基于有限元ANSYS压力容器应力分析报告
压力容器应力分析报告

压力容器应力分析报告引言压力容器是一种用于储存或者输送气体、液体等介质的设备。
由于容器内的介质压力较高,容器本身需要能够承受这种压力而不发生破裂。
因此,对压力容器进行应力分析是非常重要的,它可以帮助我们判断容器的安全性并提供设计和改进的依据。
本报告旨在对压力容器进行应力分析,以评估其在工作条件下的应力分布情况,并根据分析结果提出相应的建议和改进措施。
1. 压力容器的工作原理和结构在进行应力分析之前,我们首先需要了解压力容器的工作原理和结构。
1.1 工作原理压力容器通过在容器内部创建高压环境来储存或者输送介质。
这种高压状态可以通过液体或气体的压力产生,也可以通过外部作用力施加于容器上。
容器的结构需要能够承受内部或外部压力的作用而不发生破裂。
1.2 结构压力容器通常由壳体、端盖、法兰、密封件等部分组成。
壳体是容器的主要结构部分,可以是圆柱形、球形或者其他形状。
端盖用于封闭壳体的两个端口,而法兰则用于连接不同部分的容器或其他设备。
密封件的选择和设计对于保证容器的密封性和安全性至关重要。
2. 压力容器应力分析方法在进行压力容器应力分析时,我们可以采用不同的方法和工具。
下面将介绍两种常用的应力分析方法。
2.1 解析方法解析方法是一种基于数学模型和理论计算的应力分析方法。
通过建立压力容器的几何模型和材料性质等参数,可以使用解析方程和公式计算容器内部和外部的应力分布情况。
这种方法适用于简单结构和边界条件的容器,具有计算简单、速度快的优点。
2.2 有限元方法有限元方法是一种基于数值计算的应力分析方法。
它将复杂的压力容器分割成有限个小单元,通过求解每个小单元的应力状态,再将它们组合起来得到整个容器的应力分布。
有限元方法可以考虑更多的几何和材料非线性,适用于复杂结构和边界条件的容器,具有更高的精度和可靠性。
3. 压力容器应力分析结果和讨论在进行压力容器应力分析后,我们得到了容器内部和外部的应力分布情况。
根据具体的分析方法和参数,以下是一些可能的结果和讨论。
压力容器ansys有限元分析设计实例

ANSYS应力分析报告Stress Analysis Report学生姓名学号任课教师导师目录一. 设计分析依据 (2)1.1 设计参数 (2)1.2 计算及评定条件 (2)二. 结构壁厚计算 (3)三. 结构有限元分析 (4)3.1 有限元模型 (5)3.2 单元选择 (5)3.3 边界条件 (6)四. 应力分析及评定 (7)4.1 应力分析 (7)4.2 应力强度校核 (8)4.3疲劳分析校核 (11)五. 分析结论 (11)附录1设计载荷作用下结构应力沿路径线性化结果(A) (12)附录2设计载荷作用下结构应力沿路径线性化结果(B) (13)附录3设计载荷作用下结构应力沿路径线性化结果(C) (14)附录4设计载荷作用下结构应力沿路径线性化结果(D) (16)附录5设计载荷作用下结构应力沿路径线性化结果(E) (17)附录6设计载荷作用下结构应力沿路径线性化结果(F) (19)附录7设计载荷作用下结构应力沿路径线性化结果(G) (20)附录8设计载荷作用下结构应力沿路径线性化结果(H) (21)一. 设计分析依据(1)《压力容器安全技术监察规程》(2)JB4732-1995《钢制压力容器——分析设计标准》(2005确认版)1.1 设计参数表1 设备基本设计参数1.2 计算及评定条件(1) 静强度计算条件表2 设备载荷参数注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行进行计算,故采用设计载荷进行强度分析结果是偏安全的。
(2) 材料性能参数材料性能参数见表3,其中弹性模量取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2和表6-6确定。
表3 材料性能参数性能(3) 疲劳计算条件此设备接管a 、c 上存在弯矩,接管载荷数据如表4所示。
表4 接管载荷数据表二. 结构壁厚计算按照静载荷条件,根据JB4732-95第七章(公式与图号均为标准中的编号)确定设备各元件壁厚,因介质密度较小,不考虑介质静压,同时忽略设备自重。
基于ANSYS软件对压力容器开孔接管区的应力与疲劳分析

[环保#安全]DO I :10.3969/.j issn .1005-2895.2011.02.031收稿日期:2010-08-13;修回日期:2010-10-08作者简介:林国庆(1986),男,吉林农安人,硕士研究生,主要研究方向为压力容器的疲劳与可靠性。
E -m ai:l l gq0726@126.co m基于ANSYS 软件对压力容器开孔接管区的应力与疲劳分析林国庆,王茂廷(辽宁石油化工大学机械工程学院,辽宁抚顺 113001)摘 要:文章利用AN S Y S 有限元软件对压力容器开孔接管区进行应力分析,获得了开孔接管区的应力强度分布图,得到最大应力发生在筒体最高位置与接管的连接处,最大应力强度值为247.478M Pa 。
然后利用AN S Y S 进行疲劳寿命分析,将有限元方法与疲劳寿命分析理论相结合,得到累积使用系数均小于1,即开孔接管部位满足疲劳强度的要求,因此该容器是安全的。
通过此次分析再次证明了AN SYS 软件为压力容器实际工程应用中提供了可靠的、高效的理论依据。
图4表3参11关 键 词:压力容器;应力分析;疲劳分析;AN S Y S 软件;开孔接管区;累积使用系数中图分类号:TQ055 文献标志码:A 文章编号:1005-2895(2011)02-0116-04Stress Analysis and Fati gue Anal ysis of Pressure V esselOpeni ng Tubi ng Based on ANS Y S Soft wareL I N Guo -qing ,WANG M ao -ti n g(School o fM echan ica l Eng ineer i ng,L iaon i ng Shi hua U n i versity ,Fushun 113001,Ch i na)Abst ract :In t h is paper ,the app lication o f ANSYS finite ele m ent soft w are to anal y sis the stress of nozzle op ening pressurevessel to obtain t h e nozzle op ening stress intensity d istribution,t h e greatest stress is a t t h e hi g hest position in t h e cy linder connected w ith t h e op ening tubing and the m ax i m um stress i n tensity is 247.478M Pa ,then using theANSYS finite ele m ent s oft w are to ana l y sis the fatigue life of the nozzle o p en i n g pressure vessel ,w hich co m bined the finite ele m entm ethod w ith t h e fatigue li f e theory.A t last obta i n ed the cum ulati v e coeffic i e n ts w ere less than 1,that is to say that the nozzle opening pressure vessel partsm eet the requ ire m ents of fati g ue strength ,result in the contai n er is sa fe .Through theoretic ana l y sis and the resu lt of finite -ele m ent analysis is proved thatANSYS so ft w are is acceptable and e ffi c ien.t A t the sa m e ti m e it prov i d es the t h eo retic support to present pressure vesse l eng i n eeri n g .[Ch ,4fig .3tab .11re.f ]K ey w ords :pressure vessels ;stress analysis ;fatigue ana l y sis ;ANSYS soft w are ;no zzle openi n g ;cum ulati v e coeffic i e n ts 0 引言压力容器是石油、化工、机械、核工业、航天、轻工、食品、制药等多种工业中广泛使用的承压设备。
基于ANSYS的压力容器应力分析

基 于 ANS YS的压 力 容 器 应 力 分 析
龙 志勤 , 志刚 王
( 东石 油化 工学院 力学实验 中心 , 广 广东 茂名 5 5 0 ) 2 00
摘 要 : 压力容器的设计过程 中, 用 A S S 在 利 N Y 有限元软件进行应 力分析 , 获得 了压力容 器的最 大应 力和应 变, NS S分析 结果与 A Y
图 1 有限元模型 图 2 整体变形
ห้องสมุดไป่ตู้
工作 温度 4 o 0C; 压力 容器壳体材料 密度 78 0k/ 0 g ; m
物 料 密度 1 8 gm ; 0k/ 3 0
3 结果 分析
3 1 整 体 变 形 分析 .
在鞍座处 , 一端采用 固支约束 , 另一端采用简支约束 ; 壳体 材料 为 oC lN l ,屈服强 度 17M a o r9 i0 7 P ,抗 拉强度 4 0MP , 8 a 弹性模量 2×I P , I M a 泊松 比 03 Y .; 不考虑 容器两端 的封头 ,在容 器与封头相连接 的横 截面 上作用着等效轴 向拉力 , 其数值为 8 7M a . P ; 5
压力 容器是石油 化工 、 机械 、 轻工 、 品等多种工 业领域 食
中广泛使 用的承压容器设备。 压力 容器的设计 , 目前可分为规 则设计和分析设计两种。 规则 设计的理论基础 , 是材料力学 和板壳理论 , 以弹性失 效为设计 准则【 I J 为容器只有处 于弹性阶段才是安全 的 , 。认 如 果容器 内某点 的最 大应力 达到或超 出材料 的屈服极限 ,就认 为容器失效。按这种方法设计 的容器 , 是偏于安全 的, 设计结 果 比较保 守。 分析设计 的理论基础 , 板壳力学 、 是 弹塑性理论及 有限元
ANSYS基础教程——应力分析报告

ANSYS基础教程——应力分析关键字:ANSYS 应力分析 ANSYS教程信息化调查找茬投稿收藏评论好文推荐打印社区分享应力分析是用来描述包括应力和应变在内的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要内容有:分析步骤、几何建模、网格划分。
应力分析概述·应力分析是用来描述包括应力和应变在内的结果量分析的通用术语,也就是结构分析。
ANSYS 的应力分析包括如下几个类型:●静态分析●瞬态动力分析●模态分析●谱分析●谐响应分析●显示动力学本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。
A. 分析步骤每个分析包含三个主要步骤:·前处理–创建或输入几何模型–对几何模型划分网格·求解–施加载荷–求解·后处理–结果评价–检查结果的正确性·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入;·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。
也可以使用前处理器PREP7 施加载荷。
·通常先定义分析对象的几何模型。
·典型方法是用实体模型模拟几何模型。
–以CAD-类型的数学描述定义结构的几何模型。
–可能是实体或表面,这取决于分析对象的模型。
B. 几何模型·典型的实体模型是由体、面、线和关键点组成的。
–体由面围成,用来描述实体物体。
–面由线围成,用来描述物体的表面或者块、壳等。
–线由关键点组成,用来描述物体的边。
–关键点是三维空间的位置,用来描述物体的顶点。
·在实体模型间有一个内在层次关系,关键点是实体的基础,线由点生成,面由线生成,体由面生成。
·这个层次的顺序与模型怎样建立无关。
压力容器管板的ANSYS有限元分析

用ANSYS软件进行压力容器管板的有限元分析序言压力容器管板是压力容器重要部件,根据管板结构的特点,它直接影响着管箱的承压能力。
它的变形情况及应力分析对整个箱管结构的应力分析起着决定性的作用。
然而J摺佣解析法对压力容器管板所受的应力和应变情况分析,解析误差太大。
采用ANSYS有限元分析软件建立压力容器管板的有限元模型,加载求解进行应力场分析对算出压力容器管板的最大应力泣变,利用ANSYS的有限元分析和计算机图形学功能显示三维应力等值面应移等值面,从而为压力容器管板机构的优化分析提供了充分的理论依据。
1基本分过程1.1创建有限元模型本文选用一种U型管式的压力容器来建模,管板材料选用20MuMo 锻件。
球形封头材料16MnR,材料的弹性模量E=20E+05MPa.泊松比为03,密度为7.8t/m3,设计压力P=31.4MPa,许用应力为196MPa。
在压力容器的应力的分析中,压力容器部件设计关心的是应力沿壁厚的分布规律及其大小,可采用沿壁厚方向的校核线代替校核面。
另外由于压力容器是轴对称结构,所以可选其一半结构来建模。
为了节省时间和存储空间,而又不影响分析结果,根据其结构,略去一些细节。
其中管孔对于管板强度的削弱,可以采用有效弹性模量E1和有效泊松比V1的概念将管板折算为同厚度的当量无孔圆平板,因此管板区域分为两大部分,1区按等效圆板来处理,而2区按实际悄况处理。
根据相关文献得到E1=054F,V1=0360综上所述,所得简化后有限元分析模型如图1所示:图1有限元分析模型1.2网格划分通常ANSYS的网格划分有两种方法,即自由划分和映射划分。
自由划分网格主要用于划分边界形状不规则的区域,分析稍度不够高,但要求划分的区域满足一定的拓补条件。
奕淞」分网格主要适合与敖钡臼形体,分析精度高。
鉴于压力容器管板的结构特点,本文同时采用了这两种方法。
在非边界区域采用醉编寸网格划分,在边界区域及梢度要求不是很高的区域采用自由网格划分。
压力容器ansys分析.

高压空气储气罐ANSYS 应力分析
压力容器是在冶金、化工、炼油、气体等工业生产中频繁使用,常常用来存储各类不同压力、温度、介质的气体,或被使用为干燥罐,蒸压釜、反应釜、缓冲罐、医用氧气瓶等等。
同时大部分罐都属于特种设备—压力容器,其制造和使用国家都有严格规范标准,特别是压力容器的疲劳强度和形体薄弱环节的研究对于特种设备的安全使用很重要,这里借助于ansys软件很直观精确地将其中一种压力容器—高压空气储气罐进行了疲劳分析之一—压力应力分析。
一、高压储气罐的设计条件:
①
建立几何模型
② 由于该容器形体的对称性,选择1/4 来分析:
三、加载求解
四、结果分析。
基于ANSYS的压力容器有限元分析及优化设计

317压力容器是一种能够承受压力的密闭容器,广泛应用于煤化工生产领域。
煤化工生产作业环境苛刻,需要其外壳具备较高的强度,保护内部电子元器件不被损坏。
为验证压力容器的耐压性能,需根据其工作条件设计压力容器,将机器人安装在压力容器内部,对压力容器进行加压以模拟其高压工作环境,检测外壳的耐压性能是否符合要求。
本文基于国标 GB150-2011中关于压力容器的规定,完成压力容器的各项参数的计算取值。
利用 ANSYS 有限元仿真软件对其进行校核,对该压力容器工作状态下的应力及变形情况进行分析,判断其结构强度及 O 形圈的密封效果是否符合要求[1]。
1 压力容器参数化设计 对实际工况进行分析,根据要求完成压力容器的初步设计,结构如图 1 所示。
图1 压力容器三维模型该压力容器主要由两部分组成:压力舱和平盖,两个部件通过螺栓连接,平盖挤压压力舱端面上的 O 形圈完成密封。
由于采用水作为介质进行加压维持压力舱内压力处于预定值,压力容器需经常浸泡在水环境中,容易腐蚀生锈,会对密封结构造成破坏,且存在安全隐患,因此采用不锈钢完成该压力容器的设计和制造。
平盖所承受的应力较大,工作时容易产生较大变形导致 O 形圈密封失效,因此平盖需采用高强度不锈钢材料。
20Cr13是一种常用的高强度马氏体不锈钢材料,具有高抗蚀性、高强度、高韧性和较强抗氧化性,被广泛应用于制造各种承受高应力的零件。
基于20Cr13的优良性能,选用该材料用于平盖的设计和制造[2]。
与平盖相比较,压力舱承受应力相对较小,选用 304 不锈钢用于压力舱的设计和制造。
基于国标 GB150-2011 关于压力容器的规定,对压力容器各部分的参数进行计算如下:(1)壳体厚度计算: 圆筒厚度计算公式如下:[]c ii c P D −=φσδ2P(1)式中,σ为圆筒壳体计算厚度(mm);p c 为计算压力(MPa);D i 为圆筒内直径(mm),[σ]i 为壳体材料的许用应力(MPa),φ为焊接接头系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力容器分析报告目录1 设计分析依据 (1)1.1 设计参数 (1)1.2 计算及评定条件 (1)1.3 材料性能参数 (1)2 结构有限元分析 (2)2.1 理论基础 (2)2.2 有限元模型 (2)2.3 划分网格 (3)2.4 边界条件 (5)3 应力分析及评定 (5)3.1 应力分析 (5)3.2 应力强度校核 (6)4 分析结论 (8)4.1 上封头接头外侧 (9)4.2 上封头接头内侧 (11)4.3 上封头壁厚 (13)4.4 筒体上 (15)4.5 筒体左 (17)4.6 下封头接着外侧 (19)4.7 下封头壁厚 (21)1 设计分析依据(1)压力容器安全技术监察规程(2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版1.1 设计参数表1 设备基本设计参数正常设计压力MPa 7.2最高工作压力MPa 6.3设计温度℃0~55工作温度℃5~55工作介质压缩空气46#汽轮机油焊接系数φ 1.0腐蚀裕度mm 2.0容积㎡ 4.0容积类别第二类计算厚度mm 筒体29.36 封头29.031.2 计算及评定条件(1)静强度计算条件表2 设备载荷参数设计载荷工况工作载荷工况设计压力7.2MPa 工作压力6.3MPa设计温度55℃工作温度5~55℃注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。
1.3 材料性能参数材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。
表3 材料性能参数性能温度55℃材料名称厚度设计应力强度弹性模型泊松比钢管20 ≤10mm 150 MPa 1.92×10³MPa μ=0.3锻钢Q345 ≤100mm 185 MPa 1.92×10³MPa μ=0.3钢板16MnR 26~36 188 MPa 1.92×10³MPa μ=0.3锻钢16Mn ≤300mm 168 MPa 1.92×10³MPa μ=0.32 结构有限元分析2.1 理论基础传统的压力容器标准与规范,一般属于“常规设计”,以弹性失效准则为理论基础,由材料力学方法或经验得到较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用值以内,即可确认容器的壁厚。
对容器局部区域的应力、高应力区的应力不做精细计算,以具体的结构形式限制,在计算公式中引入适当的系数或降低许用应力等方法予以控制,这是一种以弹性失效准则为基础,按最大主应力理论,以长期实践经验为依据而建立的一类标准。
塑性理论指出,由于弹性应力分析求得的各类名义应力对结构破坏的危险性是不同的,随着工艺条件的苛刻和容器的大型化,常规设计标准已经不能满足要求,尤其是在应力集中区域。
若不考虑应力集中而只按照简化公式进行设计,不是为安全而过分浪费材料就是安全系数不够。
基于各方面的考虑,产生了“分析设计”这种理念。
采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹性失效”相结合的“弹塑性失效”准则,要求对容器所需部位的应力做详细的分析,根据产生应力的原因及应力是否有自限性,分为三类共五种,即一次总体薄膜应力( Pm) 、一次局部薄膜应力( Pc) 、一次弯曲应力( Pb) 、二次应力( Q) 和峰值应力( F) 。
对于压力容器的应力分析,重要的是得到应力沿壁厚的分布规律及大小,可采用沿壁厚方向的“校核线”来代替校核截面。
而基于弹性力学理论的有限元分析方法,是一种对结构进行离散化后再求解的方法,为了获得所选“校核线”上的应力分布规律及大小,就必须对节点上的应力值进行后处理,即应力分类,根据对所选“校核线”上的应力进行分类,得出各类应力的值,若满足强度要求,则所设计容器是安全的。
按照JB4732-1995进行分析,整个计算采用ANSYS13.0软件,建立有限元模型,对设备进行强度应力分析。
2.2 有限元模型由于主要关心容器开孔处的应力分布规律及大小,为减少计算量,只取开孔处作为分析对象,且取其中较为关心的大孔进行分析校核。
分析设计所用的几何模型如图1所示。
在上下封头和筒体之间存在不连续的壁厚,由于差距和影响量较小,此处统一采用上下封头的设计厚度。
图1 压力容器模型2.3 划分网格在结构的应力分析中,采用ANSYS13.0中的solid187单元进行六面体划分,如图2所示。
图3~图5分别为上封头、筒体、下封头的有限元模型。
图2 压力容器有限元模型图3 上封头有限元模型图4 筒体有限元模型图5 下封头有限元模型2.4 边界条件模型只取开孔段作为分析对象,约束条件为: 筒体底部为固结,筒内施加内压,整体温度设定为55℃,整体受向下的重力,如图6所示。
图6 边界条件3 应力分析及评定3.1 应力分析在7.2MPa的设计压力下,压力容器的应力强度分布如图7所示。
内部应力强度如图8所示。
从图7、图8分析可知,应力主要集中于接头、开孔以及封头弯曲处。
以下将主要针对应力集中区域进行强度分析。
图7 应力强度图8 内部应力强度3.2 应力强度校核在设计载荷作用下的有限元模型进行应力强度分析,现对分析结果进行应力强度评定。
评定的依据为JB4732-1995《钢制压力容器-分析设计标准》。
应力线性化路径的原则为:(1)通过应力强度最大节点,并沿壁厚方向的最短距离设定线性化路径;(2)对于相对应力强度高的区域,沿壁厚方向设定路径。
设计工况(7.2MPa)下的评定线性化路径见图9~图11,线性化结果见附录1~7,具体评定如下表4.`图9 上封头评定路径图10 筒评定路径图11 下封头评定路径表4 应力强度证实表路径应力强度类型应力强度值/MPa应力强度许用极限/MPa评定结果线性结果A 一次局部薄膜应力强度SII 153.8 1.5Sm=282 通过附录1 一次+二次应力强度SIV 240.5 3Sm=564 通过附录1B 一次局部薄膜应力强度SII 141.8 1.5Sm=282 通过附录2 一次+二次应力强度SIV 174.1 3Sm=564 通过附录2C 一次局部薄膜应力强度SII 167.9 1.5Sm=282 通过附录3 一次+二次应力强度SIV 288.7 3Sm=564 通过附录3D 一次局部薄膜应力强度SII 73.88 1.5Sm=282 通过附录4 一次+二次应力强度SIV 177.2 3Sm=564 通过附录4E 一次局部薄膜应力强度SII 117.9 1.5Sm=282 通过附录5 一次+二次应力强度SIV 226 3Sm=564 通过附录5F 一次局部薄膜应力强度SII 281.9 1.5Sm=225 不通过附录6 一次+二次应力强度SIV 409.8 3Sm=450 通过附录6G 一次局部薄膜应力强度SII 136 1.5Sm=282 通过附录7 一次+二次应力强度SIV 247.5 3Sm=564 通过附录74 分析结论进油弯管需增加壁厚或者选用强度更高的材料。
附录4.1 上封头接头外侧PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SHANG1 DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 65832 OUTSIDE NODE = 65108LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.3095E+08 0.1217E+09 0.1575E+09 -0.4562E+07 -0.5633E+07 0.4286E+08S1 S2 S3 SINT SEQV0.1716E+09 0.1209E+09 0.1773E+08 0.1538E+09 0.1358E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2878E+08 0.3962E+08 0.6961E+08 -0.5587E+07 -0.2948E+07 0.4234E+08C 0.000 0.000 0.000 0.000 0.000 0.000O -0.2878E+08 -0.3962E+08 -0.6961E+08 0.5587E+07 0.2948E+07 -0.4234E+08 S1 S2 S3 SINT SEQVI 0.9673E+08 0.3937E+08 0.1924E+07 0.9480E+08 0.8270E+08C 0.000 0.000 0.000 0.000 0.000O -0.1924E+07 -0.3937E+08 -0.9673E+08 0.9480E+08 0.8270E+08** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.5974E+08 0.1613E+09 0.2271E+09 -0.1015E+08 -0.8581E+07 0.8521E+08 C 0.3095E+08 0.1217E+09 0.1575E+09 -0.4562E+07 -0.5633E+07 0.4286E+08 O 0.2172E+07 0.8207E+08 0.8790E+08 0.1025E+07 -0.2685E+07 0.5227E+06 S1 S2 S3 SINT SEQVI 0.2642E+09 0.1602E+09 0.2373E+08 0.2405E+09 0.2089E+09C 0.1716E+09 0.1209E+09 0.1773E+08 0.1538E+09 0.1358E+09O 0.8895E+08 0.8104E+08 0.2155E+07 0.8679E+08 0.8312E+08** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2811E+07 0.3018E+08 0.1030E+09 -0.4383E+07 -0.1327E+08 0.3888E+08 C -0.1887E+07 -0.5117E+07 -0.1999E+08 0.1399E+06 0.2935E+07 -0.6501E+07 O -0.8673E+07 0.1310E+08 0.5577E+08 -0.1213E+07 -0.9238E+07 0.1515E+08 S1 S2 S3 SINT SEQVI 0.1185E+09 0.2797E+08 -0.1050E+08 0.1290E+09 0.1147E+09C 0.3219E+06 -0.4770E+07 -0.2254E+08 0.2287E+08 0.2079E+08O 0.6095E+08 0.1133E+08 -0.1208E+08 0.7303E+08 0.6459E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.6255E+08 0.1915E+09 0.3301E+09 -0.1453E+08 -0.2185E+08 0.1241E+09 C 0.2907E+08 0.1166E+09 0.1375E+09 -0.4423E+07 -0.2698E+07 0.3636E+08 O -0.6501E+07 0.9517E+08 0.1437E+09 -0.1884E+06 -0.1192E+08 0.1567E+08 S1 S2 S3 SINT SEQV TEMPI 0.3823E+09 0.1882E+09 0.1369E+08 0.3686E+09 0.3193E+09 55.00 C 0.1490E+09 0.1162E+09 0.1788E+08 0.1312E+09 0.1182E+09O 0.1480E+09 0.9250E+08 -0.8129E+07 0.1561E+09 0.1370E+09 55.00 4.2 上封头接头内侧PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SHANG2 DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 65118 OUTSIDE NODE = 65792LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.2875E+08 0.1579E+09 0.1366E+09 0.3146E+07 -0.1770E+08 0.1555E+08S1 S2 S3 SINT SEQV0.1681E+09 0.1289E+09 0.2631E+08 0.1418E+09 0.1268E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.2288E+07 0.1513E+08 -0.9214E+06 -0.2957E+08 -0.8940E+06 0.1769E+08C 0.000 0.000 0.000 0.000 0.000 0.000O 0.2288E+07 -0.1513E+08 0.9214E+06 0.2957E+08 0.8940E+06 -0.1769E+08 S1 S2 S3 SINT SEQVI 0.4056E+08 0.2355E+07 -0.3099E+08 0.7155E+08 0.6201E+08C 0.000 0.000 0.000 0.000 0.000O 0.3099E+08 -0.2355E+07 -0.4056E+08 0.7155E+08 0.6201E+08** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2646E+08 0.1731E+09 0.1357E+09 -0.2642E+08 -0.1859E+08 0.3324E+08 C 0.2875E+08 0.1579E+09 0.1366E+09 0.3146E+07 -0.1770E+08 0.1555E+08 O 0.3104E+08 0.1428E+09 0.1376E+09 0.3271E+08 -0.1680E+08 -0.2141E+07 S1 S2 S3 SINT SEQVI 0.1896E+09 0.1313E+09 0.1443E+08 0.1751E+09 0.1545E+09C 0.1681E+09 0.1289E+09 0.2631E+08 0.1418E+09 0.1268E+09O 0.1628E+09 0.1265E+09 0.2212E+08 0.1407E+09 0.1265E+09** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.2802E+08 0.7015E+08 0.3489E+08 0.1126E+08 -0.3272E+08 0.2888E+07 C 0.4063E+07 -0.2083E+08 -0.9641E+07 0.4300E+06 0.9030E+07 -0.2299E+07 O -0.2077E+08 0.6375E+08 0.3106E+08 0.3320E+07 -0.2951E+08 0.4282E+07 S1 S2 S3 SINT SEQVI 0.9026E+08 0.1683E+08 -0.3008E+08 0.1203E+09 0.1051E+09C 0.4493E+07 -0.4967E+07 -0.2593E+08 0.3043E+08 0.2697E+08O 0.8115E+08 0.1448E+08 -0.2159E+08 0.1027E+09 0.9028E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.1555E+07 0.2432E+09 0.1706E+09 -0.1516E+08 -0.5131E+08 0.3613E+08 C 0.3281E+08 0.1371E+09 0.1270E+09 0.3576E+07 -0.8666E+07 0.1325E+08 O 0.1027E+08 0.2066E+09 0.1686E+09 0.3603E+08 -0.4632E+08 0.2141E+07 S1 S2 S3 SINT SEQV TEMPI 0.2731E+09 0.1481E+09 -0.8923E+07 0.2820E+09 0.2448E+09 55.00C 0.1422E+09 0.1239E+09 0.3077E+08 0.1114E+09 0.1035E+09O 0.2413E+09 0.1410E+09 0.3194E+07 0.2381E+09 0.2070E+09 55.00 4.3 上封头壁厚PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SHANG3 DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 49272 OUTSIDE NODE = 48686LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.5762E+08 -0.3263E+08 0.5386E+07 -0.2845E+08 0.5323E+08 -0.3732E+08S1 S2 S3 SINT SEQV0.9774E+08 0.2812E+07 -0.7018E+08 0.1679E+09 0.1458E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.8246E+08 0.5349E+08 0.6135E+08 -0.4608E+08 0.1814E+08 -0.6625E+08C 0.000 0.000 0.000 0.000 0.000 0.000O -0.8246E+08 -0.5349E+08 -0.6135E+08 0.4608E+08 -0.1814E+08 0.6625E+08 S1 S2 S3 SINT SEQVI 0.1599E+09 0.3910E+08 -0.1731E+07 0.1617E+09 0.1456E+09C 0.000 0.000 0.000 0.000 0.000O 0.1731E+07 -0.3910E+08 -0.1599E+09 0.1617E+09 0.1456E+09** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1401E+09 0.2085E+08 0.6673E+08 -0.7453E+08 0.7138E+08 -0.1036E+09 C 0.5762E+08 -0.3263E+08 0.5386E+07 -0.2845E+08 0.5323E+08 -0.3732E+08 O -0.2484E+08 -0.8612E+08 -0.5596E+08 0.1763E+08 0.3509E+08 0.2893E+08 S1 S2 S3 SINT SEQVI 0.2575E+09 0.1390E+07 -0.3119E+08 0.2887E+09 0.2738E+09C 0.9774E+08 0.2812E+07 -0.7018E+08 0.1679E+09 0.1458E+09O 0.5260E+07 -0.6292E+08 -0.1093E+09 0.1145E+09 0.9977E+08** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1793E+05 0.4542E+07 0.1210E+08 -0.9771E+07 0.8742E+07 -0.8485E+07 C -0.8383E+06 -0.3266E+07 -0.6772E+07 0.5765E+07 -0.4293E+07 0.4571E+07 O 0.2142E+07 0.6671E+07 0.1298E+08 -0.1070E+08 0.7170E+07 -0.8071E+07 S1 S2 S3 SINT SEQVI 0.2435E+08 0.1700E+06 -0.7864E+07 0.3221E+08 0.2904E+08C 0.3935E+07 -0.1194E+07 -0.1362E+08 0.1755E+08 0.1563E+08O 0.2492E+08 0.3610E+07 -0.6740E+07 0.3166E+08 0.2796E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1401E+09 0.2539E+08 0.7883E+08 -0.8431E+08 0.8012E+08 -0.1121E+09 C 0.5678E+08 -0.3590E+08 -0.1386E+07 -0.2269E+08 0.4894E+08 -0.3275E+08 O -0.2269E+08 -0.7945E+08 -0.4298E+08 0.6930E+07 0.4226E+08 0.2086E+08S1 S2 S3 SINT SEQV TEMPI 0.2786E+09 -0.1741E+07 -0.3249E+08 0.3110E+09 0.2969E+09 55.00C 0.8656E+08 0.3481E+07 -0.7054E+08 0.1571E+09 0.1361E+09O 0.2746E+07 -0.4023E+08 -0.1076E+09 0.1104E+09 0.9638E+08 55.004.4 筒体上PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= TONGS DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 62861 OUTSIDE NODE = 59472LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.9535E+08 0.4923E+08 0.1197E+09 -0.9268E+07 0.3511E+06 -0.6336E+07S1 S2 S3 SINT SEQV0.1213E+09 0.9551E+08 0.4742E+08 0.7388E+08 0.6494E+08** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.6888E+08 0.2537E+08 0.3977E+08 -0.6378E+08 0.1063E+08 -0.7203E+07C 0.000 0.000 0.000 0.000 0.000 0.000O -0.6888E+08 -0.2537E+08 -0.3977E+08 0.6378E+08 -0.1063E+08 0.7203E+07 S1 S2 S3 SINT SEQVI 0.1164E+09 0.3821E+08 -0.2060E+08 0.1370E+09 0.1191E+09C 0.000 0.000 0.000 0.000 0.000O 0.2060E+08 -0.3821E+08 -0.1164E+09 0.1370E+09 0.1191E+09** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1642E+09 0.7460E+08 0.1594E+09 -0.7305E+08 0.1099E+08 -0.1354E+08 C 0.9535E+08 0.4923E+08 0.1197E+09 -0.9268E+07 0.3511E+06 -0.6336E+07 O 0.2647E+08 0.2386E+08 0.7988E+08 0.5452E+08 -0.1028E+08 0.8677E+06 S1 S2 S3 SINT SEQVI 0.2109E+09 0.1538E+09 0.3364E+08 0.1772E+09 0.1567E+09C 0.1213E+09 0.9551E+08 0.4742E+08 0.7388E+08 0.6494E+08O 0.8664E+08 0.7352E+08 -0.2995E+08 0.1166E+09 0.1106E+09** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.9953E+06 0.6633E+08 0.1526E+08 -0.8254E+08 0.1203E+08 -0.4368E+07 C -0.1499E+08 -0.1079E+08 -0.6145E+07 0.1518E+08 -0.1492E+07 0.1905E+07 O 0.2096E+08 0.3066E+08 0.1161E+08 -0.7721E+07 -0.1279E+06 -0.9362E+06 S1 S2 S3 SINT SEQVI 0.1238E+09 0.1399E+08 -0.5525E+08 0.1791E+09 0.1564E+09C 0.2438E+07 -0.5886E+07 -0.2848E+08 0.3092E+08 0.2771E+08O 0.3493E+08 0.1684E+08 0.1146E+08 0.2348E+08 0.2130E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1652E+09 0.1409E+09 0.1747E+09 -0.1556E+09 0.2301E+08 -0.1791E+08 C 0.8036E+08 0.3843E+08 0.1135E+09 0.5914E+07 -0.1141E+07 -0.4431E+07O 0.4743E+08 0.5452E+08 0.9149E+08 0.4679E+08 -0.1041E+08 -0.6848E+05 S1 S2 S3 SINT SEQV TEMPI 0.3150E+09 0.1689E+09 -0.3117E+07 0.3182E+09 0.2758E+09 55.00C 0.1141E+09 0.8055E+08 0.3761E+08 0.7653E+08 0.6644E+08O 0.1032E+09 0.8678E+08 0.3481E+07 0.9970E+08 0.9259E+08 55.004.5 筒体左PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= TONGZ DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 59023 OUTSIDE NODE = 63007LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.1084E+09 0.4348E+08 0.8898E+08 -0.6526E+06 -0.5380E+08 -0.5203E+07S1 S2 S3 SINT SEQV0.1256E+09 0.1076E+09 0.7694E+07 0.1179E+09 0.1100E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.5152E+08 0.6348E+08 0.7522E+08 0.1480E+07 -0.5553E+08 0.4146E+07C 0.000 0.000 0.000 0.000 0.000 0.000O -0.5152E+08 -0.6348E+08 -0.7522E+08 -0.1480E+07 0.5553E+08 -0.4146E+07S1 S2 S3 SINT SEQVI 0.1252E+09 0.5185E+08 0.1312E+08 0.1121E+09 0.9864E+08C 0.000 0.000 0.000 0.000 0.000O -0.1312E+08 -0.5185E+08 -0.1252E+09 0.1121E+09 0.9864E+08** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1599E+09 0.1070E+09 0.1642E+09 0.8279E+06 -0.1093E+09 -0.1057E+07 C 0.1084E+09 0.4348E+08 0.8898E+08 -0.6526E+06 -0.5380E+08 -0.5203E+07 O 0.5685E+08 -0.2001E+08 0.1375E+08 -0.2133E+07 0.1722E+07 -0.9350E+07 S1 S2 S3 SINT SEQVI 0.2486E+09 0.1599E+09 0.2256E+08 0.2260E+09 0.1973E+09C 0.1256E+09 0.1076E+09 0.7694E+07 0.1179E+09 0.1100E+09O 0.5887E+08 0.1186E+08 -0.2013E+08 0.7900E+08 0.6882E+08** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2352E+08 0.1675E+08 0.5711E+08 -0.1631E+07 -0.6331E+08 0.2876E+06 C -0.2928E+07 -0.1661E+07 -0.5356E+07 0.4859E+06 0.6743E+07 0.3608E+06 O -0.3862E+07 -0.4398E+07 -0.1870E+08 -0.3110E+07 -0.5399E+07 -0.2107E+07 S1 S2 S3 SINT SEQVI 0.1034E+09 0.2352E+08 -0.2955E+08 0.1329E+09 0.1159E+09C 0.3540E+07 -0.2984E+07 -0.1050E+08 0.1404E+08 0.1217E+08O -0.6846E+06 -0.5239E+07 -0.2104E+08 0.2035E+08 0.1850E+08** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.1834E+09 0.1237E+09 0.2213E+09 -0.8033E+06 -0.1726E+09 -0.7694E+06C 0.1054E+09 0.4182E+08 0.8362E+08 -0.1667E+06 -0.4706E+08 -0.4843E+07O 0.5299E+08 -0.2440E+08 -0.4946E+07 -0.5243E+07 -0.3677E+07 -0.1146E+08 S1 S2 S3 SINT SEQV TEMPI 0.3519E+09 0.1834E+09 -0.6907E+07 0.3588E+09 0.3109E+09 55.00C 0.1158E+09 0.1040E+09 0.1114E+08 0.1046E+09 0.9925E+08O 0.5542E+08 -0.6003E+07 -0.2578E+08 0.8120E+08 0.7334E+08 55.004.6 下封头接着外侧PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= XIAJ DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 64836 OUTSIDE NODE = 64238LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.9479E+07 0.2612E+09 0.8040E+07 0.2201E+07 -0.1005E+08 0.2806E+08S1 S2 S3 SINT SEQV0.2616E+09 0.3670E+08 -0.1958E+08 0.2812E+09 0.2577E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.1723E+09 -0.1823E+08 -0.3320E+07 -0.3935E+07 -0.3810E+07 -0.5005E+07C 0.000 0.000 0.000 0.000 0.000 0.000O 0.1723E+09 0.1823E+08 0.3320E+07 0.3935E+07 0.3810E+07 0.5005E+07 S1 S2 S3 SINT SEQVI -0.2311E+07 -0.1899E+08 -0.1726E+09 0.1703E+09 0.1626E+09C 0.000 0.000 0.000 0.000 0.000O 0.1726E+09 0.1899E+08 0.2311E+07 0.1703E+09 0.1626E+09** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.1629E+09 0.2430E+09 0.4720E+07 -0.1734E+07 -0.1386E+08 0.2306E+08 C 0.9479E+07 0.2612E+09 0.8040E+07 0.2201E+07 -0.1005E+08 0.2806E+08 O 0.1818E+09 0.2794E+09 0.1136E+08 0.6136E+07 -0.6241E+07 0.3307E+08 S1 S2 S3 SINT SEQVI 0.2438E+09 0.7007E+07 -0.1660E+09 0.4098E+09 0.3563E+09C 0.2616E+09 0.3670E+08 -0.1958E+08 0.2812E+09 0.2577E+09O 0.2799E+09 0.1878E+09 0.4979E+07 0.2749E+09 0.2424E+09** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.7484E+05 -7918. -1442. -1709. -1654. -2173.C 0.1144 0.2503E-01 0.4452E-02 0.2782E-02 -0.1260E-03 0.5651E-02 O 0.7484E+05 7918. 1442. 1709. 1654. 2173. S1 S2 S3 SINT SEQVI -1004. -8245. -0.7495E+05 0.7394E+05 0.7060E+05C 0.1148 0.2495E-01 0.4159E-02 0.1106 0.1018O 0.7495E+05 8245. 1004. 0.7394E+05 0.7060E+05** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.1629E+09 0.2430E+09 0.4718E+07 -0.1736E+07 -0.1386E+08 0.2305E+08C 0.9479E+07 0.2612E+09 0.8040E+07 0.2201E+07 -0.1005E+08 0.2806E+08O 0.1819E+09 0.2794E+09 0.1136E+08 0.6137E+07 -0.6239E+07 0.3307E+08 S1 S2 S3 SINT SEQV TEMPI 0.2438E+09 0.7004E+07 -0.1661E+09 0.4098E+09 0.3564E+09 55.00C 0.2616E+09 0.3670E+08 -0.1958E+08 0.2812E+09 0.2577E+09O 0.2799E+09 0.1878E+09 0.4982E+07 0.2749E+09 0.2424E+09 55.004.7 下封头壁厚PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= XIAB DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 51092 OUTSIDE NODE = 262583LOAD STEP 0 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ0.9285E+07 0.9944E+08 0.1115E+09 -0.2204E+08 0.1019E+08 -0.3489E+08S1 S2 S3 SINT SEQV0.1313E+09 0.9366E+08 -0.4677E+07 0.1360E+09 0.1216E+09** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2032E+08 0.9838E+08 0.1083E+09 -0.1691E+08 0.3118E+07 -0.2957E+08C 0.000 0.000 0.000 0.000 0.000 0.000 O -0.2032E+08 -0.9838E+08 -0.1083E+09 0.1691E+08 -0.3118E+07 0.2957E+08 S1 S2 S3 SINT SEQVI 0.1204E+09 0.9785E+08 0.8691E+07 0.1118E+09 0.1023E+09C 0.000 0.000 0.000 0.000 0.000O -0.8691E+07 -0.9785E+08 -0.1204E+09 0.1118E+09 0.1023E+09** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.2961E+08 0.1978E+09 0.2198E+09 -0.3894E+08 0.1331E+08 -0.6446E+08 C 0.9285E+07 0.9944E+08 0.1115E+09 -0.2204E+08 0.1019E+08 -0.3489E+08 O -0.1104E+08 0.1060E+07 0.3245E+07 -0.5129E+07 0.7070E+07 -0.5317E+07 S1 S2 S3 SINT SEQVI 0.2515E+09 0.1917E+09 0.4017E+07 0.2475E+09 0.2237E+09C 0.1313E+09 0.9366E+08 -0.4677E+07 0.1360E+09 0.1216E+09O 0.1170E+08 -0.4982E+07 -0.1345E+08 0.2515E+08 0.2216E+08** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.8972E+07 0.6805E+07 0.3698E+07 -0.6619E+06 -0.2460E+07 0.4222E+07 C -0.8141E+06 -0.1526E+07 -0.1713E+06 -0.1567E+05 0.2539E+06 -0.4170E+06 O 0.1397E+07 0.2492E+07 0.2571E+06 0.2811E+05 -0.4377E+06 0.7337E+06 S1 S2 S3 SINT SEQVI 0.1196E+08 0.6741E+07 0.7727E+06 0.1119E+08 0.9697E+07C 0.6854E+05 -0.1003E+07 -0.1577E+07 0.1646E+07 0.1447E+07O 0.2587E+07 0.1724E+07 -0.1641E+06 0.2751E+07 0.2437E+07** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 0.3858E+08 0.2046E+09 0.2235E+09 -0.3960E+08 0.1085E+08 -0.6024E+08 C 0.8471E+07 0.9792E+08 0.1114E+09 -0.2205E+08 0.1044E+08 -0.3530E+08 O -0.9639E+07 0.3553E+07 0.3502E+07 -0.5101E+07 0.6632E+07 -0.4583E+07 S1 S2 S3 SINT SEQV TEMPI 0.2524E+09 0.2001E+09 0.1423E+08 0.2382E+09 0.2168E+09 55.00 C 0.1312E+09 0.9226E+08 -0.5661E+07 0.1368E+09 0.1221E+09O 0.1230E+08 -0.3093E+07 -0.1179E+08 0.2409E+08 0.2113E+08 55.00。