(_数学建模)排队论模型
飞机排队模型_数学建模 ppt课件

PPT课件
4
模型设计与可行性分析
如果在t0时刻仅有一架飞机或没有要求起飞的飞机,则机场就
直接安排其起飞或闲置 。因此设在t0有n架飞机同时要求起飞。
由假设1,可将n架飞机起飞所需要的总时间分成n个等长的小时 间段(如∆长)。下面如何安排哪架飞机在哪个时段上起飞要依 赖于实际航班的花费和顾客的满意程度来确定。
MCM-89题机场安排最优排队调度问题
机场通常是用“先到先服务”的原则来分配飞机跑道,即 当飞机准备好离开登机口时,驾驶员电告地面控制中心,加入 等候跑道的队伍。假设控制塔可以快速在线数据库中得到每架 飞机的如下信息:
1、预定离开登机口的时间; 2、实际离开登机口的时间; 3、机上乘客人数; 4、预定在下一站转机的人数和转机时间; 5、到达下一站的预定时间。
6
即第一架飞机排第2个窗口起飞,第2架排第一个窗口起飞…, 最后一架排最后起飞。并由上表的安排结构,知道(2)中的距 阵满足每行中仅有一个元素为1,即每个窗口上仅有一架飞机占 用;该阵每列中也有一个元素为1,即每架飞机占用n个窗口中的
一个。即变量Xij须满足约束:
n
xij =1
j 1
i 1, 2,..., n
不必对飞机实地重排。并且飞机须在为其指定的小时间段上
才准许离开自己的通道口P。PT课件
3
4.设 是一架飞机要按时到达目的地所必须起飞的最
晚时限,并假设如果一架飞机在 时限以后才起飞,
则它必须以最大安全速度飞完全程。(而在 以内起
飞者可着情加速)。
5.如果一架飞机在时限 以后起飞,则该机上所有需
排队论模型

排队论模型随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。
排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。
随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。
随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。
排队论模型及其在医院管理中的作用每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。
排队论就是对排队进行数学研究的理论。
在医院系统内,“三长一短”的现象是司空见惯的。
由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。
但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。
一、医院系统的排队过程模型医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。
如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。
图1 医院系统的多级排队过程模型二、排队系统的组成和特征一般的排队系统都有三个基本组成部分:1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。
2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。
排队的列数还分单列和多列。
3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。
数学建模:排队论2

无顾客
无顾客
n
无顾客 1 个顾客
n
1 个顾客 无顾客
n
1 个顾客 1 个顾客
n
9
上述四种情况发生概率分别为:
情况
时刻 t 顾客数
区间[ t,t + △t ) 到达顾客 离开顾客
概率
A
n
无顾客 无顾客 pn (t )(1 t )(1 t )
B
n+1
无顾客 1 个顾客 pn1(t )(1 t )t
时刻 t 顾客数
0 1 0
区间[ t,t + △t )
时刻 t + △t
到达顾客 离开顾客 顾客数
无顾客
无顾客
0
无顾客 1 个顾客
0
1 个顾客 1 个顾客
0
16
上述三种情况发生概率分别为:
情况
时刻 t 顾客数
区间[ t,t + △t ) 到达顾客 离开顾客
A
0
无顾客
无顾客
B
1
无顾客 1 个顾客
D
0
12
dpn (t ) dt
pn1(t )
pn1(t )
(
)
pn (t )
解上述方程的解是很困难的。这里只研究系统达到平
稳状态的情况,即系统运行了无限长时间之后,状态
概率分布不再随时间变化,显然此时 dpn (t ) 0
dt
13
由此可得,当 n≥1 时:
pn1 pn1 ( ) pn 0,n 1
第四节 单服务台负指数分 布排队系统
讨论单服务台的排队系统,并设定: 顾客到达过程服从泊松分布。 顾客服务时间服从负指数分布。
2
数学建模排队论

数学建模排队论
排队论是一种数学理论,它研究的是人们排队等待服务或交通等系统的行为模式。
在排队论中,数学建模被广泛应用于分析和优化这些系统的性能和效率。
排队系统的基本构成包括到达过程、服务过程和队列规则。
到达过程指的是顾客或流量进入系统的过程,它可以用概率分布来描述。
服务过程指的是系统为每个顾客提供服务的时间,同样也可以用概率分布来描述。
队列规则则规定了顾客在等待队列中的顺序以及他们被服务的顺序。
在排队系统中,我们通常关注两个主要的性能指标:平均等待时间和平均队列长度。
平均等待时间指的是顾客在进入系统后需要等待多长时间才能接受服务的时间平均值,而平均队列长度则指的是在某个时间点等待服务的顾客数量的平均值。
为了分析和优化排队系统的性能,我们可以使用数学模型进行建模。
其中最常用的模型包括M/M/1模型、M/M/c模型、M/G/1模型等。
这些模型分别描述了不同的到达过程、服务过程和队列规则,并且可以计算出各种性能指标。
例如,M/M/1模型表示到达过程和服务过程都是泊松分布,并且只有一个服务窗口。
在这种情况下,我们可以使用该模型计算出平均等待时间和平均队列长度,并比较不同服务率下的性能指标。
M/M/c模型则表示到达过程和服务过程都是泊松分布,但是有c个服
务窗口。
在这种情况下,我们可以研究如何合理分配服务窗口的数量以优化系统的性能。
数学建模排队论是一种非常有用的工具,它可以用来分析和优化人们排队等待服务或交通等系统的行为模式。
通过建立数学模型,我们可以更好地理解这些系统的性能和效率,从而为实际应用提供指导。
数学建模-排队论(二)

基本的排队模型
一、随机服务过程基本组成 二、随机服务记号方案 三、排队论的重要公式
一、基本组成
排队系统
输入 来源
顾客
队列
服务机构 服务完离开
排队系统的三个基本组成部分
输入过程 (顾客到达规律) 排队规则 (顾客按照一定规则排队等待服务) 服务机构 (服务机构的设置,服务台的数量,
服务的方式,服务时间分布等)
队列容量
有限/无限
排队规则
先来先服务(FCFS);后来先服务(LCFS);随 机服务(RSS);有优先权的服务(PS);排队模 型中也用到服务中的“一般规则(GD)”它 包括前三种排队规则。
基本排队模型-服务规则
服务机构可以有一个,也可以有多个; 对于多个服务台可以是并列、串列、混合
排列; 服务方式可以是一个或成批; 服务时间分布:
排队论
(Queueing Theory)
排队等候随机服务现象
商店、超市等收款处排队付款 车站、民航等售票处依次购买车船票 各种生产系统、存储系统、运输系统等
一系列等待现象比比皆是
排队论的基本概念
研究随机的排队服务模型的主要工具是 排队论,排队论又称为随机服务系统理论 是研究由顾客、服务机构及其排队现象所 构成的一种排队系统的理论。
若 时,即 1 此时顾客在 系统中的逗留时间服从参数为 的
指数分布。
三、排队论的重要公式
平均到达率:单位时间 平均队长: 内到达顾客的平均数 平均服务率:单位时间 内被服务顾客的平均数 平均等待时间: 服务强度:/
AB AB AB
A
B
第t时刻有 n-1个顾客
Pn1(t) Pn1(t)
服务率问题、顾客满意问题)
( 数学建模)排队论模型

导出 pn (t ) 满足的微分方程组
p0 (t t ) p0 (t )(1 t ) p1 (t ) t (1 t ) o(t ) p0 (t t ) p0 (t ) p0 (t ) t p1 (t ) t o( t )
(1)流具有平衡性 对任何 a 0和 0 t1 t2 tn , x(a ti ) x(a ) (1 i n) 的分布只取决于 t1 , t2 , , tn 而与 a 无关。 (2)流具有无后效性 对互不交接的时间区间序列 ai , bi (1 i n) , x (bi ) x ( ai ) 是一组相互独立的随机变量。 (3)流具有普通性 Prx(a t ) x(a) 1
Prx(t ) k
E x (t ) t
k!
e
(k 0,1,2,)
故参数λ表示单位时间内事件发生次数的平均数。
2.Poisson流的发生时间间隔分布
当流(过程) x(t ) : t 0 构成Poisson过程时,就称 为Poisson流。设流发生的时刻依次为 t1 , t2 , , tn ,…, 发生的时间间隔记为 n tn tn1 (n 1,2,) ,其中t0 0 。
1.最简单流与Poisson过程
记随机过程{x(t):t≥0}为时间[0,t]内 流(事件)发生的次数,例如对于随机到来某电话交换 台的呼叫,以x(t)表示该交换台在[0,t]这段时 间内收到呼叫的次数;若是服务机构,可以用x(t) 表示该机构在[0,t]时间内来到的顾客数。
最简单流应 x(t ) : t 0 具有以下特征称 5 3二、单通道等待制排队问题
(M/M/1排队系统)
对于单通道等待制排队问题主要讨论输入过 程为Poisson流,服务时间服从负指数分布,单服 务台的情形,即M/M/1排队系统。
常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。
线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。
通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。
二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。
通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。
三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。
非线性规划模型常见于工程设计、经济优化等领域。
通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。
四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。
动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。
通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。
五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。
排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。
六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。
图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。
七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。
随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。
八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。
计算机网络的排队论模型

计算机网络的排队论模型计算机网络的排队论模型是一种理论模型,用于研究计算机网络中传输数据时产生的排队现象和性能表现。
排队论模型可以帮助我们理解计算机网络中的数据传输过程,优化网络性能,提高网络的吞吐量和响应速度。
在本文中,我们将介绍计算机网络排队论模型的基本概念、分类和应用。
一、排队论模型的基本概念1.1 排队系统排队系统是指在一个服务设施之前等待服务的顾客队列。
在计算机网络中,排队系统可以看作是数据包在网络节点之间传输时产生的排队现象。
排队系统包括输入过程、服务机构和排队规则。
1.2 排队论模型排队论模型是对排队系统进行数学建模和分析的方法。
排队论模型通常包括顾客到达过程、服务时间分布、队列容量和服务规则等因素。
排队论模型可以帮助我们预测排队系统的性能表现,如平均等待时间、系统繁忙度和响应时间等指标。
二、排队论模型的分类2.1 M/M/1排队模型M/M/1排队模型是最简单的排队论模型之一,其中"M"代表顾客到达过程和服务时间满足指数分布,"1"代表只有一个服务设施。
M/M/1排队模型可以用来分析单一服务节点的性能表现,如平均等待时间和系统繁忙度等指标。
2.2 M/M/C排队模型M/M/C排队模型是相对复杂一些的排队论模型,其中"C"代表有C个服务设施。
M/M/C排队模型可以用来分析多个服务节点的性能表现,如系统的吞吐量和响应时间等指标。
2.3 其他排队模型除了M/M/1和M/M/C排队模型,还有很多其他类型的排队论模型,如M/M/∞排队模型、M/G/1排队模型和多类别排队模型等。
每种排队模型都有其独特的特点和适用范围,可以根据实际情况选择合适的模型进行性能分析。
三、计算机网络排队论模型的应用3.1 网络流量建模计算机网络排队论模型可以用来建模网络中的数据传输过程,分析网络节点的繁忙度和数据包的平均等待时间。
通过对网络流量进行建模,可以优化网络拓扑结构、改进路由算法和提高网络性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N
pn
, 1
n0
1
p0
N 1
(1
)
1 N1
1 1
N
n p0 1
n0
1
pn
N 1
(1
)
n
1 N1
1 1
系统的各项指标
N
L
N
npn
n0
2
(N 1) N1
1
1 N1
1 1
Lq
N
(n
n0
1) pn
N 2
N N 1
N N1
1 1 N1
1 1
N 1
称为Poisson过程,最简单流亦称Poisson流,特别
取a 0 得
Prx(t) k (t)k et
k!
Ex(t) t
(k 0,1, 2, )
故参数λ表示单位时间内事件发生次数的平均数。
2.Poisson流的发生时间间隔分布
当流(过程) x(t) :t 构0成Poisson过程时,就称为
pn p0
(t (t
) )
pn1(t,) 有( p0 (t) p1(t)
)
pn
(t
)
pn1
(t
)
n 1,2,, N 1
对于n=N,
pN (tபைடு நூலகம் t) pN1(t)t pN (t)(1 t) o(t)
pN (t) pN1(t) pN (t)
即 满Pn (足t) 微分方程
pn (t) pn1(t) ( ) pn (t) pn1(t)
Poisson流。设流发生的时刻依次为 t1,t2,,…,,tn 发生的时间间隔记为 n tn tn1(n,1其,2,中) 。 t0 0
定理2 事件流 x(t) :为t P0oisson流的充要条件是
x(t) :t的 0流 发生时间间隔 相互 n独 立,且服从相同的
负指数分布,即
Pr n
t
1 0
布是什么。
(2)排队规则
排队规则是指到达的顾客以怎样的规则接受服务。 1)损失制:顾客到达,服务台不空立即离去,另 求服务。 2)等待制:顾客到达,排队等待。对等待制服务 可分为:先到先服务,后到先服务,优先服务,随机 服务,成批服务等。 3)混合制:在现实生活中,很多服务系统介于损 失制和等待制之间,当顾客到达时,服务台不空就排 队,若排队的位置已满就离去。
多通道就是多服务台,这里主要讨论M/M/c/
∞排队系统问题,即输入、输出与M/M/1/∞相
同,这里有c个相互独立工作,且服务速率相同的服
务台,这时整个系统的服务能力为cμ。
当 时(c,) 系1 统有稳定解
pn
1( n!
)n
p0
1
( )n
cncc!
p0
n
0,1,, c 1 n c, c 1,
最简单流应 x(t) :t 具 0有以下特征称
(1)流具有平衡性
对任何 a 和0 0 t1 t,2 tn x(a ti ) x(a)
的分布只取决于 t1,t2,而,t与n 无关a。
(2)流具有无后效性
(1 i n)
对互不交接的时间区间序列 ai ,bi (1 i, n)
x(bi ) 是x(a一i ) 组相互独立的随机变量。
E (T忙 )
1
由此可见,一个忙期中所服务顾客的平均数为
E(T忙 )
1
1
(二)系统容量有限的模型
即 为 M/M/1/N 排 队 系 统 。 考 虑 排 队 系 统 的
容量为N,即若系统已有N个顾客,则再来新顾客
即被拒绝进入系统。对于n=N,与M/M/1/∞
相P类n (似t) ,Prx(t) n
L
(1
pN
)
2
1
N N
(1 N )
1 1
N 1
q
Lq
(1 pN )
2
N N
1 1
(1 N )
由于有容量的限制,顾客实际进入系统的速率不是
λ,而是
e,e(有效(1到p达N ) 率),因而Little公式成立:
L e
Lq eq
三、多通道等待制排队问题
(M/M/c排队系统)
当 时t 有0
p0(t) p0 (t) p1(t)
对 n1
pn (t t) pn1(t)t pn (t)(1 t)(1 t) pn1(t)t o(t)
pn (t) pn1(t) ( ) pn (t) pn1(t)
故pn (t满)足的微分方程组
pn (t) pn1(t) ( ) pn (t) pn1(t)
• 等待时间是指一顾客从进入系统起到接受服务时 所花费的时间。
(3)忙期
忙期是指从顾客到达空闲服务机构起到服务机构再 次为空闲为止的这段时间,即服务机构连续繁忙的时 间长度。 这是服务机构最关心的数量指标,因为它直接关系到 服务员的工作强度,与忙期相对应的是闲期,即为服 务机构连续保持空闲的时间长度。显然,在排队系统 中,忙期与闲期是交错出现的。
服务规则
服 离去 务 机 构
排队系统
在排队论中,我们把要求服务的对象称为“顾 客”,而将从事服务的机构或人称为“服务台”。 在顾客到达服务台时,可能立即得到服务,也可 能要等待到可以利用服务台的时候为止。
排队系统中的“顾客”与“服务台”这两个名词 可以从不同的角度去理解。
排队系统
上、下班的工人乘公共汽车 病人到医院看病 高炮击退敌机
p0
(t
)
p0
(t
)
p1
(t
)
n 1,2,
对于系统的稳定状态情形, pn (与t)t无关,
故 pn (t), 0记
pn,从pn而(t)有
pn1 ( ) pn pn1 0 p0 p1 0
n 1,2,
对于上述差分方程,利用归纳法不难求得
pn
( )n
p0
由于 p构n成概率分布,则
et
t0 t0
二、单通道等待制排队问题
(M/M/1排队系统)
对于单通道等待制排队问题主要讨论输入过程 为Poisson流,服务时间服从负指数分布,单服务 台的情形,即M/M/1排队系统。
(一)标准模型
即为M/M/1/∞排队系统。所谓标准模型, 就是顾客的输入流是参数为λ的Poisson流,每个 顾客的服务时间是相互独立的且服从参数为μ的负 指数分布,单个服务台且系统的容量无限(排队模 型分类第四个表示系统中允许的最大顾客数)。
机器发生故障需要维修
顾客
工人 病人 敌机 机器
服务台
公共汽车 医生 高炮 修理工
排队系统队列除了有形的还有无形的。
在上述顾客-服务台组成的排队系统中,顾客到来 的时刻与服务台进行服务的时间一般来说是随不同 的时机与条件而变化的,往往预先无法确定。因此, 系统的状态是随机的,故而排队论也称随机服务系 统。
1.系统的Markov特性
考虑随机过程 x(t) :t, 其0 中 为时x刻(t) 时排队系t 统
中的顾客数。
对于任何 0 t1 t条2 件概 t率n
Pr x(tn ) in x(t1) i1, x(t2 ) i2,, x(tn1) in1
由于输入为Poisson流,服务时间服从负指数分布,
从而级数
(
必)n须收敛,故有
n0
,pn 1
n0
。 1
记 为 排 队系统的来往强度,当
时1 ,由 p可n 得1 n0 pn n (1 ) n 0,1,2,
M/M/1/∞系统的数量指标
(1)稳定状态下系统中顾客数的数学期望的定义为
L npn n0
被称为系统中顾客的平均数,简称平均队长。
q
1
1
( )
Little公式
L与, Lq 是衡,量q 排队系统质量的很重要的效率度量
上式称为LittleL公式。
Lq q
表明系统中的顾客数,等于一个顾客在系
统时间L 内来 到的新的顾客数;
表明系统中处于等待状态的顾客数,等于一
个顾L客q 的等q待时间内来到的新顾客数。
(3)稳定状态下忙期的数学期望
k阶爱尔朗(Erlang)分布;GI——一般相互独立的随 机分布,G——一般随机分布。这里主要讨论M/M/ 1,M/M/C。
2.排队模型的数量指标
(1)队长
• 队长是指系统中的顾客数(包括排队等候和正在 接受服务的顾客数);
• 等待队长是指系统中等待服务的顾客数。
(2)逗留时间
• 逗留时间是指一顾客从进入系统起一直到接受服 务后离开系统为止所花费的时间;
p0
c1 n0
1 ( n!
)n
1 (c c!
)( c c
1
)
系统指标
Lq
(c
( )c 1)!(c )2
p0
L
Lq
q
Lq
因而Little公式成立:
q
1
L
L
Lq q
2.排队系统的组成和特征
各式各样的排队现象呈现的基本特征:排队系统由 输入过程、排队规则及服务机构三部分组成。
(1)输入过程
输入过程就是顾客按怎样的规律到达 • 包括顾客总体数,是有限的还是无限的; • 顾客到达的方式,是成批到达(每批数量是随机的
还是确定性的)还是单个到达; • 相继到达的顾客(或批或单个)之间的时间间隔的分
p0
(t
)
p0
(t
)
p1
(t
)
pN (t) pN1(t) pN (t)
n 1,2,, N 1
在稳态情况下, pn ,pn (t) ,pn则(t) 0
pn1 ( ) pn pn1 0 p0 p1 0 pN1 pN 0