三力平衡问题

合集下载

三力平衡问题的解决方法

三力平衡问题的解决方法

我们努力做温州最好的教育(精品讲义)新高一物理衔接课程第12讲三力平衡问题的解决方法一、三力平衡条件1. 任意两个力的合力跟第三个力_________(合成法);2. 将某一个力分解到另外两个力的反方向上,得到的两个分力必定跟另外两个力_________ (分解法);3. 若三个力共面不平行,则三个力必_______ (“三力汇交”原理);二、平衡情景静态平衡、动态平衡、准静态平衡三、三力平衡问题的解决方法1. 平行四边形定则2. 正交分解3. 三角形定则:将两分力F1、F2首尾相连(有箭头的叫尾、无箭头的叫首),则合力F就是由F1的首端指向F2的尾端的有向线段所表示的力。

4. 封闭矢量三角形=三个力合力为零,则其必组成一个封闭的矢量三角形.(首尾相连)5. 勾股定理、余弦定理、正弦定理、拉密定理⑴勾股定理:F=⑵余弦定理:FαF1sinαF1sin2F1F2cos(180-F2+F122F2+F122)α-=⑶正弦定理:βF2sinβF2sin=γF3sinγF3sin==⑷拉密定理:6. 矢量三角形和几何结构三角形相似思考与练习:1.如图,一个物体受到三个共点力F1、F2、F3的作用,这三个力的大小和方向刚好构成三角形,则这个物体所受的合力是( 答案:D ) A.2F1 B.F2 C.F3 D.2F3解析:由力的三角形法则可知:力F1和F2的合力为F3,与另一个力F3大小相等,方向相同,所以力F1、F2、F3的合力为2F3,故选项D正确.此题如果将力F3改为反向,则F1、F2、F3的合力为零,表示三力的有向线段顺次首尾相接.2.如图,A、B为竖直墙面上等高的两点,AO、BO为长度相等的两根轻绳,CO为一根轻杆(即:杆在O端所受的力沿杆OC方向).转轴C在AB中点D的正下方,AOB在同一水平面内,∠AOB=90°,∠COD=60°.若在O点处悬挂一个质量为m的物体,则平衡后绳AO所受的拉力为( 答案:D )A.mgB.1mg C.mg 36mg 6解析:如图甲,对O点,绳AO、BO对O点的拉力的合力为T2,则T2=36;如图乙,则绳AO所受的拉力为. 36=2tg β.α.试证明:tg ααα、βα3.如图,重为G的一根均匀硬棒AB,杆的A端被细绳吊起,在杆的另一端B作用一水平力F把杆拉向右边,整个系统平衡后,细线、棒与竖直方向的夹角分别为=β证明硬棒受到三个力作用平衡,则三个力的作用线必交于一点,如图1- 72所示。

三力平衡问题的图解方法

三力平衡问题的图解方法

三力平衡问题的图解方法在中学物理学习过程中,要掌握好力学问题,就要解决好力的平衡状态。

对于三力平衡,一般根据“任意两个力的合力与第三个力等大反向”的关系,借助三角函数、相似三角形等手段求解,或将某一个力分解到另外两个力的反方向上,得到的这两个分力势必与另外两个力等大、反向。

本文我们来用三力平衡作图法来解决一些物理问题。

在大量的三力物体的平衡问题中,最常见的是已知两个力,求第三个未知力。

定理:如果一个物体受到三个不平行外力的作用而处于平衡状态,若其中两个力的作用线或他的反向延长线相交,则该物体所受的第三个力(未知)的作用线必定通过上述两个力的作用线的交点。

因此,我们可以根据几何关系来确定力的方向(夹角)最后可采用力的合成、力的分解、正交分解等数学方法求解。

定理应用:如图1:一质量均匀分布的杆通过铰链固定于竖直墙的C点,AB为一轻绳,若绳子的拉力T与重力mg 交于O点,则铰链对杆CB的作用力必过O点。

因为一个物体处于平衡状态,则,F合=0,M合=0,以任意点为轴,如图,如果F不过O点,则M合≠0(以O点为轴),则物体不能处于平衡状态,与已知条件相矛盾,则必过O点。

例1如图2,mg的筷子,放在光滑的半圆型的碗中,处于静止状态,筷子与水平线的夹角为α,求A点和B点处碗对筷子的支持力F与T的大小?解: T,F与mg这三个力必定交于同一点O′,如图,其矢量三角形如图所示,依弦定理有:例2 重量为G的圆柱,如图3,欲在A点施加一个力使其缓慢滚上高度为h=R/2的台阶,已知O点粗糙,求A点施力的最小值是多少?圆柱对O点的作用力是多少?解:如图,欲使F最小,则F应垂直于AO,且G,T,F三个力必交于A点,构成矢量三角形,如图,则F=Gsin30。

=G/2; T=Gcos30。

= G/2 思考:若该题的力的作用点不限定在A点而是圆柱的任意点,则最小的作用力又是多少?。

三力平衡的求解方法

三力平衡的求解方法
挡板受压力FN1′=FN1=mgtan α.
以上有不当之处,请大家给与批评指正, 谢谢大家!
9
力的三角 形法
物体受三个力作用,将这三个力的矢量箭头首尾 相接,构成一个闭合三角形,利用三角形定则, 根据正弦定理、余弦定理或矢量三角形与几何三 角形相似等数学知识可求解。
题型:三力平衡问题
例1.如图所示,在倾角为α的斜面上,
放一质量为m的小球,小球被竖直
的木板挡住,不计摩擦,则球N1 =mgtan α,
球对挡板的压力FN1′=FN1=mgtan α.所以B正确.
解法三:(按力的作用效果分解):
将重力G按效果分解图丙中所示的两分力G1和G2 解三角形可得: FN1=G1=mgtan α
球对挡板的压力FN1′=FN1=mgtan α.
解法四:(三角形法则): 所受三个力经平移首尾顺次相接,一定能 构成封闭三角形. 由三角形解得: FN1=mgtan α,
A.mgcos α
B.mgtan α
C. mg
D.mg
cosα
【思路点拨】先对小球进行正确的受力分析,并画出 受力示意图,然后将某些力分解或合成,最后列平衡 方程求解.
解法一:(正交分解法): 列平衡方程为FN1=FN2sin α mg=FN2cos α
可得:球对挡板的压力FN1′=FN1=mgtanα,所以B正确.
三力平衡的几种求解方法

解决三共点力平衡问题常用的方法
方法 正交分解
法 合成法
分解法
内容
将处于平衡状态的物体所受的力,分解为相互正 交的两组,每一组的力都满足二力平衡条件
物体受三个力的作用,任意两个力的合力与第三 个平衡 .
将某一个力按力的效果进行分解,则其分力和其 它力在所分解的方向上满足平衡条件.

三力静态平衡训练习题题组

三力静态平衡训练习题题组

静态平衡问题一、三力平衡问题1.如图6所示,电灯的重力G=10 N,AO绳与顶板间的夹角为45°,BO绳水平,AO绳的拉力为F A,BO绳的拉力为F B,则()图6A.F A=10 2 N B.F A=10 NC.F B=10 2 N D.F B=10 N【解析】法一效果分解法在结点O,电灯的重力产生了两个效果,一是沿AO向下的拉紧AO绳的分力F1,二是沿BO向左的拉紧BO绳的分力F2,分解示意图如图所示。

则F A=F1=Gsin 45°=10 2 NF B=F2=Gtan 45°=10 N,故选项A、D正确。

法二正交分解法结点O受力如图所示,考虑到电灯的重力与OB垂直,正交分解OA绳的拉力更为方便。

F=G=10 NF A sin 45°=FF A cos 45°=F B代入数值得F A=10 2 N,F B=10 N,故选项A、D正确。

答案AD答案AD2.灯笼,又称灯彩,是一种古老的中国传统工艺品。

每年的农历正月十五元宵节前后,人们都挂起红灯笼,来营造一种喜庆的氛围。

如图6是某节日挂出的一只灯笼,轻绳a、b将灯笼悬挂于O点。

绳a与水平方向的夹角为θ,绳b水平。

灯笼保持静止,所受重力为G,绳a、b对O点拉力分别为F1、F2,下列说法正确的是()图6A.F1=Gsin θ,F2=Gtan θB.F1=G sin θ,F2=G tan θC.F1和F2的合力与灯笼对地球的引力是一对平衡力D.F1和F2的合力与地球对灯笼的引力是一对相互作用力解析以结点O为研究对象,受力分析如图所示,由灯笼受力平衡可知,T=G,而F1与F2的合力与T等大反向,即F1与F2的合力大小等于灯笼的重力大小。

则可知F1=Gsin θ,F2=Gtan θ,选项A正确,B错误;F1与F2的合力与竖直方向绳的拉力是一对平衡力,选项C错误;地球对灯笼的引力与灯笼对地球的引力是一对相互作用力,选项D错误。

专题12三力平衡中的动态平衡问题及最小值问题(解析版)—2023届高三物理一轮复习重难点突破

专题12三力平衡中的动态平衡问题及最小值问题(解析版)—2023届高三物理一轮复习重难点突破

专题12三力平衡中的动态平衡问题及最小值问题1、三个力的动态平衡问题:一个力恒定,另外两个力的大小或(和)方向不断变化,但物体仍然平衡,关键词——缓慢转动、缓慢移动……2、三个力的动态平衡问题的解法1)解析法——画好受力分析后,对力进行分解列平衡方程,然后由角度变化分析力的变化规律.2)图解法——画好受力分析图后,将三个力按顺序首尾相接构成力的封闭三角形,由于三角形的边的长短反映力的大小,从动态三角形边的长度变化规律看出力的变化规律.3、图解法分析的一般顺序:封闭的矢量三角形→等腰三角形→相似三角形→圆与矢量三角形相结合或正弦定理→圆与矢量三角形相结合考点一解析法分析三个力的动态平衡问题解析法:对研究对象进行受力分析,列平衡方程,根据角度变化分析力的变化规律.1.(2022·江苏南通·高二期末)如图所示,半球形碗静止于水平地面上,一只可视为质点的蚂蚁在碗内缓慢从b点爬到a点的过程中()A.蚂蚁受到的弹力逐渐变大B.蚂蚁受到的摩擦力逐渐变大C.蚂蚁受到的合力逐渐变大D.地面对碗的摩擦力逐渐变大【答案】B【详解】AB.设蚂蚁所在位置的切线与水平方向夹角为,对蚂蚁分析得支持力和静摩擦力分别为N=mcos,=msin故A错误,B正确;C.蚂蚁缓慢上爬的过程中变大,可知蚂蚁受到的支持力减小,静摩擦力增大。

又因为蚂蚁缓慢移动,视为平衡状态,故所受合力为零保持不变,故C错误;D.系统保持平衡状态,则地面对碗的摩擦力为零保持不变,故D错误。

2.(多选)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小【答案】AD【详解】解析以球B为研究对象,受力分析如图所示,可得出F1=G tanθ,F2=Gcosθ,当A向右移动少许后,θ减小,则F1减小,F2减小,故A、D正确.考点二矢量三角形法分析三个力的动态平衡问题矢量三角形法常用于三个力中只有一个力的方向发生变化的情况.3.质量为m的物体用轻绳AB悬挂于天花板上。

3.6二、三力平衡问题、动态分析ppt课件

3.6二、三力平衡问题、动态分析ppt课件

最低点顺时针转动至水平位置,求转动过程
中,小球对挡板的压力F1和对斜面的压力F2 分别怎样变A化C ?( )
A、F1 先减小,后增大 C、F2 不断减小
B、F1 不断减大 D、F2 先变大,后减小
练习:
15、如图所示,球面光滑的半径为R的半球固定在
水平面上,球心的正上方固定一小滑轮,跨过滑题意,选择电灯受力分析,它分别受
到重力G,两细绳OA、OB的拉力FA、FB ,可
画出其受力图,由于电灯处于平衡状态,则
两细绳OA、OB的拉力FA、FB 的合力F与重力
大小相等,方向相反,构成一对平衡力。
可得:FA = G/cosθ,FB = Gtanθ
注意箭头的长度与绳子长度无关。
例题4:如右图所示,重力为G的电灯通过两根细绳OB与OA悬挂于 两墙之间,细绳OB的一端固定于左墙B点,且OB沿水平方向,细 绳OA挂于右墙的A点。
A、3N、4N、5N
B、1N、3N、5N
C、1N、4N、7N
D、2N、5N、8N
9、如图,两根杆子构成的一个架子下面挂着一个
B
重为G=6N的重物,已知AB杆长5cm,BC杆长7cm,AC A
距离3cm。假设杆子只在沿杆的方向有力的作用。
CG
求AB杆,BC杆的受力大小?(用相似三角形解)
FAB 10N
木块匀速下滑:m (sin cos )M
7、用轻绳把一个小球悬挂在O点,用力拉小球使轻绳偏离竖
直方向30°,小球处于静止状态,力F与竖直方向成角θ,
如图所示,若要使拉力F取最小值,则角θ应是( B )
A、30° B、60° C、90° D、0°
O 30°
练习:
8、下列各组力能使物体作匀速直线运动的是( A )

9、三力动态平衡及验证力的平行四边形定则

βLLOAB九、三力动态平衡问题验证力的平行四边形定则(1)三力动态平衡题型特点:(1)物体受三个力。

(2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。

方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例1.半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置缓慢移到竖直位置C的过程中(如图),分析OA绳和OB绳所受力的大小如何变化。

同步训练1.如图,一个均质球重为G,放在光滑斜面上,倾角为α,在斜面上有一光滑的不计厚度的木板挡住球。

使之处于静止状态,今使板与斜面的夹角β缓慢增大,问:此过程中,球对挡板和球对斜面的压力如何变化?例2、如图所示,固定在水平面上的光滑半球,球心O的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A点,另一端绕过定滑轮,如图所示.今缓慢拉绳使小球从A点滑向半球顶点(未到顶点),则此过程中,小球对半球的压力大小N及细绳的拉力T大小的变化情况是()A.N变大,T变大B.N变小,T变大C.N不变,T变小D.N变大,T变小同步训练2、(2010年汕头二模)如图所示,两球A、B用劲度系数为k1的轻弹簧相连,球B用长为L的细绳悬于O点,球A固定在O点正下方,且点OA之间的距离恰为L,系统平衡时绳子所受的拉力为F1.现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为A.F1> F2 B.F1 = F2C.F1< F2 D.无法确定(2)、绳断问题例3、如图所示,OA、OB、OC三条轻绳共同连接于O点,A、B固定在天花板上,C端系一重物,绳的方向如图。

利用力合成规律妙解三力动态平衡问题

利用力的合成规律妙解三力的动态平衡问题在高中力学问题中,物体受三力平衡问题最多,其中一种典型的类型是:三力中的一个力或两个力的方向发生改变而引起力的大小改变,这类问题的分析判断是学生学习“力的合成与分解”应用中的难点。

这类问题用力的分解也可解决,而用力的合成法去分析能更好地巩固学生对物体受力分析及平行四边形定则的掌握。

因此,笔者从力的合成角度谈谈这类问题的巧解方法。

适应用条件:(1)物体受三个力平衡(其中常含重力);(2)若保持物体平衡的情况下,(重力外)一个或两个力的方向发生改变时,求力的大小变化。

一、只受三个力(含重力),重力外的两个力只有一个力的方向发生改变——平行四边形法例1.如图1-1所示,将物体用两根细绳ao、ob系在墙和天花板上,ao水平,现保持结点o位置不动,将悬挂点b,缓慢向左移动时,ao、bo绳中的张力f1、f2的大小变化是()a.f1增大,f2减小b.f1减小,f2增大c.f1、f2都减小d.f1、f2都增大分析:∵b点缓慢移动过程中结点不动,受重力、绳ao、bo的拉力而三力平衡,∴f1、f2的合力f12与g等值反向,大小不变(图1-2),由力的平行四边形定则作出力f1、f2;在b点由b移到b′时,f1的对边ac与之平行且不变,再画平行四边形ob′ad′即得f1′与f2′,由图可知,选项c正确。

总结:当只有一个力的方向发生改变时,判断各力的变化的方法是:通过多次画平行四边形法即判断力的大小变化(一般画2~3次即可)。

分析步骤:(1)受力分析,判断物体(或结点)为三力平衡。

(2)画重力的反向延长线作出另两个力的合力,再由平行四边形定则作出f1、f2。

(3)在同一图中画出其中一个力(如f2)方向改变后的位置(如f2′),再由平行四边形定则确定另一个力f1′。

即可判断f1、f2的大小变化。

巩固练习:如图1-3所示,一光滑球被挡板ab挡在斜面上静止,若以b为圆心,将挡板沿逆时针方向缓慢转至水平位置,则此过程中,球所受的斜面弹力n,及挡板弹力f的大小变化情况是()a.f、n都变小b.f变小,n不变c.n变小,f先变小后变大d.n变大,f先变大后变小正确选项:c。

三力平衡计算

mg tan k
2mg tan k
mg tan k

2
A.
B.
C.
D.
2mg tan k

2
解析: 取A球为研究对象,受力分析如图示
因A球静止 F合=0 则
F mg tan kx 2解得: x 来自mg tan k
2
为N.下列关系正确的是( A
mg A.F= tan
mg tan
) B.F =mgtanθ
C.N=
D.N =mgtanθ
解析:小滑块受力分析如图示
因小滑块静止 F合=0 则 Nsinθ= mg
Ncosθ= F 所以 F mg tan
N mg sin
练习4、如图所示, 完全相同的A、B两球,质量均 为m,用两根等长的细线悬挂在O点,两球之间夹着 一根劲度系数为k的轻弹簧,静止时,弹簧处于水 平方向,两根细线之间的夹角为θ,则弹簧的长度 被压缩了( C )
F dR N R F dR T L R mg 解得: N dR L T mg d R
T N
mg
练习3、(2009·山东理综·16)如图所示, 光滑半球形容器 固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作
用下静止于P点(OP与水平方向的夹角为θ).设滑块所受支持力
练习1、(2009·泰安市三模)如图所示,小球在水平推 力F的作用下静止在固定的光滑斜面上,已知小球重力 为G,斜面倾角为θ,则斜面对小球弹力大小为( AB )
A.
G2 F 2
B.Gcosθ +Fsinθ D.Fsinθ
C.Gcosθ
解析:受力分析如图示
因球静止,F合=0 则

三力平衡的四种解法

三力平衡的四种解法处理三个力的平衡时,有四种解法。

(一)分解法:(二)合成法:(三)三角形法:(四)正交分解法:三个共点力作用于物体使之平衡时,这三个力首尾相连,围成一个封闭的三角形.如有直角直接解直角三角形;如已知角用正余弦定理;如已知边,用力组成的三角形与边组成的三角形进行相似比。

例如图所示,一粗细不均匀的棒长L=6m,用轻绳悬挂于两壁之间,保持水平,已知α=450,β=300,求棒的重心位置。

解:三力平衡必共点,受力分析如图所示。

由正弦定理得:由直角三角形得:(三)有的多个力的平衡转化成三力的平衡求解:先把同一直线上的力先求和,后只剩下三个力的平衡,再求解。

例一重量为G的小环套在竖直放置的、半径为R的光滑大圆环上,一个倔强系数为k、自然长度为L(L<2R)的轻弹簧,其一端与小环相连,另一端固定在大环的最高点。

在不计摩擦时,静止的弹簧与竖直方向的夹角θ是多大?解:由三角形相似有由正弦定理有小结:(1)由分析得出弹簧是伸长的。

(2)同时用相似与正弦定理。

如图所示,一粗细不均匀的棒,棒长AB=6m,用轻绳悬挂于两壁之间,保持水平,已知α=45°, β=30°.求棒的重心位2010-11-16 12:24提问者:丶埘绱丿|悬赏分:20 |浏览次数:441次绳与壁的夹角为a b2010-11-16 17:07最佳答案设A、B端绳子的拉力分别为F1、F2。

重心距A为L,由水平方向受力平衡得:F1sin45°=F2sin30°以A端为支点,由杠杆平衡条件得:F2cos30°*AB=G*L再以B为支点,由杠杆平衡条件得:F1cos45°*AB=G*(AB-L)联立可求出L=3(3-√3)=3.8米在很多教学参考书和学习指导书中都能看到这样一个题目:一个质量为m的小环套在位于竖直平面内半径为R的光滑大圆环上.有一个劲度系数为k、自然长度为L(L<2R)的轻弹簧,其一端与小环相连,另一端固定在大环的最高点,如图1所示.当小环静止时,弹簧处于伸长还是压缩状态?弹簧与竖直方向的夹角θ是多少?一般书中都有答案:弹簧伸长.(kL)/(2(kR-mg)).图1 图2以上答案的求解过程如下:如图2所示,用“穷举法”可以证明,弹簧对小环的弹力只可能是向里的,即弹簧必定伸长.根据几何知识,“同弧所对的圆心角是圆周角的两倍”,即图中弹簧拉力T在重力mg和大环弹力N所夹角的角平分线上.所以计算可得N=mg,①T=2mgcosθ.②另外,根据胡克定律有T=k(2Rcosθ-L),③根据以上各式可得cosθ=(kL/2(kR-mg)).二、发现的问题到此似乎题目已经解决了,但是再仔细一想却发现了新的问题.因为cosθ的取值范围是-1≤cosθ≤1.而上面cosθ的表达式中,由于各个参数k、L、R、m等可以独立变化取不同的值(只要满足L<2R),因此表达式右边的值完全可能超出cosθ的值域,例如当m较大时(或L较大,或R、k较小,它们的效果是一样的),完全可能大于1,此时上式cosθ无解.(当m更大时甚至还可能是负的,θ也许有解,但这意味着θ是个钝角,显然也不符合实际.)但是,我们知道,无论m多大,小环必定会有一个平衡位置,θ必定会有一个确定的解,因此上面的解答必定是一个不完整的解.那么完整的解是怎样的呢?令cosθ=1,即θ=0得kL=2(kR-mg),即mg=(1/2)k(2R-L),这是一个重要的临界值.由cosθ的表达式可知,m越大,cosθ也越大,θ角就越小.当mg<(1/2)k(2R-L)时,θ>0,小环不在大环的最低点;随着m的逐步变大,θ逐步变小,当mg=(1/2)k(2R -L)时,θ=0,小环恰好降低到大环的最低点;以后随着m的再进一步变大,小环的位置不会再变化了(哪怕m增大到使cosθ的表达式变为负的).由此可见,θ(或者cosθ)的表达式应该是“分段函数”,cosθ=(kL)/(2(kR-mg)),mg≤(1/2)k(2R-L)1,mg≥(1/2)k(2R-L)这个问题还可以进一步研究下去.当mg≥(1/2)k(2R-L)以后,随着m的继续增大,θ≡0是不会再有变化了,但并不意味着就什么都不变.其实,当mg<(1/2)k(2R -L)时,随着m的增大,弹簧拉力T和大环弹力N的大小始终满足T=2mgcosθ和N=mg,而且方向也相应改变.但一旦当mg≥(1/2)k(2R-L)后,m再增大时,T和N两个力的方向就都保持在竖直方向(与mg在同一直线)而不再改变,改变的仅仅是力的大小了.也就是说,T和N也是“分段函数”.T= k(2Rcosθ-L),(1/2)k(2R-L)k(2R-L),(1/2)k(2R-L)N= mg,(1/2)k(2R-L)k(2R-L)-mg,(1/2)k(2R-L)我们看其中N的第二段表达式“N=k(2R-L)-mg”,N>0,表示N的方向向下,此时(1/2)k(2R-L)≤mg<k(2R-L);当N<0,表示N的方向向上,此时mg>k(2R-L);而当mg=k(2R-L)时,N=0.也就是说,当m逐渐增大到mg=(1/2)k(2R-L)时,小环恰好降到最低点(θ=0),此时大环对小环的弹力N方向仍然是向下,大小仍等于mg(跟θ≠0时的情况相同).不过随着m的进一步增大,N先是大小渐渐减小到0,然后再方向改变为向上并逐渐增大(弹簧弹力在这期间内则始终等于k(2R-L)).并不是小环一落到最低点大环对它的支持力马上变为向上的.有兴趣的读者可以自己画出T、N(的大小)还有θ随m的变化图线,都是一些“分段函数曲线”,其中都有一段水平段.度系数为弹簧与竖直方向的夹角,解得:联立求解得:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三力平衡问题
方法;力的合成法,分解法。

1.重为G 的物体静止在倾角为θ的斜面上,物体受力如图所示,这些力之间的关系是( )
A 、 N =Gcos θ
B 、 f =G sin θ
C 、 f +N =G
D 、 G 2=N 2+f 2
2、如图,物体M 在斜向下的推力F 作用下,在水平面上恰好做匀速运动,则推力F 和物体M 受到的摩擦力的合力方向是( )
A 、竖直向下
B 、竖直向上
C 、斜向下偏左
D 、斜向下偏右
3、如图所示,AO 、BO 、CO 是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO 先断,
则…………( )
A 、不论θ为何值,AO 总是先断
B 、 θ=120°
C 、 θ>120°
D 、 θ<120°
4、如图所示,a ,b ,c 三根绳子完全相同,其中b 绳水平,c
绳下挂
C
一重物。

若使重物加重,则这三根绳子中最先断的是()
A.a绳 B.b绳
C.c绳 D.无法确定
5.如图所示,一水桶上系有三条绳子a、b、c,分别用它们提起相同的水时,下列说法中正确的是()
A.a绳受力最大
B.b绳受力最大
C.c绳受力最大
D.三条绳子受力一样大
6.(10分)如图所示,电灯的重力G N
=10,AO绳与顶板间的夹角为45︒,BO绳水平,则AO绳所受的拉力F1是多少?BO绳所受的拉力F2是多少?
7.(12分)用细绳AC和BC吊一重物,绳与竖直方向
的夹角分别为300和600,如图4所示,已知绳AC能承
受的最大拉力为150N,绳BC能承受的最大拉力为
100N,C点下面的绳子不会断,求物体的最大重力不
应超过多少?
8.如图7所示,一定质量的物块用两根轻绳悬在空中,其中绳OA固定不动,绳OB在竖直平面内由水平方向向上转动,则在
绳OB由水平转至竖直的过程中,绳OB的张力大小将
( )
A.一直变大 B.一直变小
C.先变大后变小 D.先变小后变大
9.如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将:( )
A. 逐渐增大
B. 逐渐减小
C. 先增大后减小
D. 先减小后增大。

相关文档
最新文档