全等三角形的判定PPT精品课件

合集下载

三角形全等的判定优秀教学课件

三角形全等的判定优秀教学课件

笑当你快乐时,你要想,这快乐不是永 恒的.当你痛苦时,你要想,这痛苦也不是 永恒的.
第22页,共23页。

11、这个世界其实很公平,你想要比
别人强,你就必须去做别人不想做的事,
你想要过更好的生活,你就必须去承受更
多的困难,承受别人不能承受的压力。

12、逆境给人宝贵的磨炼机会。只有
经得起环境考验的人,才能算是真正的强
第5页,共23页。
新知探究
判定两个三角形全等的方法:
两边和它们的夹角分别相等的两个 三角形全等.
简写成“边角边”或“SAS”.
第6页,共23页。
举例分析
例2:如图,有一池塘,要测池塘两端A,B的距离,可先 在平地上取一个点C,从点C不经过池塘可以直接到达点A和 B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使 CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
AE = CF (已知)
A●
D

E
F

∠A=∠C(已证)
B
●C
AD= CB (已知)
∴△ADE≌△CBF (SAS) ∴∠AED=∠CFB ∴∠FED=∠EFB
∴ DE∥BF
第17页,共23页。
4.若AB=AC,则添加什么条件可得△ABD≌△ACD?
A AD=AD ∠BAD= ∠CAD AB=AC
在△AFB 和△DEC中,
AB=DC
BE
∠B=∠C
BF=CE
∴ △AFB ≌ △DEC
∴ ∠A= ∠D
FC
第13页,共23页。
备选练习
1.在下列推理中填写需要补充的条件,使结
论成立:
(1)如图,在△AOB和△DOC中 ADLeabharlann AO=DO(已知)O

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

三角形全等的判定ppt课件

三角形全等的判定ppt课件


作图区

例题解析
例1 已知:如图,在四边形ABCD中,AB=CD,AD=CB。
求证:∠A=∠C
D
要证明∠A=∠C,需先证明△ABD和△CDB
全等, 然后由全等三角形的性质定理得到结论.A
证明:
在△ABD和△CDB中, AB=CD (已知) AD=CB (已知) BD=DB (公共边)
∴△ABD≌△CDB (SSS)
B E CF
__AC_=DF ( 已知 )
BC=_E_F (已证 ) ∴△ABC≌△DEFS(SS )
新知探究
如图,在∠CAB中,AF=DE, DF=DE. 求证:AD是∠CAB的角平分线.
C
1 2
A
D B
例题解析
已知∠BAC,用直尺和圆规∠BAC的角平分线AD
C
C
作法:
A
D
B
A
B
1、以点A为圆心,适当的长为半径,与角的两边分别交于E、F两点;
注意几何语言规范
2.三角形具有稳定性。房屋的人字架、大桥的钢梁、 起重机的支架、自行车的车座等,采用三角形结构, 起到稳固的作用。
课堂小结
内容
有三边对应相等的 两个三角形全等
边 边边
应用
思路分析
结合图形找隐含条件和 现有条件,证准备条件
书写步骤 四个步骤
注意
1. 说明两三角形全等所需的条 件应按对应边的顺序书写. 2. 结论中所出现的边必须在所 证明的两个三角形中.
A
D
C
B
E
图1
图2
新知探究
如图 ,把两根木条的一端用螺栓固定在一起,木条可以自由转动.在转 动过程中,连结另两个端点所成的三角形的形状、大小随之改变.如 果把另两个端点用螺栓固定在第三根木条上,那么构成的三角形的形 状、大小就完全确定.

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

三角形全等的判定ppt课件

三角形全等的判定ppt课件

知4-讲
1. 基本事实:两角和它们的夹边分别相等的两个三角形全 等(可以简写成“角边角”或“ASA”).
感悟新知
2. 书写格式:如图12 . 2-8, 在△ ABC 和△ A′B′C′ 中, ∠ B= ∠ B′, BC=B′C′, ∠ C= ∠ C′, ∴△ ABC ≌△ A′B′C′( ASA).
第十二章 全等三角形
12.2 三角形全等的判定
感悟新知
知识点 1 基本事实“边边边”或“SSS”
知1-讲
1. 基本事实:三边分别相等的两个三角形全等(可以简写成 “边边边”或“SSS”). 这个基本事实告诉我们:当三角形的三边确定后, 其形状、大小也随之确定. 这是说明三角形具有稳定性的 依据.
感悟新知
感悟新知
知5-练
例5 如图12.2-11,AB=AE,∠ 1= ∠ 2,∠ C= ∠ D. 求证:△ ABC ≌△ AED.
感悟新知
思路引导:
知5-练
感悟新知
知5-练
技巧点拨:判定两个三角形全等,可采用执果 索因的方法,即根据结论反推需要的条件. 如本 题还缺少∠ BAC= ∠ EAD,需利用已知条件∠ 1= ∠ 2 进行推导.
感悟新知
知2-练
③以点M′为圆心,以MN 长为半径作弧,在∠ BAC 内 部交②中所画的弧于点N′; ④过点N′作射线DN′交BC 于点E. 若∠ B=52°,∠C=83°,则∠ BDE= ___4_5_°__.
感悟新知
知识点 3 基本事实“边角边”或“SAS”
知3-讲
1. 基本事实:两边和它们的夹角分别相等的两个三角形全 等(可以简写成“边角边”或“SAS”).
感悟新知
解:∵∠BAD=∠EAC, ∴∠BAD+∠CAD=∠EAC+∠CAD, 即∠BAC=∠EAD.

完整版三角形全等的判定ppt课件

完整版三角形全等的判定ppt课件
12.5 三角形全等的判定
初二(5、6)班
1
1、 什么叫全等三角形?
能够重合的两个三角形叫 全等三角形。
2、 已知△ABC ≌△ DEF,找出其中相等的边与角
A
D
①AB=DE ④ ∠A= ∠D
② BC=EF ⑤ ∠B=∠E
③ CA=FD ⑥ ∠C= ∠F
B
CE
F
全等三角形性质:
全等三角形的对应边相等,对应角相等。
40
例 如图,有一池塘,要测池塘两端A、B的距离,
可先在平地上取一个不经过池塘可以直接到达点A 和B
的点C,连接AC并延长至D,使CD =CA,连接BC 并延
长至E,使CE =CB,连接ED,那么量出DE的长就是A,
B的距离.为什么?
A
B
1
C
2
E
D
41
证明:在△ABC 和△DEC 中,
AC = DC(已知),
(4) 两角一边 ?
27
3.角边角公理(ASA):
两角和它们的夹边分别相等的两个三角形全等.简 写成“角边角”或“ASA ”
A
几何语言:
在△ABC 和△ A′B′ C′中,
B
∠A =∠A′
AB = A′B′
∠B =∠B′
∴ △ABC ≌△ A′B′ C′(ASA). B′
C A′
C′
28
4.角角边公理(AAS):
AB =AC ,
∵ BD =CD , B
D
C
AD =AD ,
∴ △ABD ≌ △ACD ( SSS ).
32
证明的书写步骤:
①准备条件:证全等时要用的条件要先证好; ②三角形全等书写三步骤:

《三角形全等的判定》全等三角形PPT课件

《三角形全等的判定》全等三角形PPT课件
好的△ ′′′剪下来,放到△ 上,它们全等吗?
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你

全等三角形的判定ppt课件

全等三角形的判定ppt课件

全等三角形也是数学竞赛中常见 的考点之一,涉及到的知识点包
括边角关系、判定方法等。
02
全等三角形的判定方法
边边边定理
总结词
三边对应相等的两个三角形全等 。
详细描述
根据三角形的基本性质,如果两 个三角形的三边长度相等,则这 两个三角形必然全等。
边角边定理
总结词
两边对应相等且夹角相等的两个三角 形全等。
全等三角形的判定
• 全等三角形概述 • 全等三角形的判定方法 • 全等三角形的证明步骤 • 全等三角形在几何中的应用 • 全等三角形的实际应用案例
01
全等三角形概述
全等三角形的定义
定义
两个三角形全等,是指能够完全重合的两个三角形,即它们的形状相同,大小 也相同。
符号表示
记作△ABC≌△DEF或ABCDH≌EFGH。
全等三角形在几何中的其他应用
证明其ቤተ መጻሕፍቲ ባይዱ几何命题
通过证明两个三角形全等,可以证明一些其他几何命题,比如平 行线性质、勾股定理等。
研究三角形和多边形的性质
利用全等三角形研究三角形和多边形的性质,可以发现一些新的几 何定理和性质。
解决其他实际问题
利用全等三角形解决其他实际问题,比如面积计算、周长计算等。
THANKS
证明线段相等
总结词
全等三角形的对应边相等
详细描述
全等三角形的对应边也称为对应边。因此,全等三角形的对应边是相等的。这个性质常常被用来证明 两条线段相等。
证明线段垂直
总结词
全等三角形可以用来证明线段垂直
详细描述
在几何图形中,有时候需要证明某条线段与 另一条线段垂直。这时,可以利用全等三角 形的性质,通过证明两个三角形全等来证明 这两条线段垂直。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.2三角形全等判定(1)
问题引入
小伟作业本上画的三角形被墨迹污染了, 他想画一个与原来完全一样的三角形,他该 怎么办?请你帮助小伟想一个办法,并说明 你的理由?
注意:与原来完全一样的三 角形,即是与原来三角形全 等的三角形。
2021/3/1
2
想一想: 要画一个三角形与小伟画的三角形全等。
需要几个与边或角的大小有关的条件?只知 道一个条件(一角或一边)行吗?两个条件 呢?三个条件呢?
50◦
30◦
50◦
2021/3/1
8
给出两个条件时,所画的三角形一定全等
吗?
• 如果三角形的两边分别为4cm,6cm 时
4cm 6cm
2021/3/1
4cm 6cm
9
30◦ 3cm
30°
30◦ 3cm
30◦ 3cm
50°
30°
50°
只给两个条 件作出三角 形,不能保 证所画出的 三角形一定 全等。
E
C
第2题
14
D
想一小想明:的设计方案:先在池塘旁取一个能 如直图接线到段达AAB和是B处一的个点池C塘,连的结长A度C并,延长至
现D在点想,测使A量C这=D个C池,塘连结的B长C并度延,长在至E点,
水使上BC测=量EC不,方连便结,ED你,有用什米尺么测好出的DE的长, 方这法个较长方度便就地等于把A池,塘B两的点长的度距测离量。请你说 出明来理吗由?。想想看。AC=DC
例2(2007金华):如图,
A,E,B,D在同一直线上,
AB=DE,AC=DF,AC ∥ DF,
在ΔABC和ΔDEF,
(1)
求证: ΔABC≌ΔDEF;
F
AB=DE(已知) ∠A=∠D(已证) AC=DF (已知) ∴ΔABC≌ΔDEF(SAS)
2021/3/1
A
E
B
D
C
18
典型例题:
证明:∵AC=2DB,AE=EC (
2021/3/1
13
1、如A图 D A, ,E 1 2,BD C,E 那么 A有 BD ___理 __由 _ , _是 ____
2、如图 A B , C, D 已若 知增 __ 加 __ 条 , _ 则可 A得 B C AD , C根_据 __是 __ __ __ _
A B
A
C
2 1
B
D
2021/3/1
3)三角形的两条边分别为4cm和6cm.
2021/3/1
6
给出两个条件时,所画的三角形一定 全等吗?
• 三角形的一个内角为30 ,一条边为3cm
30◦ 3cm
2021/3/1
30◦ 3cm
30◦ 3cm
7
给出两个条件时,所画的三角形一定全等 吗?
• 如果三角形的两个内角分别是30 ,50 时
30◦
3cm
45◦
2021/3/1
3cm
3cm
45◦
45◦
5
(2)给出两个条件画三角形时,有几种可能 的情况?每种情况下作出的三角形一定全等吗?
按下面的条件画三角形,画完后小组内交流, 看所画的三角形是否全等。(其它条件不确定)
1)三角形的一个内角为30°,一条边为3cm;
2) 三角形的两个内角分别为30°和45°;
两20个21/3/三1 角形是否全等?
11
• 做一做:
• 已知:△ABC
• 求作:△DEF,DE=AB,∠E=∠B,EF=BC • 将所作的△DEF与△ABC叠一叠,看看它们是否
完全重合?由此你能得到什么结论?
A
B 2021/3/1
C
12
• 全等三角形判定方法一(基本事实):
• 两边和它们的夹角对应相等的 两个三角形全等。简记为“边角 边”或“SAS”(S表示边,A表示角 )。
让我们一起来探索三角形全等的条件
2021/3/1
3
• 探究1:
• 先任意画出一个△ABC,再画一 个△ A’B’C’,使△ABC满足上述六 个条件中的一个或两个,你画出的 △ABC与△ A’B’C’全等吗?
2021/3/1
4
做一做:
(1)只给出一个条件(一条边或一个角) 画三角形时,画出的三角形一定全等吗?
A
B
∠DAC=∠BCA (已证)
AC=CA(公共边)
∴ △ABC≌△CDA(SAS)
∴ AB=CD(全等三角形的对应边相等)
∠BAC=∠DCA (全等三角形的对应角相
等)
2021/3/1 ∴ AB∥CD(内错角相等,两直线平行)
17
典型例题:
(1)证明:∵AC∥DF(已知) ∴∠A=∠D (两直线平 行,内错角相等) 在ΔABC和ΔDEF中
4cm
6cm
6cm
4cm
2021/3/1
10
(3)给出三个条件画三角形时,有 几种可能的情况?每种情况下作出 的三角形一定全等吗?
• (1)三边相等
• (2) 三角相等
• (3)两边一角(两边和它们的夹角;两边和其中 一边的对角)
• (4)两角一边(两角和它们的夹边;两角和其 中一角的对边)
我们今天专题研究有两条边和它们的夹角对应相等的
B 2021/3/1
C
应边相等)
19
4:如图,已知△ABC中,BE和CD分别为
∠ABC和∠ABC的平分线,且BD = CE,∠1 =
∠2。说明BE = CD的理由。
A
解:∵∠DBC = 2∠1,∠ECB = 2∠2
(角平分线的定义)
∠1 = ∠2∴∠DBC = ∠ECB
例3 (2006湖北黄冈):如图, 已知) ∴DDBB=E=ECC 又∵ AC∥ DB(已知)
AC∥ DB, AC=2DB,E是AC∠∠DDBBEE=∠=∠CCEEBB(两直线平
的中点,求证:BC=DE
行,内错角相等)
A
∵BBEE==EEBB(公共边)
∴ ΔDBE≌ΔCEB(SAS) ∴
D
E
BC=DE (全等三角形的对
A
B ∠ACB=∠DCE
BC=EC
C
△ACB≌△DCE(SAS)
E 2021/3/1
D
AB=DE(全等三角形的对
应边相等)
15
范例学习
例:已知:如图,AD∥BC AD=BC
D
C
求证: △ADC≌△CBA
A
B
证明:∵AD∥BC(已知) ∴∠DAC=∠BCA(两直线平行,内错角相等) 在△ADC和△CBA中, AD=BC(已知) ∠DAC=∠BCA(已证) AC=CA(公共边) ∴△ADC≌△CBA(SAS)
准备条件 指出范围 列举条件 得出结论
2021//1
16
例题讲解1:
如图,已知AD∥ BC,AD=BC.你能说明△ABC与 △CDA全等吗?你能说明AB=CD,AB∥CD吗? 为什么?
证明:∵ AD∥ BC,(已知)
∴ ∠DAC=∠BCA。
D
C
(两直线平行,内错角相等)
在△ADC和△CBA中,
∵ AD=BC(已知)
相关文档
最新文档