数学建模港口问题_排队论
数学建模案例卡车装运问题

二、 符号定义: 1. 2. 3. n —— 中间集装箱处理中心的个数 m —— 不同尺寸的货物种类 s —— 各中心的装卸口数
1
4. 5. 6. 7.
A(i,j)—— 第 i 中心所需的第 j 种货物的数量 k(j) —— 第 j 种货物相对于拖车容量的百分比 L(i,t)—— 第 i 中心的任一卸载口到 t 时刻等待车的长度 w(i,t) —— 第 i 中心的任一卸载口到 t 时刻拖车等待总时间 a(i) —— 在 24 小时内到达第 i 中心任一卸载口的拖车数目 t(i1,i2) —— 第 i1 中心到第 i2 中心所需的最短时间
参考文献 [1] 姜启源.《数学建模》.高等教育出版社,北京,1996. [2] 吴翊,吴孟达,成礼智.《数学建模的理论与实践》.国防科技大学出版社,长沙,1999. [3] 王沫然.《MATLAB 5.X 与科学计算》.清华大学出版社,北京,2000.
5
’
假设 λ=
1 t'
; u=
1 2
; w(i,0)=0
;
L(i,0)=0
则:到该卸载口的总车辆数为:
m
∑(A
ai =
最后一辆拖车发出的时间为:
j =1
(i , j )
× k j + 1)
s
m
t '×∑ ( A(i , j ) × k j + 1) t i = ai × t ' =
再过 t’时间该卸载口的等待卸载的队伍长: L(i,t+t’)=L(i,t)+λ t ' -u× t ' =L(i,t)+1∴由上式的递推关系可得: L(i,t)=L(i,0)+ 该卸载口到 t+ t ' 时刻总等待时间: w(i,t+t’)=w(i,t)+2(L(i,t+t’)-1) ∴由上式的递推关系式可得,该卸载口的总等待时间为: w(i,a(i)t’)=w(i,0)+2(L(i,a(i)t’)+…+1-a(i)) =a(i)(1j =1
大学生数学建模练习题

大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。
生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。
公司每天有24小时的机器时间和40小时的人工时间可用。
如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。
每名顾客的平均服务时间是5分钟。
假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。
请计算银行的平均排队长度和顾客的平均等待时间。
三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。
产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。
如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。
水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。
每个水库的供水能力不同,每个城市的需求也不同。
如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。
请考虑季节性因素和趋势,并给出预测的置信区间。
六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。
如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。
如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。
希望这些练习题能够帮助学生在数学建模的道路上更进一步。
数学建模-排队论(二)

基本的排队模型
一、随机服务过程基本组成 二、随机服务记号方案 三、排队论的重要公式
一、基本组成
排队系统
输入 来源
顾客
队列
服务机构 服务完离开
排队系统的三个基本组成部分
输入过程 (顾客到达规律) 排队规则 (顾客按照一定规则排队等待服务) 服务机构 (服务机构的设置,服务台的数量,
服务的方式,服务时间分布等)
队列容量
有限/无限
排队规则
先来先服务(FCFS);后来先服务(LCFS);随 机服务(RSS);有优先权的服务(PS);排队模 型中也用到服务中的“一般规则(GD)”它 包括前三种排队规则。
基本排队模型-服务规则
服务机构可以有一个,也可以有多个; 对于多个服务台可以是并列、串列、混合
排列; 服务方式可以是一个或成批; 服务时间分布:
排队论
(Queueing Theory)
排队等候随机服务现象
商店、超市等收款处排队付款 车站、民航等售票处依次购买车船票 各种生产系统、存储系统、运输系统等
一系列等待现象比比皆是
排队论的基本概念
研究随机的排队服务模型的主要工具是 排队论,排队论又称为随机服务系统理论 是研究由顾客、服务机构及其排队现象所 构成的一种排队系统的理论。
若 时,即 1 此时顾客在 系统中的逗留时间服从参数为 的
指数分布。
三、排队论的重要公式
平均到达率:单位时间 平均队长: 内到达顾客的平均数 平均服务率:单位时间 内被服务顾客的平均数 平均等待时间: 服务强度:/
AB AB AB
A
B
第t时刻有 n-1个顾客
Pn1(t) Pn1(t)
服务率问题、顾客满意问题)
排队论计算港口锚地泊位的图表法及其应用

排队论计算港口锚地泊位的图表法及其应用◎ 王文博 广州港工程管理有限公司摘 要:现有M/M/S排队论模型在用于计算港口锚位数量时采用的公式较为复杂。
本文对基于排队论的港口锚位数量计算方法进行了探讨,给出了快速确定锚位数量的图表方法。
关键词:锚地;锚位数;排队论1.引言港口锚地的合理配布是港口规划、设计和建设过程中的重要环节,而如何确定合适的锚位数量则是确定锚地规模的核心问题。
目前关于锚位数量的研究主要采用两种方法,即静态分析方法和动态分析方法。
静态分析方法是根据锚泊船舶所占用的水域面积进行估算。
静态分析方法没有考虑船舶到达的随机性和船舶占用锚地时间的随机性,在确定锚位数量时,具有一定的局限性。
动态分析方法考虑了船舶到达和船舶占用锚地时间的随机性,可以较好地反映出船舶在港口锚地的行为规律,从而对锚位数量做出较为准确的分析。
目前比较常用的两种动态分析方法是排队论模型和计算机模拟。
本文从排队论的角度对港口锚位数量进行探讨。
2.问题的提出某港区一期码头建有3个5000吨级通用泊位,年吞吐量为146万吨。
港内配套建设有一处锚地,共4个锚位,进出港船舶均在此锚泊,现状锚位数充足,能够满足港区日常运营、调度的需要。
由于近年来该港腹地经济发展迅速,港口货物吞吐量激增,一期码头在空间和通过能力上已经不能满足要求,因此拟新建二期码头,共3个5000吨级通用泊位,设计年吞吐量为165万吨。
二期码头建设后,预计进出港船舶流量将大幅增加,港区现有锚地可能不满足二期码头建设后进出港船舶锚泊需要,可能要对锚地进行扩建。
港区现状可利用水域面积较小,二期码头建设后,将无充足水域进行锚地扩容建设。
如锚地确需扩容,则需采用挖入式方案,以增加可用水域面积。
但挖入式方案存在下列若干缺点:1)占用宝贵土地资源,减少陆域使用面积;2)锚地建设需报海事等主管部门,协调工作量大,周期长,难度大;3)挖入式方案工程投资较大。
因此需对锚地规模进行论证,以确定是否需要对锚地进行扩建。
对排队模型港口系统的思考

数学建模课程论文设计姓名:某某专业:某某学号: xxxxx 指导教师: 某某2010年12月4日对排队模型港口系统的思考摘要:考察一个带有船只卸货设备的小港口,任何时间仅能为一艘船卸货,船只是为了卸货。
码头的设备拥有者关心他们提供服务的质量,并且要评价各种管理模式以确定为了改善服务是否值得增加费用。
不改善的话,船只在港口的等待时间对船主来说是一笔费用,也是顾客对码头设备不满意的来源。
做一些统计可以帮助对服务质量的评价。
本文建立的数学模型就是对排队模型港口系统的浅要分析以求得优化。
关键词:排队模型港口问题蒙特卡罗模拟一、建模思路港口问题中,如果增加港口工作效率会提高客户的满意程度从而增加客流量进而增加效益,但是同时会增加设备投资,如何使投资换来的利润最大化就是问题的关键。
我们可以通过Matlab建模调整各方面参数采用蒙特卡罗模拟算法做这些统计对各种管理模式进行估价。
【1】二、蒙特卡罗模拟蒙特卡洛(Monte Carlo)模拟这个术语是二战时期美国物理学家Metropolis 执行曼哈顿计划的过程中提出来的。
蒙特卡洛模拟是一种通过设定随机过程,反复生成随机序列,计算参数估计量和统计量,进而研究其分布特征的方法。
具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂。
在难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值。
随着模拟次数的增多,其预计精度也逐渐增高。
由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。
蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值。
于是随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均值的方法得到稳定结论。
【2】三、港口排队模拟的Matlab算法:在Matlab软件7.1版本中,如下算法可解决本问题:n=100;between=rand(1,n)*70+10;unload=rand(1,n)*40+30;arrive(1)=between(1);HARTIME=unload(1);MAXHAR=unload(1);WAITIME=0;MAXWAIT=0;IDLETIME=arriv e(1);finish(1)=arrive(1)+unload(1);for i=2:1:narrive(i)=arrive(i-1)+between(i);timediff=arrive(i)-finish(i-1);if(timediff>=0)idle(i)=timediff;wait(i)=0;endif(timediff<0)wait(i)=-timediff;idle(i)=0;endstart(i)=arrive(i)+wait(i);finish(i)=start(i)+unload(i);harbor(i)=wait(i)+unload(i);HARTIME=HARTIME+harbor(i);if(harbor(i)>MAXHAR)MAXHAR=harbor(i);endWAITIME=WAITIME+wait(i);IDLETIME=IDLETIME+idle(i);if(wait(i)>MAXWAIT)MAXWAIT=wait(i);endendHARTIME1=HARTIME/nWAITIME1=WAITIME/nIDLETIME1=IDLETIME/finish(n)MAXWAITMAXHAR四、对排队模型港口系统的具体分析1、假定相邻两艘船到达的时间间隔和每艘船只卸货的时间在它们各自的时间区间内均匀分布,例如两艘船到达的时间间隔可以是15到145之间的任何整数,且这个区间内的任何整数等可能的出现,一艘船只卸货的时间由所卸货的类型决定,在45分钟到90分钟之间变化。
常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。
线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。
通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。
二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。
通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。
三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。
非线性规划模型常见于工程设计、经济优化等领域。
通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。
四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。
动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。
通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。
五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。
排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。
六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。
图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。
七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。
随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。
八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。
数学建模.排队论讲解
P1
(m 1)
(m n 1) (m n)
P2
Pn 1
Pn
Pn 1
2
由状态转移图,可以建立系统概率平衡方程如下: P 1 mP 0, Pn 1 (m n 1)Pn 1 [(m n) ]Pn , 1 n m 1 Pm Pm 1 ,
E (T ) 1
n!
e
1.5 排队系统的常用分布
同样,对顾客服务时间常用的概率分布也是负指数分布, 概率密度为: t
f (t ) e
(t 0)
其中 表示单位时间内完成服务的顾客数,也称平均服务率. 3)爱尔朗分布:
(k ) k t k 1 kt 分布密度函数: f k (t ) (k 1)! e (t 0, k , 0)
N k k
模型的各数量指标参数如下: 1)系统里没有顾客的概率 1 1 N 1 P
0
1 1
1 1 N
2.2 系统容量有限的 M / M / 1/N / 模型
n P P0,n N 2)系统里有n个顾客的概率 n
3)在系统里的平均顾客数
3)服务时间的分布——在多数情况下,对每一个顾客的服务 时间是一随机变量,其概率分布有定长分布、负指数分布、 爱尔朗分布等.
1.3 排队系统的符号表示(Kendall符号)
根据不同的输入过程、排队规则和服务台数量,可以形成 不同的排队模型,为方便对模型的描述,通常采用如下的符 号形式:
X /Y / Z / A/ B /C
式中 表示平均到达率与平均服务率 之比,称为服务强度.
2.1 标准的 M / M / 1 模型
数学建模:第五章 排 队 论
令 T0 = 0 Tn :第 n 个顾客到达时刻, Xn:第 n 个顾客与第 n-1 个顾客到达的时间间隔。 则有
T0 T1 Tn
X n Tn Tn1 , n 1,2,
18
一般假定 { Xn }是独立同分布的,并记其分布函数 为 A( t )。关于{ Xn }的分布,排队论中经常用到的 有以下两种: ➢定长分布(D):顾客相继到达时间间隔为确定 的常数。
Wq(t):时刻 t 到达系统的顾客在系统中的等待时间。
pn(t):时刻 t ,系统中有 n 个顾客的概率。
44
pn(t)
过渡状态
平稳状态
t
45
上述指标一般都是和系统运行的时间有关的随机变量 ,求这些随机变量的瞬时分布一般都是很困难的。 相当一部分排队系统,在运行了一定时间后,都会趋 于一个平稳状态(或称平衡状态),平稳状态下这些 指标和系统所处的时刻无关。
19
➢Poisson流(M):顾客相继到达时间间隔的密度 函数为:
e t
a(
2. 排队
损失制排队系统
有限排队
队长有限排队系统
排队
混合制排队系统 等待时间有限排队系统
逗留时间有限排队系统 无限排队(等待制排队系统)
21
(1)有限排队
有限排队:排队系统中的顾客数是有限的,即系统 的空间是有限的,当系统被占满时,后面再来的顾 客将不能进入排队系统。
顾客相继到达时间 单个服务台
间隔为负指数分布
顾客源无限
M / M / 1 / ∞ / ∞ / FCFS
服务时间为负指数
分布
系统容量为无限
先到先服务
39
X/Y/Z/A/B/C
省略后三位
(完整word版)数学建模 港口问题_排队论
排队模型之港口系统本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。
好。
关键词:问题提出:一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。
船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。
一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。
那么,每艘船只在港口的平均时间和最长时间是多少?若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少?卸货设备空闲时间的百分比是多少?船只排队最长的长度是多少?问题分析:排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。
【1】M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,//1前面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。
蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。
该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
(2)排队论研究的基本问题1.排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。
集装箱码头集卡作业模式比较及其建模与仿真
集装箱码头集卡作业模式比较及其建模与仿真高 玮 周 强 摘 要:利用排队论对集装箱码头集卡作业模式进行了研究,建立了仿真模型,并对两种集卡作业模式进行了试验研究。
试验结果表明,采用新的作业模式,装卸效率能显著地提高。
关键词:集装箱码头;集卡;作业模式;单路排队;多路排队;仿真 Abstract:This paper researches two operational modes of trucks in container port and establishes simulation mod2 els to compare the two operational modes.The result indicates that the new operational mode Leads to a higher efficiency. K ey w ords:container port;truck;operational mode;single queue;multiple queues;simulation1 引言随着我国集装箱头吞吐量的快速增长,集装箱码头对装卸效率要求越来越高。
当国内众多港口在兴建集装箱枢纽港和努力提高港口吞吐量的时候,人们往往乐于追求先进的设施设备,而忽视高效率的基础———生产组织管理,因为有形的先进硬件比无形的管理更加直观,更能让人们接受。
但硬件设施设备属于一种长期的投资,投入成本高,回收慢。
如何在现有装卸技术水平和硬件设施设备的基础上实现更高的作业效率,已成为近阶段港口企业发展所面临的重要问题。
本文利用排队论对集装箱码头集卡作业模式进行研究,提出突破“作业路”的界限,并从理论和计算机仿真中分析其优越性。
2 突破“作业路”的束缚所谓“作业路”指由一台岸桥所对应的水平运输机械、堆场作业机械组成的装卸运输作业线。
传统模式为每条作业路固定配置劳动力和作业机械,认为这样既便于管理,又打破“大锅饭”,便于财务考核。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排队模型之港口系统本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。
好。
关键词:问题提出:一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。
船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。
一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。
那么,每艘船只在港口的平均时间和最长时间是多少?若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少?卸货设备空闲时间的百分比是多少?船只排队最长的长度是多少?问题分析:排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。
【1】M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,//1前面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。
蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。
该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
(2)排队论研究的基本问题1.排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。
3.最优化问题:即包括最优设计(静态优化),最优运营(动态优化)。
【3】 为了得到一些合理的答案,利用计算器或可编程计算器来模拟港口的活动。
假定相邻两艘船到达的时间间隔和每艘船只卸货的时间区间分布,加入两艘船到达的时间间隔可以是15到145之间的任何数,且这个区间内的任何整数等可能的出现。
再给出模拟这个系统的一般算法之间,考虑有5艘传至的假象情况。
对每艘船只有以下数据: 因为船1在时钟于t=0分钟计时开始后20分钟到达,所以港口卸货设备在开始时空空闲了20分钟。
船1立即开始卸货,卸货用时55分,其间,船2在时钟开始计时后t=20+30=50分中到达。
在船1与t=20+55=75分钟卸货完毕之前,船2不能开始卸货,这意味着船2在卸货前必须等待75-50=25分钟。
在船2开始卸货之前,船2于t=50+15=65分钟到达,因为船2在t=75分钟开始卸货,并且卸货需45分钟,所以在船2与t=75+45=120分钟卸货完毕之前,船3不能开始卸货。
这样,船3必须等待120分钟。
船4在t=65+120=185分钟之前没有到达,因此船3已经在t=120+60=180分钟卸货完毕,港口卸货设备空闲185-180=5分钟,并且,船4到达后立即卸货。
最后,在船4于t=185+75=260分钟卸货完毕之前,船5在t=185+25=210到达,于是船5在开始卸货前等待260-210=50分钟。
模型建立:对于问题中存在的服务系统,建立排队论模型,在仅能为一艘船通过是一个标准的//1M G 模型:所谓//1M G 模型,就是输入过程为泊松流时,服务时间为任意的条件之下相邻两艘船到达的时间间隔 20 30 15 120 25 卸货时间5545607580的,服务机器只有一个得时候。
对于//1M G 模型,服务时间T 的分布式一般的,(但是要求期望值()E T 和()Var T 方差都存在),其他条件和标准的//1M M 型相同。
为了达到稳态1ρ<还是必要的,其中有()E T ρλ=。
单服务员的排队模型设:(1) 船只到来间隔时间服从参数为的指数分布.(2) 对船只的服务时间服从[4,15]上的均匀分布. (3) 排队按先到先服务规则,队长无限制. 系统的假设:(1) 船只源是无穷的; (2) 排队的长度没有限制;(3) 到达系统的船只按先后顺序依次进入服务, 即“先到先服务”。
符号说明w :总等待时间;c i :第i 个顾客的到达时刻;b i :第i 个顾客开始服务时刻;e i :第i 个顾客服务结束时刻;x i :第i-1个顾客与第i 个顾客之间到达的间隔时间;y i :对第i 个顾客的服务时间 c i =c i-1+ x i e i =b i +y i b i =max(c i ,e i-1)图9-2单服务台单队系统……船只到达进入队列服务台接受服务船只离去模拟 框图模型检验:表1 100艘船港口和系统的模拟结果上图为一艘船呆在港口的平均时间上图为一艘船呆在港口的最长时间一艘船的平均等待时间上图为一艘船的最长等待时间上图为一艘船的最长等待时间以上就是对港口问题的具体分析,其实港口问题还可以从船只的排队角度出发,我们还可以对多个港口通行做相应的模拟试验,让船主尽量减少等待时间且港口卸货设备的利用率达到最高,从而是港口的主人获得更大的利润。
从排队角度来解决问题,可以使问题的广度增加,选秘书问题就是一个很典型的例子,可以从排队角度解决,如果用我在文章中应用的方法来解决也是可以的,这仅仅是一个港口的小问题,甚至可以说是一个非常简单的问题,但是已经让我感觉到了数学的美,在老师的引导下慢慢接近一种抽象的美,在写论文的这几天中,数据的整理和分析是最值得享受的时刻,在Excel里输入自己的数据,是一种忐忑的感觉,因为在那么多的数据面前,我真的不知道将会发生什么,拟合的过程就更是有意思了,一次一次的尝试,一次一次的比较,在这个过程中,如果有一点点的进步都会让我兴奋,数学建模在生活中处处存在,如果真的能够掌握这个本领,生活一定会变得简单而精彩!参考文献:(1)《运筹学》教材编写组编. 运筹学. 北京:清华大学出版社,2008(2)Jerry Banks,John ,Barry L Nelson 等着. 离散事件系统仿真.北京:机械工业出版社,2007(3) <<排队论模型与蒙特卡罗仿真>>附录一编程如下:clearcs=100;for j=1:csw(j)=0;i=1;x(i)=exprnd(10);c(i)=x(i);b(i)=x(i);while b(i)<=480y(i)=unifrnd(4,15);e(i)=b(i)+y(i);w(j)=w(j)+b(i)-c(i);i=i+1;x(i)=exprnd(10);c(i)=c(i-1)+x(i);b(i)=max(c(i),e(i-1)); endi=i-1;t(j)=w(j)/i;m(j)=i;endpt=0;pm=0;for j=1:cspt=pt+t(j);pm=pm+m(j);endpt=pt/cs pm=pm/cs 附录二排队论中一个感兴趣的问题时,当输入过程是Possion 流时,顾客相继到达的间隔时间T 服从什么规律。
定理 设(){},0N t t ≥是具有参数λ的泊松过程,即(){}(){},0,1,2,,0,,1!nt n t P N t n e n t T n n λλ-===>≥L 是对应的时间间隔序列,则随机变量()0,1,2,,0nT n t =>L 是独立同分布的,且服从均值为1λ-的负指数分布,即()-tet 00 t 0f t λλ⎧≥⎪=⎨<⎪⎩ 。
证明 因为1T 是Possion 过程中第一个顾客到达的时间,所以时间{}1T t ≥等价于[)0,t 内没有顾客到达。
故{}(){}()0100!t t t P T t P N t e e λλλ--≥====,进而可得{}{}111t P T t P T t e λ-<=-≤=所以1T 是服从均值为1λ-的负指数分布。
1、利用Possion 过程的独立、平稳增量性质,得{}[){}[){}()()(){}()(){}(){}2112,, 000 t P T t T s P t t s T s P t t s Possion P N t s N s P N t N Possion e P T t λ-≥==+==+=+-==-===≥在内没有顾客到达在内没有顾客到达过程的独立性过程的平稳增量性质即{}{}2211tP Tt P T t e λ-<=-≥=-,故2T 也是服从均值为1λ-的负指数分布。
2、对于任意的1n ≥和1,,0n t s s ≥L 有{}()(){}()(){}11221-111-1,,,000tn n n n n P T t T s T s T s P N t s s N s s P N t N e λ--≥====+++-++==-==L L L即 {}tn1e P Tt λ-<=-,所以对任一()1nT n ≥,它都服从均值为1λ-的负指数分布。
证毕。