浅谈家庭分布式光伏并网发电系统的设计
分布式光伏发电并网系统设计

分布式光伏发电并网系统设计分布式光伏发电并网系统是指将多个光伏发电系统通过电网连接在一起,并与电网进行互动交流的一种发电模式。
这种系统设计能够提高太阳能的利用效率,减少对传统能源的依赖,实现能源的可持续利用。
下面将从硬件设计、控制策略和经济效益三个方面进行详细介绍。
在硬件设计方面,分布式光伏发电并网系统通常由光伏组件、逆变器、电网连接器、配电柜以及监控装置等组成。
光伏组件是整个系统的核心部分,它将太阳能转化为直流电能。
逆变器则将直流电转换为交流电,并与电网进行连接。
电网连接器用于连接逆变器与电网,确保系统的安全稳定运行。
配电柜用于进行电能的分配和管理,保证电能的正常供应。
监控装置用于对光伏发电系统进行实时监控和管理。
通过合理的硬件设计,可以提高光伏发电系统的效率和稳定性。
在控制策略方面,分布式光伏发电并网系统采用的常见控制策略有功率控制和电压控制两种。
功率控制策略是指根据电网的负荷需求,调节光伏发电系统的输出功率,使得光伏系统的发电功率和电网负荷需求保持匹配。
电压控制策略是指根据电网的电压变化情况,调节光伏发电系统的输出电压,保持电网的电压稳定。
这两种控制策略可以相互结合,实现光伏系统与电网的协同运行。
同时,还可以通过智能控制算法,对系统进行优化调节,提高发电效率和降低电能损耗。
在经济效益方面,分布式光伏发电并网系统能够降低电网运营成本,减少对传统能源的依赖,提高能源利用效率。
通过光伏发电系统的建设和运营,可以实现电能的分散生产和就近消费,减少电能的传输损耗。
同时,光伏发电系统还可以向电网出售多余的电能,从而实现电能的双向流动。
这样既可以降低居民和企业的用电成本,又可以提供额外的经济收益。
另外,分布式光伏发电并网系统还可以减少对传统能源的消耗,降低能源的排放,对环境保护和气候变化具有重要意义。
综上所述,分布式光伏发电并网系统设计是一项复杂而重要的工程,它涉及各个方面的技术和管理问题。
只有通过合理的硬件设计、高效的控制策略和科学的经济分析,才能实现分布式光伏发电并网系统的稳定运行和经济效益。
浅谈家庭屋顶分布式光伏发电系统的设计与施工

浅谈家庭屋顶分布式光伏发电系统的设计与施工(一)民用光伏发电系统是分布式发电系统的重要组成部分,随着国内分布式政策的不断完善与落实,光伏发电已经走入了普通百姓的生活,由于全国各地居民的屋顶条件情况不尽相同,因此各个项目都需要因地制宜,进行定制化的设计和施工,笔者曾有幸参与到实际工程案例,对小型民用系统的建设有了进一步的了解。
本文以瓦面屋顶和混凝土屋顶为例,主要介绍其设计和施工部分,供民用系统从业者或对家庭分布式发电感兴趣的人士参考。
1.民用分布式发电系统的设计民用分布式项目的设计需要在前期工作中完成屋顶勘测和相关信息的收集,并给业主提供初步的设计方案或屋顶发电效果图,效果图的作用一方面可以从侧门说明专业设计能力,另一方面可以非常直观地为业主展示组件的布置形式和实时阴影情况,如图1和图2为混凝土屋顶支架安装和组件敷设效果图,图3为笔者基于CAD图纸而绘制的南京地区别墅分布式发电系统的组件布置效果图,然而大多数别墅屋顶的业主可能没有屋顶平面和立面图纸,这种情况下我们只需把握屋顶的整体尺寸,细节的部分化繁为简。
对于民用系统设计人士,本人还是强烈推荐使用SketchUp,因为在效果图制作和阴影分析上较为出色。
图1 支架SketchUp效果图图2混凝土屋顶支架安装和组件铺设SketchUp效果图图3别墅分布式发电系统组件布置SketchUp效果图项目施工前的重要工作是深化设计,如方阵具体布置方案、支架安装方案、组件和逆变器选型、接线和电缆敷设方案、逆变器和交流配电箱的安装位置、防雷接地等,其中方阵布置和支架的安装方案属于重点内容,对于民用系统,支架的安装设计灵活性很大。
别墅屋顶一般为瓦面和混凝土两种形式,支架和屋面的固定有打孔和负重压块等方法,对于打孔因为破坏了原有屋面的结构,就要涉及到屋面的防水工程。
如图4所示为混凝土屋顶膨胀螺栓与屋面的固定方法和屋面防水措施,孔的直径需要和膨胀螺栓的直径匹配,太小和太大都不合适,孔的深度需要根据屋面的结构来定,膨胀螺栓的深度不允许超出现浇层,一般最大深度为现浇层的一半左右,并以此作为选择膨胀螺栓长度的依据。
分布式并网光伏发电系统的硬件设计与实现

分布式并网光伏发电系统的硬件设计与实现随着对环境保护和可持续发展的关注度增加,分布式并网光伏发电系统作为一种清洁能源发电方式受到了广泛关注。
在这篇文章中,我们将探讨分布式并网光伏发电系统的硬件设计与实现。
首先,我们需要明确分布式并网光伏发电系统的基本原理。
分布式并网光伏发电系统是指将光伏发电系统与电网进行连接,将光伏发电系统产生的电能直接注入电网,以实现可持续发电和减少对传统电网的依赖。
在硬件设计与实现过程中的第一步是选择适当的光伏组件。
光伏组件通常由光伏电池组成,而光伏电池则有不同的类型,如单晶硅、多晶硅和薄膜等。
根据光伏发电系统的规模和要求,选择合适的光伏组件是至关重要的。
接下来,我们需要设计适当的逆变器以将光伏组件产生的直流电转换为交流电。
逆变器是分布式并网光伏发电系统中的核心部件之一,可以将光伏发电系统产生的直流电转换为交流电,并与电网进行连接。
逆变器的设计应考虑到高效率、稳定性和安全性。
同时,还需要设计合适的电池储能系统。
电池储能系统可以将光伏发电系统产生的电能进行储存,以应对光伏发电量不稳定和电网供电不足的情况,提高系统的可靠性和稳定性。
除了上述的核心组件外,分布式并网光伏发电系统的硬件设计还应包括适当的保护装置和安全措施。
保护装置可以保护系统不受过电流、过压、过温等异常情况的影响,并确保系统的安全运行。
安全措施包括防雷措施、接地保护、电气隔离等,以确保系统的安全性和稳定性。
在实际实施过程中,还应考虑到系统的可扩展性和可维护性。
可扩展性意味着系统能够根据需要进行扩展,以满足不同规模和需求的光伏发电系统。
可维护性意味着系统设计应简化维护和故障排除的过程,降低维护成本。
此外,对于分布式并网光伏发电系统的硬件设计与实现来说,还应考虑到系统的监测与控制。
通过监测和控制系统,可以实时了解光伏发电系统的工作状态,并对系统进行优化和调整,以提高系统的效率和性能。
总的来说,分布式并网光伏发电系统的硬件设计与实现是一个综合性的工程,需要考虑到不同组件的选择和设计、保护装置和安全措施、可扩展性和可维护性以及监测与控制等方面的要求。
分布式光伏发电系统并网连接设计

分布式光伏发电系统并网连接设计引言:随着能源需求的增加和环境问题的日益突出,光伏发电作为一种清洁、可再生的能源形式,受到了广泛关注。
分布式光伏发电系统作为一种可利用分散在各种建筑物上的光伏组件进行发电的系统,具有灵活性高、能源利用效率高等优势,在国内外得到了快速发展。
本文将针对分布式光伏发电系统的并网连接设计进行详细探讨。
一、分布式光伏发电系统概述分布式光伏发电系统是将一系列光伏组件通过逆变器将直流电能转换成交流电能,再通过与电网的连接将其输出到电网上供应给用户使用的系统。
其基本组成包括光伏组件、逆变器、电网连接等。
二、分布式光伏发电系统并网连接设计的原则1. 稳定可靠性:并网连接设计必须保证光伏发电系统的稳定性和可靠性,确保其长期稳定运行。
2. 安全性:并网连接设计应满足国家安全要求,确保系统运行过程中不会对用户和电网造成危害。
3. 高效性:并网连接设计应考虑系统的效率,最大程度地提高光伏发电系统的发电能力。
4. 经济性:并网连接设计不仅要考虑系统的建设成本,还需综合考虑系统的运维成本和回收周期等经济指标。
三、分布式光伏发电系统并网连接设计的关键技术1. 电网连接方式的选择:根据不同的应用场景和需求,选择合适的电网连接方式,包括并网型逆变器、微逆变器和光伏直流汇流箱等。
2. 并网保护装置的设计:设计适当的并网保护装置,确保光伏发电系统在电网故障时能够迅速脱网并恢复。
3. 功率控制策略的设计:通过合理的功率控制策略,使光伏发电系统能够更好地适应电网负荷变化,并提高系统的功率利用率。
4. 电网接口电路的设计:合理设计电网接口电路,满足电网对直流和交流电的要求,确保光伏发电系统与电网之间的交互符合电网规范和标准。
四、分布式光伏发电系统并网连接设计的实施步骤1. 确定需求和设计目标:根据实际需求和设计目标,明确系统的容量、并网类型以及装机地点等关键参数。
2. 选取合适的设备:根据设计要求和预算限制,选取合适的光伏组件、逆变器和其他配套设备。
家庭分布式10KW光伏电站并网方案

家庭分布式10KW光伏电站并⽹⽅案1. 系统简介太阳能电池板发电系统是利⽤光⽣伏打效应原理,它是将太阳辐射能量直接转换成电能的发电系统。
太阳能并⽹发电系统通过把太阳能转化为电能,不经过蓄电池储能,把满⾜负载需要后多余的电量或在没有负载情况下把产⽣的电量,通过并⽹逆变器送上电⽹。
2. 10KW系统并⽹原理图光伏并⽹系统所需主要器件由光伏电池板和光伏逆变器构成。
其⼯作模式为,当光伏能量充⾜时光伏电池板的不稳定直流电能转换为优质稳定的交流电能以电流环控制⽅式将电能注⼊电⽹,其优点是不需要蓄电池的储能 节省了投资和蓄电池的充放电设备损耗和折旧,将公共电⽹作为储能媒介。
光伏并⽹发的缺点是当电⽹异常时(电压过⾼过低异常、频率异常),根据并⽹规则与约定必须进⾏反孤岛保护⽽停⽌并⽹发电。
3. 光伏系统的主要组成1) 光伏组件光伏组件是将太阳光能直接转变为直流电能的发电装置,根据⽤户对功率和电压的需求,通过串并量得到适合的太阳能电池组件阵列,满⾜⽤电需求2) 并⽹逆变器逆变器是将直流电变换为交流电的设备,并⽹型逆变器是光伏发电系统中的重要部件之⼀。
3) 交流防雷配电柜系统配置⼀台交流防雷配电柜,按照1个10KW的交流配电单元进⾏设计,每台逆变器的交流输⼊接⼊交流配电柜,经交流断路器并⼊单相交流低压电⽹发电。
另由按照分布式家⽤并⽹要求,要求安装⼀块光伏侧单相电表和负载侧双向电表,⽤来计量电量⾃⽤和供给国⽹部分。
同时并⽹交流柜具有单独、可靠的⼑闸,具有漏电保护器空开并有失压脱扣功能,具有同电⽹同时⾃动断电功能。
4.)系统防雷接地装置为了保证本⼯程光伏并⽹发电系统安全可靠,防⽌累计、浪涌等外在因素导致系统旗舰的损坏等情况发⽣,系统的防雷接地装置必不可少。
系统的防雷接地装置措施有多重⽅法,主要有⼀下⼏个⽅⾯供参考1 地线是避雷、防雷的关键,在进⾏配电室基础建设,若原有配电室直接连接到原配电室接地⽹上,和太阳能电池⽅阵基础建设的同时,选择附近⼟层较厚、潮湿的地点,挖1~2⽶深地线坑,采⽤40扁钢,添加降阻剂并引出地线,引出线采⽤16~35mm通信电缆,接地电阻应⼩于4欧姆。
5KW家用并网光伏发电系统设计

5KW家用并网光伏发电系统设计一、背景介绍随着能源危机的加剧和环保意识的提高,新能源逐渐成为人们重要的能源选择。
光伏发电作为最为常见的新能源之一,其具有无污染、可再生等优点,受到越来越多人的关注。
为了将太阳能光伏发电系统应用于家庭中,需要进行系统的设计,保证其高效、可靠地发挥作用。
二、系统设计要求1.功率:系统设计为5KW,满足家庭基本用电需求。
2.可靠性:系统要能可靠地工作,并能适应不同的气候条件,如高温、低温、多云等。
3.安全性:系统要具备过载保护、短路保护等功能,确保使用过程中的安全。
4.易于操作:系统要简化操作步骤,方便使用者进行监控和维护。
5.美观性:系统的设计要考虑配备光伏组件的外观和布局,以保持建筑的美观性。
三、系统组成1.光伏组件:根据功率需求,选择合适的光伏组件,如单晶硅光伏组件或多晶硅光伏组件,保证系统的发电量。
2.逆变器:逆变器是将直流电转换为交流电的设备,选择具备高效率和稳定性的逆变器,如串联逆变器或微逆变器。
3.集中控制系统:集中控制系统包括监测设备、控制器和数据采集装置等,可以对光伏发电系统的性能进行实时监控,并通过数据采集进行数据分析和优化调整。
4.电池储能系统:电池储能系统可以将多余的电能存储起来,以备不时之需,增加光伏发电系统的可靠性。
5.电网接入装置:将光伏发电系统与电网连接起来,通过双向计量装置实现发电和购电的结算,将多余的电能发送给电网,为家庭提供电力。
6.监控系统:提供光伏发电系统的状态、发电量、电池储能情况等信息的监视与报警功能,方便用户了解系统运行情况。
四、系统布置1.光伏组件:根据建筑的外观和采光情况,将光伏组件安装在建筑的屋顶或外墙,使其可以最大程度地接收太阳辐射。
2.逆变器:逆变器可以放置在室内或室外,避免因水、尘等外界环境影响其正常工作。
3.电池储能系统:电池储能系统可以安装在室内,如地下室或储藏室,以减少对室内空间的影响。
4.电网接入装置:电网接入装置需要在室内或室外设置,与光伏发电系统和家庭电网连接。
分布式光伏发电系统电网接入及并网运行设计

分布式光伏发电系统电网接入及并网运行设计一、引言分布式光伏发电系统是指将太阳能光伏电池组件分布在不同的地理位置上并互相连接,形成一个分布式的发电网络。
与传统的集中式光伏发电系统相比,分布式光伏发电系统具有灵活性高、容错性强、能源利用效率高等优点。
本文旨在探讨分布式光伏发电系统的电网接入及并网运行设计,以确保系统的高效运行和安全性。
二、分布式光伏发电系统的电网接入设计1. 运行模式选择根据电网接入的需求和条件,选择适合的运行模式,包括独立运行模式、并网运行模式以及并网与独立运行模式的混合模式。
并网运行模式是分布式光伏发电系统的主要运行方式,可实现与电网的互联互通。
2. 电网接口设计确保分布式光伏发电系统与电网之间的接口匹配,采用适当的电网接口设计,包括逆变器、并网保护设备、电力电容器等。
逆变器的选择要考虑系统的功率输出、效率和稳定性,并网保护设备要满足电网接入的安全要求,电力电容器要提供有利于功率因数校正的功能。
三、分布式光伏发电系统的并网运行设计1. 并网运行策略制定合理的并网运行策略,确保系统平稳地接入和退出电网,包括并网时的功率控制策略、电压控制策略以及频率控制策略等。
根据电网的要求,合理调整并网功率的大小,避免对电网稳定性产生不利影响。
2. 互动控制系统设计设计互动控制系统,实现光伏发电系统与电网之间的实时信息交互和控制。
通过互动控制系统,可以监测光伏发电系统的功率输出、电流电压等参数,实时调整并网运行策略,保持系统的稳定性和可靠性。
3. 安全保护系统设计设计安全保护系统,保护光伏发电系统和电网的安全运行。
安全保护系统包括过压保护、欠压保护、过流保护、短路保护等功能,确保系统在异常情况下能够及时断开并网连接,避免事故的发生。
4. 功率管理系统设计设计功率管理系统,实现对分布式光伏发电系统的功率分配和调度。
通过功率管理系统,可以根据电网需求和自身条件,合理分配和调整系统的功率输出,最大程度地利用光伏发电系统的发电能力,实现经济运行和高效利用。
家庭光伏发电系统的设计与实现

家庭光伏发电系统的设计与实现近年来,随着环保意识的加强,越来越多的家庭开始探索可再生能源的利用,其中家庭光伏发电系统备受关注。
家庭光伏发电系统是指通过安装太阳能电池板,将光能转化为电能,供给家庭用电设备使用的系统。
在节约用电成本、减少环境污染和降低碳排放方面具有重要意义。
本文将介绍家庭光伏发电系统的设计与实现。
一、光伏发电系统的组成和原理家庭光伏发电系统主要由太阳能电池板、光伏逆变器、电池、控制器、电表等组成。
其中,太阳能电池板是最核心的部件,它是将太阳能转化为电能的装置;光伏逆变器负责将直流电转化为交流电,为家庭用电设备提供电能;电池可以储存电能,保证在夜晚或阴天时仍能使用电力;控制器用于对光伏发电系统进行监控和控制,最终电表则是记录光伏发电系统的电能输出情况。
家庭光伏发电系统的原理很简单,即阳光照射到太阳能电池板上,太阳能电池板将光能转化为电能,然后经过光伏逆变器转化为家庭用电设备可以使用的电能。
家庭光伏发电系统既可以自给自足,也可以将多余的电能卖给电网,从而获得收益。
二、家庭光伏发电系统的设计1. 选用高效的太阳能电池板太阳能电池板是光伏发电系统的核心部分,因此选择高效的太阳能电池板非常重要。
高效的太阳能电池板可以更好地将光能转化为电能,提高光伏发电系统的输出功率。
在选购太阳能电池板时,应关注其转化效率和耐久性。
2. 合理规划电池容量电池容量的大小直接影响到光伏发电系统的储电能力和使用寿命。
如果电池容量过小,会导致在夜晚或阴天时电能不足;而电池容量过大,则会增加初期投资成本。
因此,在设计家庭光伏发电系统时,应合理规划电池容量,以满足家庭用电需求和储电能力的要求。
3. 对光伏逆变器进行正确配置光伏逆变器是将直流电转化为交流电的核心设备,其配置应遵循以下原则:第一,逆变器应具有高效率和可靠性,以确保光伏发电系统产生的电能可以被充分利用;第二,应选择功能齐全、易于操作的光伏逆变器,以便于后续管理和维护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈家庭分布式光伏并网发电系统的设计
摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。
分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。
它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。
目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶及幕墙的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。
从发电入网角度出发,根据家庭用电情况可以给出系统的设计方法以及光伏组件、逆变器的选择等。
关键词:家庭分布式光伏发电并网系统设计
引言
太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。
太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。
从长远来看,太阳能的利用前景最好,潜力最大。
近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。
家庭式小型分布式光伏电站建设分并网式和离网式。
离网式电站建设需要有蓄电池储存电能,然而蓄电池的维护成本较高,因此现在大部分都建设为并网式电站。
本文结合陕西省靖边县能源发展规划局门卫室分布式光伏发电并网系统的设计方案,对3kw左右的小型家庭分布式光伏并网发电系统的设计予以简述。
一、项目概述
1、使用地点及太阳辐射量:本项目安装地点位于北纬37°、东经108°,年平均辐射量为5392MJ/m²。
2、政策依据:《陕西省电力公司分布式电源项目并网服务实施细则》《国家电网公司关于做好分布式光伏发电并网服务工作的意见》。
3、发电用途及功能:采用并网系统设计,系统自发自用余量上网,为自己单位提供动力、照明电源和收取盈余电费,享受国家政策补贴。
4、电网条件:AC220V供电。
5、根据本系统安装特点,采用外墙平铺安装方案,拟采用多晶硅55W电池组件60块,装机容量3.3kWp。
二、系统方案
1、系统平面布置图
本系统采用55W的电池组件60块,容量3.3kW,通过15串4并方式接入3kw逆变器,经逆变后通过220V断路器开关并入电网。
系统平面布置图如右图所示。
2、电池组件的选择
太阳能电池组件技术参数:
55Wp多晶硅光伏组件技术参数如下:
开路电压:22.28V ;工作电流:3.08A ;短路电流:3.28A ;尺寸:660*630*25.
3、逆变器的选择
本系统逆变器采用AC220V、3kW单相并网逆变器。
其优点是将具汇流箱、直流屏、逆变器的功能集于一体,适用于家庭小型分布式并网电站使用。
4、太阳能电池组件支架选择
本项目支架采用热镀锌钢支架,沿墙体支撑电池组件。
5、防雷接地系统
本系统建设于房屋墙面,系统中的外置设备在整个环境中不是最高建筑物,充分利用屋面防雷装置将所有的光伏子方阵的电池组件支架与屋顶建筑物避雷网可靠连接。
三、设备配置表及费用概算
小型家庭分布式光伏并网发电系统与传统的发电系统相比,其优势主要是:1、损耗小、安装在用电侧。
分布式能源系统供应与需求在最短的距离内平衡,输配电损耗很小。
2、清洁、环保。
采用太阳能发电,发电系统基本无污染排放;同时,由于分布式光伏系统发电的电压等级比较低、就近供电,减少了大容量远
距离高电压输电线的建设,以及减少了高压输电线的电磁污染。
3、运行灵活,安全可靠。
分布式光伏系统发电方式灵活,在公用电网故障时,可自动与公用电网断开,独立向用户供电,提高了用户自身的用电可靠性。
4、电能质量高,由于分布式光伏系统发电设施通常可以就地调整电压和电流波形,保证了较高的电能质量。
5、系统经济性好。
由于高效、低损耗和无污染排放,分布式能源系统具有明显的经济性。
结束语:小型家庭分布式光伏并网发电站的建设对于我们这样一个能源消耗大国具有十分重要的意义,其大范围的建设既可以减少传统发电厂的发电压力,又可以建少石化能源的消耗。
实现节能减排,保护环境。
随着经济与技术的进一步发展,小型家庭分布式光伏并网发电站的建设必将走向千家万户。
参考文献:
[1]杨贵恒等编.太阳能发电及其应用.北京:化学工业出版社,2011.3
[2]邓李军.家用分布式光伏系统设计[R].通威太阳能光伏电力事业部:邓李军,2010.6
[3]王春学.太阳能在并网发电中的应用:机械工业出版社,2004
[4]曹莹.家用太阳能发电系统设计.机电工程.2011.1。