaction(1).We believe that reaction(1)is a serious hurdle in the synthesis of PU nanocomposites.Below we will discuss the properties of urethane acrylate oligomer prepared from a trifunctional polyol,H12MDI(Scheme1)and2-hydroxylethyl acrylate as a cap-ping agent.We will name this oligomer UAO.UAO had0–20.0wt%of Cloisite®15A.We studied UAO as a viscous liquid and as a UV-cured in the presence of a photoinitiatorfilm.Figure2presents XRD data on the cured UAO.The following peak locations2θand corresponding spacing(in nm),presented in parentheses,were observed:0.25◦(35.3);1.4◦(6.3);2.3◦(3.8);4.3◦(2.1);7.0◦(1.3).Interesting is the absence of a maximum at2.8◦(3.15nm)of basal spacing in individual Closite®15A(see above).XRD study gives info on the nanocomposite. Lack of the maxima will mean the complete exfoliation of clay or a high disorder of clay.However,several maxima are observed in Figs2and3.A peak at2θ=0.25◦is very close to the direct beam and may be spurious.A broad hump at2θ=20◦(approx.0.4nm)is consistent with the bulk polymer portion of a sample.Most probably distances of3.8and6.3nm correspond to the intercalated PU acrylate. TEM and SEM will be used used in addition to XRD to get more accurate picture.We have studied rheology of urethane acrylate nanocomposites with0,3.2,10.0 and20.0wt%of Closite®15A with an ARES(Advanced Rheometric Expansion System)Rheometer.Measurements were done in the rate sweep,dynamic strain sweep and dynamic frequency sweep modes.286I.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290Figure2.Small-(the left curve)and wide-angle X-ray scatter(the right curve)XRD patterns of UV-cured UAO with10wt%of Closite®15A.Figure4demonstrates the expected pseudoplastic rheological behavior.Figure5 shows a maximum,which most probably reflects reversible agglomeration of dis-tributed organoclay particles.At low shear rates particles bump into each other and stick,causing an increase of viscosity.At higher shear rates,these loose agglom-erates break up.In general,rheological measurements revealed a rather complex behavior of UAO/Cloisite nanocomposites.We compared the physical properties of UV-cured two UAOfilms:with0and with10wt%organoclay.We did not observe significant changes in tensile proper-ties and in T g of the two samples.UAO with10wt%organoclayfinds an application in low gloss furniture coatings.Macroscopic gloss measurements of curedfilms of UAO/organoclay demonstrated a marked decrease in surface gloss,proportionate with clay concentration(15G.U.at60◦with4wt%clay,vs90G.U.at60◦for pris-tine cured UAO).Unlike the incorporation of common fumed silica matting agents, the resulting mattefinishes were highly resistant to burnishing.It is theorized that intercalated clay particles are embedded in the cured polymer matrix with some of the added durability expected of fully exfoliated organoclay,and yet are suffi-ciently abundant and proximate so as to have a visual impact on curedfilm optical properties.5.Conclusions and PerspectivesIn the present article we aimed to describe the current status of PU nanocomposites research.Colloidal silica and organoclays are the most studied nanofillers which of-ten reinforce PU.The advantage of nano-scale reinforcement is twofold:(1)whenI.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290287Figure3.Expanded small-angle X-ray scatter curve of Fig.2.nano-scalefillers are homogeneously dispersed in the matrix,a tremendous sur-face area developed that could contribute to polymer chain confinement,which may lead to higher T g,higher stiffness and tensile strength,increased elongation and an increase of bothflexural and tensile modulus,higher HDT,and(2)nano-scalefillers,especially clays,provide an extraordinary zigzag tortuous diffusion path that lead to enhanced barriers for gas penetration for a gas(dioxygen,others), moisture.The enhanced barrier characteristics,chemical resistance,reduced sol-vent uptake andflame retardancy of clay–polymer nanocomposites originates from the hindered pathways through the nanocomposite[2,9].Usually nanocomposites possess special properties not shared by conventional composites,due primarily to large interfacial are per unit volume or mass of the dispersed phase(e.g.,750m2/g [2]).Current status of nanoscience and nanotechnology does not allow prediction of the‘good’formulations and properties of nanocomposites.Chemist/technologist addresses to the prior art and analogies developing nanocomposites,or runs an ex-ploratory work.Improved properties of some PU nanocomposites with silica can be obtained un-der high load of the latter,namely10–50wt%[14].Organoclay can be properly dis-solved in the level of3–10wt%in order to obtain enhanced performance[18,19].288I.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290Figure4.Dependence of complex viscosity of UAO vs shear rate(rad/s)in the rate sweep mode at 30◦C.UAO did not have organoclay.Figure5.Dependence of complex viscosity of UAO vs shear rate(rad/s)in the rate sweep mode at 30◦C.UAO had10.0wt%of organoclay.One should avoid precipitation(crashing,gel formation)of silica in a nanocompos-ite.In the case of clay all efforts are made to exfoliate clay in polyol or at leastI.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–290289 to intercalate polyol into organoclay,and to get a large aspect ratio.The fact of exfoliation can be verified by XRD and by other techniques.PU can be obtained by two ways:by radiation cure of urethane acrylates oligomers(pre-polymers)or by dark reactions between diisocyanates and polyols. Radiation cure of urethane acrylates oligomers,and UV-cure in particular,has all of the known advantages over dark cure(high rate,low energy consumption,etc.).The presence of nanofiller,especially well dispersed nanofiller,does not inhibit photoin-duced reactions,cf.,e.g.,Refs[28,38].Moreover,photoinitiator intercalated into clay galleries,demonstrates high efficiency(Section4).A stunning and often cited result of the Toyota group[17]on nanocomposites expected tofind a wide application in automotive industry,‘but this application was stopped because of the high cost’[1].To the best of our knowledge,this work was never reproduced.Nanocomposites are expected to revolutionize polymer technol-ogy.Time will show if it will happen,or not.AcknowledgementsThe authors at Bomar are grateful to J.A.Leon for fruitful discussions.The Columbia author thanks the National Science foundation for its generous support through Grant CHE0717518.References1.T.J.Pinnavaia and G.W.Beall,Polymer-Clay Nanocomposites.Wiley,New York,NY(2000).2.M.Rosoff,Nano-Surface Chemistry.Marcel Dekker,New York,NY(2000).3.D.R.Paul and L.M.Robeson,Polymer49,3187(2008).4.B.M.Novak,Adv.Mater.5,422(1993).5.A.Blumstein,Bull.Chem.Soc.,899(1961).6.S.C.Jana and S.Jain,in:Proc.59th ANTEC(SPE),V ol.2,p.2180(2001).7.S.Zhou,L.Wu,J.Sun and W.Shen,.Coating.45,33(2002).8.Z.Wang,P.C.LeBaron and T.J.Pinnavaia,in:8th Int.Conf.on Polymer Additives,An Addition,p.10(1999).9.P.C.LeBaron,Z.Wang and T.J.Pinnavaia,Appl.Clay Sci.15,11(1999).10.C.S.Triantafillidis,P.C.LeBaron and T.J.Pinnavaia,Chem.Mater.14,4088(2002).11.M.K.Sanyal,A.Datta and S.Hazra,J.Marcomol.Sci.Pure Appl.Chem.74,1553(2002).12.Z.S.Petrovi´c and W.Zhang,Mater.Sci.Forum352,171(2000).13.I.Javni,Z.S.Petrovi´c and A.Waddon,A.Polyurethanes Expo’98.Dallas,TX,September17–20(1998).14.Z.S.Petrovi´c,I.Javni,A.Waddon and G.Bánhegyi,J.Appl.Polym.Sci.76,133(2000).15.Y.Chen,S.Zhou,H.Yang and L.Wu,J.Appl.Polymer Sci.95,1032(2005).16.J.F.Gerard,H.Kaddami and J.P.Pascault,in:Proceedings Eurofillers97,Manchester,p.407(1997).uki,Y.Kojima,A.Okada,Y.Fukushima,T.Kurauchi and O.Kamigaito,J.Mater.Res.8,1179(1993).18.J.-H.Chang and Y.U.An,J.Polym.Sci.B40,670(2002).290I.V.Khudyakov et al./Designed Monomers and Polymers12(2009)279–29019.Z.Wang and T.J.Pinnavaia,Chem.Mater.10,3769(1998).20.Y.I.Tien and K.H.Wei,J.Appl.Polym.Sci.86,1741(2002).21.L.Zhu and R.P.Wool,Polymer47,8106(2006).22.C.H.Dan,M.H.Lee,Y.D.Kim,B.H.Min and J.H.Kim,Polymer47,6718(2006).23.P.Ni,Q.Wang,J.Li,J.Suo and S.Li,J.Appl.Polymer Sci.99,6(2006).24.B.Finnigan,P.Halley,K.Jack,A.McDowell,R.Truss,P.Casey,R.Knott and D.Martin,J.Appl.Polymer Sci.102,128(2006).25.L.T.J.Korley,S.M.Liff,N.Kumar,G.H.McKinley and P.T.Hammond,Macromolecules39,7030(2006).26.W.J.Seo,Y.T.Sung,S.B.Kim,Y.B.Lee,K.H.Choe,S.H.Choe,J.Y.Sung and W.N.Kim,J.Appl.Polymer Sci.102,3764(2006).27.J.Jin,M.Song,K.J.Yao and L.Chen,J.Appl.Polymer Sci.99,3677(2006).28.F.M.Uhl,P.Davuluri,S.-C.Wong and D.C.Webster,Polymer45,6175(2004).29.A.Pattanayak and S.C.Jana,Polymer46,3275(2005).30.H.Tan and J.Nie,J.Appl.Polymer Sci.106,2656(2007).31.A.Pattanayak and S.C.Jana,Polymer46,5183(2005).32.D.S.Kim,J.-T.Kim and W.B.Woo,J.Appl.Polymer Sci.96,1641(2005).33.F.Cao and S.C.Jana,Polymer48,3790(2007).34.S.Solarski,S.Benali,M.Rochery,E.Devaux,M.Alexandre,F.Monteverde and P.Dubois,J.Appl.Polymer Sci.95,238(2005).35.X.Cao,L.J.Lee,T.Widya and C.Macosko,Polymer46,775(2005).36.Southern Clay Company website,37.J.Dodge,in:Synthetic Methods in Step-Growth Polymers,Chapter4,M.E.Rogers and T.E.Long(Eds),p.197.Wiley,New York,NY(2003).ndry,B.Riedl and P.Blanchet,.Coatings62,400(2008).。

相关文档
最新文档