实验台示意图

合集下载

清华炉介绍

清华炉介绍
16
1、水冷壁系统的本质安全:
清华炉研发过程中充分考虑了水冷壁水汽自然循 环的可行性,依自然循环设计,按强制循环运行。 即便特殊故障无法强制供水,水汽系统仍可自然循 环,保证气化炉安全停车,不会出现日本核电站地 震海啸中给水泵停运引发的重大安全事故。锅炉水 循环泵不必采用一级电源供电。
17
1、水冷壁系统的本质安全:
29
粗煤气向上进入热回收系统,渣向下进入锁斗。壳牌气化炉内的粗煤气 和渣逆向流动,熔渣依靠重力向下流动,对熔渣的流动性要求高。提高渣口 温度,就必须首先提高气化炉工艺烧嘴区域的温度,保证气化炉渣口区域的 温度,使熔渣的粘温特性在正常范围内。所以壳牌气化对灰渣的粘温特性要 求严格。根据国内多台壳牌气化炉实际运行情况来看,煤的灰熔点不能超过 1400℃下。
24
航天炉和GSP气化炉的煤粉通过三条煤粉管线进入气化炉烧嘴的三个煤 粉管,在气化炉内形成旋流。氧气经预热后和一定比例的蒸汽混合后进入 气化炉,炉内轴向温度梯度为上部高,下部低。对于液态排渣的气化炉, 渣口的温度应保持在灰熔点以上,渣口温度的高低是决定渣口压差大小的 主要影响因素,也是气化炉能否正常排渣的关键。
度降低;
废气:水冷壁清华炉减少了烘炉时间,不需要气化炉的热备,减少了烘炉废气的排放。
和水煤浆耐火砖气化炉相比 根据实际运行来看,水冷壁清华炉已经完成了入炉煤灰熔点为1520℃的工业试验,实际运行证明气化炉操作稳定,排渣顺畅。
清华炉煤气化技术自2001年投入研发开始,经过专利研究、数学模型建立、冷态试验、热态试验及工程化各阶段。 压力:6.
和其他结构水冷 壁内件比起来, 清华炉内件具有 冷却均匀,系统 阻力低;不会出 现汽水分层现象 等优点。
18
2、点火投料系统的安全:

滑动轴承实验

滑动轴承实验

题。
表二径向油膜压力值记录
表号 1
2
3
4
5
6
7
载荷(N)
1386N ( 100r/min
1746N ( 100r/min
1746N ( 300r/min )
国家工科机械基础教学基地
National basic teaching base for engineering machinery
机械设计
图十八 滑动轴承径向油膜压力分布曲线
国家工科机械基础教学基地
National basic teaching base for engineering machinery
1386N
1
2
3
4
5
6
7
8
1746N
国家工科机械基础教学基地
National basic teaching base for engineering machinery
机械设计
图十七 滑动轴承特性曲线
国家工科机械基础教学基地
National basic teaching base for engineering machinery
国家工科机械基础教学基地
National basic teaching base for engineering machinery
机械设计
接下来我们来介绍实验课用到的滑动轴承实验台 首先我们来介绍实验台结构
图六为实验台实物照片,图七为实验台结构示意图
图六滑动轴承实验台
图七滑动轴承实验台结构示意图
图九 轴瓦
图十 油压表
请同学们看图九,图十,实验台上右边轴瓦径向每隔22°30´ 钻有直径1毫米的小孔 ,轴瓦上

转子实验台使用说明

转子实验台使用说明

2套
7. 光电转速传感器(DRHYF-12-A) 1 个
8. 磁电转速传感器(DRCD-12-A) 1 个
9. 称重台(DRCZ-A)
1个
—2—
10. 变送器(DRBS-12-A)
1台
11. 传感器支架(DRZJ-A)
1个
首先,将传感器安装在实验台上,位置如图 2 所示(图中所标传感器 1:磁电转
பைடு நூலகம்—1—
4) 直流电机 5) 主轴支座 6) 含油轴承及油杯 7) 电机支座 8) 连轴器及护罩 9) RS9008 电涡流传感器支架 10) 磁电转速传感器支架 11) 测速齿轮(15 齿) 12) 保护挡板支架 2. 主要技术指标 1) 可调转速范围:0~2500 转/分,无级 2) 电源:DC12V 3) 主轴长度:500mm 4) 主轴直径:12mm 5) 外形尺寸:640×140×160mm 6) 重量:12.5kg
1.1.1 刚性转子动平衡
低于轴的临界转速时,转子为刚性转子,临界转速可以通过观察轴心轨迹的改 变来判断;本实验实际是由动平衡配重测量实验和三点加重法转子动平衡实验两个 实验组成:先进行配重测量实验,测得配重数据后再进行转子动平衡实验。在 DRVI 的实验指导书中已经有该实验的详细步骤说明,在这里说明的是实验过程中对转子 实验台本身的操作。实现动平衡参数测算的方法为:
在转子试验台的一个配重圆盘上拧上一个螺钉作为偏重质量块,启动转子试 验台,调整到一个稳定的转速。观察并记录得到的振动信号的波形和频谱,比较 加速度传感器和速度传感器所测得的振动信号的特点。改变转速后,振动的信号、 频谱也会随之变化,观察并记录,与前面的记录进行比较可得到结果。
在转子试验台的配重圆盘上改变试重的大小和位置,进行多次测量,分析比 较得到的结果。

完整word版,单跨转子实验台说明书修改版(增加部分实验内容,已完成)

完整word版,单跨转子实验台说明书修改版(增加部分实验内容,已完成)

DHRMT单跨教学转子实验台使用说明书江苏东华测试技术股份有限公司目录第一章转子台系统说明 (1)1.1 产品简介 (1)1.2 系统组成和技术指标 (1)1.3 零部件安装 (2)1.4 运输与存放 (4)1.5 维护与保养 (4)第二章转子台控制器使用说明 (5)2.1 概述 (5)2.2 功能说明 (5)2.3 参考操作流程 (7)2.4 保护状态说明 (8)2.5 转子台控制器及电机使用的注意事项 (8)第三章动态信号采集仪与分析软件的介绍 (11)3.1 动态信号采集分析仪 (11)3.2 分析软件介绍 (11)第四章单跨转子台实验 (14)实验一转轴的径向振动测量 (14)实验二旋转机械振动相位的检测 (21)实验三转轴的轴心轨迹、轴心位置测定 (24)实验四转子级联图及时间瀑布图 (28)实验五转速跟踪整周期采样、阶次分析 (32)实验六转轴启停机的波特图、极坐标图 (36)实验七转轴的临界转速测量 (39)实验八影响系数法进行单面转子动平衡 (42)实验九影响系数法进行双面转子动平衡 (48)实验十转子不平衡的故障机理研究与诊断 (50)实验十一转子不对中的故障机理研究与诊断 (59)实验十二转子动静件摩擦的故障机理研究与诊断 (70)实验十三油膜轴承的故障机理与诊断 (78)第一章转子台系统说明1.1 产品简介DHRMT教学转子实验台是本公司针对高等院校及科研院所中转子动力学及相关课程开发的。

该教学转子实验台结构简单,操作方便,性能稳定。

可以模拟转子系统的各种运行状态(包括瞬态起停机机过程,稳态工况运行)和多种典型故障,和本公司开发的数采仪器和分析软件配套使用,形成一个多用途,综合型的实验系统平台,为从事转子动力学及相关课程研究的研究人员提供了一个良好的实验分析条件。

1.2 系统组成和技术指标本转子试验台采用高性能的调速电机,通过联轴节将电机和转轴连接并驱动转轴转动。

该电机额定电流1.95A,最大输出功率148W,控制器将220V AC输入电源通过控制器调压、整流后输出PWM信号供给调速电机,通过调节控制器,可以实现电机从0~8000RPM的无级调速。

机械设计补充实验 (1)

机械设计补充实验 (1)

液体动压润滑轴承实验一、实验目的1、学习动压轴承油膜压力分布的测定方法,绘制油膜压力径向和轴向图,验证理论分布曲线。

2、掌握动压轴承摩擦系数的测定方法,绘制摩擦特性曲线,加深对润滑状态与各参数间关系的理解。

3、了解实验台的构造和工作原理,通过实验进一步了解动压润滑的形成,加深对动压原理的认识。

二、实验设备及原理实验台的结构如图1所示。

1、实验台的传动装置由直流电动机1通过V带传动2驱动轴沿顺时针(面对实验台面板)方向转动,由无级调速器实现轴4的无级调速。

本实验台的转速范围是3~500转/分,轴的转速由数码管直接读出。

图1 实验台结构示意图2、轴与轴瓦间的油膜压力测量装置轴的材料为45号钢,经表面淬火、磨光,由滚动轴承支承在箱体3上,轴的下半部浸泡在润滑油中,本实验台采用的润滑油的牌号为N68(即旧牌号的40号机械油),该油在200C时的动力粘度为0.34PaS。

轴瓦的材料为铸锡铅青铜,牌号为ZCuSnPb5Zn5(即旧牌20,号ZQSn6-6-3)。

在轴瓦的一个径向平面内沿圆周钻了7个小孔,每个小孔沿圆周相隔0每个小孔联接一个压力传感器,用来测量该径向平面内相应点的油膜压力,由此可绘出径向油膜压力分布曲线。

沿轴瓦的一个轴向剖面装有两个传感器,用来观察有限长滑动轴承沿轴向的油膜压力分布情况。

3、 加载装置本实验台采用螺旋加载,转动螺旋即可改变载荷的大小,所加载荷之值通过传感器数字显示,直接在实验的操作板上读出(取中间值)。

这种加载方式的主要优点是结构简单、可靠,使用方便,载荷的大小可任意调节。

4、摩擦系数f 的测量装置径向滑动轴承的摩擦系数f 随轴承的特性系数npη值的改变而变化,其中η是润滑油的动力粘度,n 是轴的转速,p 是轴承中的平均压强、即rF Bd,r F 是轴上的径向载荷,B 是轴瓦的宽度,d 为轴的直径,本实验台B 是125mm ,d 为70mm 。

在边界摩擦时,摩擦系数f 随轴承的特性系数npη的增大而变化很小(由于n 值很小,建议用手慢慢转动轴);进入混合摩擦后,npη值的改变引起摩擦系数f 的急剧变化,在刚形成液体摩擦时,摩擦系数f 达到最小值,此后,随npη的增大油膜厚度亦随之增大,因而摩擦系数f 亦有所增大。

QD型气动教学试验台

QD型气动教学试验台

QD-1型气动教学实验台该实验台是根据《液压气动传动技术与实训》、《气动控制技术》等通用教材设计而成,适用于机械类、机电类本科生课程实验和毕业设计(论文)。

采用可编程控制器(PLC)和工业气动元件、执行模块为一体,除可进行常规的气动基本控制回路实验外,还可以进行气动-电气控制回路应用实验、气动-PLC控制回路等气动技术课程设计。

一、主要特点:1.元件模块化:每个气动元件成独立模块,配有方便安装的底板,可随意在“T”型槽通用铝合金型材板上组建各种实验回路,操件简单快捷。

2.连接方式:接头采用快速式,安装、拆卸时可靠简便省时。

3.气动元件:工业气动元件,性能可靠、安全。

精度高、使用寿命长。

4.系统环境:低噪音(超静音)的工作泵站,提供一个安静的实验环境(噪声< 50分贝)。

5.可扩展实验:为了适应学校实验教学改革的要求,减少验证性实验,增加设计性、综合性、探索性实验,开发学生自主创新思维,除了可以完成气压的基础实验以外,还应与机械类实验项目结合起来;在保证设备稳定的情况下提供极强的可扩展性,大铝合金面板组装平台为扩展提供了必要的硬件基础。

该设备适应现代实验教学的先进性、开放性和可扩展性三个层次的实验教学要求。

充分体现该设备的机电一体化教学的多功用性。

A.在保证现有实验的前提下还可进行液压元件的搭接,进行相应的液气综合实验;8.在硬件支撑下还可实现送料机构、挖掘机机构等扩展实验。

9.兼容性A.该实验台可同MPS自动化物流系统、FMS柔性系统进行兼容组合。

B.实验台电控部分、硬件部分可方便的进行升级及拓展模块的搭接、连接方式友好可供多类机电模块、液、气模块进行组合实验。

如:回转送料机构,机械手、运输线自动化;与电子仿真软件相接合,可模拟各类机械应用,如风力发电机中比例阀的应用、插装阀的工作原理及应用机械升降机的应用等等,并且可以根据老师上课的内容进行编辑10易维护维护检修工作量小,独特的防护和易维护设计,需维护的器件特别少且易于维护,运行状态下可以方便简单地维护,整机维护一次最多不超过1小时,工作量极小,且不需要经常维护。

实验一 电力系统综合实验平台认识与基本要求

实验一  电力系统综合实验平台认识与基本要求

实验一电力系统综合实验平台认识与基本要求内容一:电力系统综合实验平台认识一、THLZD-2型电力系统综合自动化实验台实验台包括以下单元:1.输电线路单元:采用双回路输电线路,每回输电线路分两段,并设置有中间开关站,可以构成四种不同的联络阻抗。

输电线路的具体结构如下图所示:图1-3 单机-无穷大系统电力网络结构图输电线路分“可控线路”和“不可控线路”,在线路XL4上可设置故障,该线路为“可控线路”,其他线路不能设置故障,为“不可控线路”。

⑴“不可控线路”的操作操作“不可控线路”上的断路器的“合闸”或“分闸”按钮,可投入或切除线路。

按下“合闸”按钮,红色按钮指示灯亮,表示线路接通;按下“分闸”按钮,绿色按钮指示灯亮,表示线路断开。

⑵“可控线路”的操作在“可控线路”上预设有短路点,并在该线路上装有“微机线路保护装置”,可实现过流保护,并具备自动重合闸,通过控制QF4和QF6来实现。

QF4和QF6上的两组指示灯亮或灭分别代表QF4和QF6的A相、B相和C相的三个单相开关的合或分状态。

为了实现非全相运行和分相切除故障,QF4和QF6的分、合控制与“不可控线路”上断路器操作不同,区别如下:正常工作时,按下QF4合闸按钮,三个单相指示灯亮,而QF4红色合闸按钮灯不亮,手动分闸或微机线路保护装置动作三相全跳时,绿色分闸指示灯亮,三个单相指示灯全灭;当保护装置跳开故障相时,故障相的指示灯灭。

⑶中间开关站的操作中间开关站是为了提高暂态稳定性而设计的。

不设中间开关站时,如果双回路中有一回路发生严重故障,则整条线路将被切除,线路的总阻抗将增大一倍,这对暂态稳定是很不利的。

设置了中间开关站,即通过开关QF5的投入,在距离发电机侧线路全长的1/3处,将双回路并联起来,XL4上发生短路,保护将QF4和QF6切除,线路总阻抗也只增大2/3,与无中间开关站相比,这将提高暂态稳定性。

中间开关站线路的操作同“不可控线路”。

⑷短路故障的设置实验台面板右下方有短路类型设置模块,由短路类型设置按钮,设置短路持续时间用的数显时间继电器(量程为0~99.99s)和短路投入按钮组成。

《流体力学》实验指导书

《流体力学》实验指导书

实验二 雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律2、 观察流体由层流变紊流及由紊流变层流的过度过程3、 测定液体在圆管中流动时的下临界雷诺数2c e R二、 实验原理及实验设备流体在管道中流动,由两种不同的流动状态,其阻力性质也不同。

雷诺数的物理意义,可表征为惯性力与粘滞力之比。

在实验过程中,保持水箱中的水位恒定,即水头H 不变。

如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v ,微启红色水阀门,这是红色水与自来水同步在管路中沿轴线向前流动,红颜色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。

此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。

如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。

如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态微紊流运动。

图1雷诺数实验台示意图1.水箱及潜水泵2.接水盒3. 上水管4. 接水管5.溢流管6. 溢流区7.溢流板8.水位隔板9. 整流栅实验管 10. 墨盒 11. 稳水箱 12. 输墨管 13. 墨针 14.实验管15.流量调节阀雷诺数表达式e v dR ν⋅=,根据连续方程:A=v Q ,Qv A=流量Q 用体积法测出,即在Δt 时间内流入计量水箱中流体的体积ΔV 。

tVQ ∆=42d A π=式中:A —管路的横截面积;d —实验管内径;V —流速;ν—水的粘度。

三、实验步骤1、准备工作:将水箱充满,将墨盒装上墨水。

启动水泵,水至经隔板溢流流出,将进水阀门关小,继续向水箱供水,并保持溢流,以保持水位高度H 不变。

2、缓慢开启阀门7,使玻璃管中水稳定流动,并开启红色阀门9,使红色水以微小流速在玻璃管内流动,呈层流状态。

3、开大出口阀门15,使红色水在玻璃管内的流动呈紊流状态,在逐渐关小出口阀门15,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档