求极限

合集下载

极限求法总结

极限求法总结

极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。

在求解极限的过程中,我们常常会使用一些常用的技巧和方法。

下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。

一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。

例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。

这种方法适用于函数在该点有定义且不产生未定义结果的情况。

二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。

主要有三种情况:有理化分母、有理化分子和有理化共轭。

1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。

例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。

接着我们可以直接代入计算。

2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。

例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。

接着我们可以直接代入计算。

3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。

例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求极限的12种方法

求极限的12种方法

求极限的方法
1、利用极限的四则运算和幂指数的运算法则
2、利用函数的连续性
3、利用变量替换
4、利用等价无穷小
5、利用洛必达法则
6、分别求左右极限
7、把数列极限转化为函数极限
8、利用夹逼定理(极限存在两定理之一)
1)利用简单的放大、缩小函数法
2)利用不等式的性质进行放大或缩小【根据定义不等式求极限】
3)对积分的极限可以利用积分的性质进行放大缩小
9、利用递归数列先证明极限的存在(常用单调数列必有界),
再利用递归关系求出极限。

10、利用定积分求和式求极限
11、利用泰勒公式
12、利用导数定义求极限
附加:
1、 利用函数极限求数列极限 Example:
(1) n n
n ln lim +∞
→ 解:记:x x
n n x n ln ln lim lim +∞→+∞→= =0。

求极限的几种方法

求极限的几种方法

求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。

对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。

一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。

通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。

当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。

二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。

当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。

三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。

其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。

常用的等价无穷小有:指数、对数、三角函数等。

四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。

其基本思想是将函数的极限转化成求导数的极限。

通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。

五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。

泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。

通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。

六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。

常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。

七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。

求极限的常用方法

求极限的常用方法
ex0 x
e e lim x0
1ex xex
2
故,原式 e1.
首页
上页
返回
下页
结束
六、利用罗比达法则求极限
例18
lim( e x
e2x
e3x
1
)x.
x0
3
lim 1 ln( ex e2 x e3 x )
e 解:原式 x0 x
3

1 ex e2 x e3x
lim
x0
x
ln(
3
)
ln(ex e2 x e3 x )ln 3
例14 lim x ln x
x0
解:原式
lim x0
ln x x1
lim x0
x1 x 2
lim (x) x0
0
注(1) 0 型不定式极限可经
过把一项旳倒数放到分母上变
为 0, 之一. 0
(2) lim xx 1. x0
例15 lim xxx 1
x0
解:原式 lim e(xx 1)ln x
x0
lim e(exln x 1)ln x
x0
lim (ex ln x 1) ln x
x0
e lim xln2 x e e x0
lim
x0
ln2 x x1
e e lim x0
2ln x x1
2 lim x ln x
x0
e0 1
首页
上页
返回
下页
结束
六、利用罗比达法则求极限
1
例16 lim (cot x)ln x . x0 lim 1 ln cot x
x0 x sin x
解:原式
lim esin x (exsin x 1) x0 x sin x

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

求极限的方法

求极限的方法

求极限的方法在数学中,求极限是一种重要的技巧,用于分析函数在某个点的行为。

下面介绍几种常见的求极限的方法。

1. 代入法:当函数在某个点处存在有限的定义时,可以直接将该点的值代入函数中得到极限值。

例如,求函数f(x) = 2x在x=3处的极限,可以将x=3代入函数中,得到f(3) = 2 * 3 = 6。

2. 因式分解法:当函数可以进行因式分解时,可以利用因式分解的性质来求解极限。

例如,求函数g(x) = (x^2 - 4)/(x - 2)在x = 2处的极限,可以先进行因式分解得到g(x) = (x + 2),然后将x = 2代入函数中,得到g(2) = 2 + 2 = 4。

3. 夹逼定理:当函数的极限难以直接求解时,可以利用夹逼定理来求解。

夹逼定理的核心思想是找到两个函数,它们的极限分别趋近于所求极限,然后利用夹逼定理来得到所求极限的值。

例如,求函数h(x) = sin(x)/x在x = 0处的极限,可以通过夹逼定理,将h(x)夹在函数i(x) = 1和函数j(x) = x之间,显然,i(x)和j(x)的极限分别为1和0,因此根据夹逼定理,h(x)的极限为1。

4. 泰勒展开法:当函数的极限无法通过以上方法求解时,可以利用泰勒展开来近似计算极限。

泰勒展开是将函数在某一点处展开成无穷项幂级数的形式,利用一定数量的项来近似原函数。

例如,求函数k(x) = e^x在x = 0处的极限,可以利用泰勒展开公式e^x = 1 + x + x^2/2! + x^3/3! + ...,将x = 0代入泰勒展开公式中,得到k(0) = e^0 = 1。

以上是几种常见的求极限的方法,根据具体问题的不同,可以选用不同的方法来求解极限。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求极限 预备知识:§1.2 极限A 基本内容一、极限的概念与基本性质 1、极限的定义(1)数列极限: A a n n =∞→lim ⇔0)( ,0>∃>∀εεN ,当N n >时ε<-||A a n .任给0>ε,存在正整数N ,当N n >时,就有ε<-A x n 。

(2)函数极限: ① ()A x f x x =→0lim ⇔任给0>ε,存在正数δ,当δ<-<00x x 时,就有()ε<-A x f②()A x f x x =+→0lim (用()00+x f 表示()x f 在0x 的右极限值)⇔ 任给0>ε,存在正数δ,当δ<-<00x x 时,就有()ε<-A x f③()A x f x x =-→0lim (用()00-x f 表示()x f 在0x 的左极限值)⇔ 任给0>ε,存在正数δ,当00<-<-x x δ时,就有()ε<-A x f其中()00+x f 称为()x f 在0x 处右极限值,()00-x f 称为()x f 在0x 处左极限值。

注:函数极限存在的充要条件:()00f x +=()00-x f 。

④ ()A x f x =∞→lim ⇔任给0>ε,存在正数X ,当X x >时,就有()ε<-A x f ⑤()A x f x =+∞→lim ⇔任给0>ε,存在正整X ,当X x >时,就有()ε<-A x f ⑥()A x f x =-∞→lim ⇔任给0>ε,存在正数X ,当X x -<时,就有()ε<-A x f 注:()A x f x =∞→lim ⇔()lim x f x →+∞=()A x f x =-∞→lim2、极限的基本性质(1) (唯一性)设()A x f =lim ,()B x f =lim ,则B A = (2)(不等式性质)设()A x f =lim ,()B x g =lim若x 变化一定以后,总有()()x g x f ≥,则B A ≥ 反之,B A >,则x 变化一定以后,有()()x g x f > (注:当()0≡x g ,0=B 情形也称为极限的保号性) (3)(局部有界性)设()A x f =lim则当x 变化一定以后,()x f 是有界的。

二、极限的四则运算及幂指运算 (1)四则运算设()A x f =lim ,()B x g =lim 则(1)()()[]B A x g x f +=+lim (2)()()[]B A x g x f -=-lim (3)()()[]B A x g x f ⋅=⋅lim (4)()()BAx g x f =lim()0≠B 注:(1))()(limx g x f 存在,;0)(lim 0)(lim =⇒=x f x g (2) ;0)(lim 0)(lim ,0)()(lim=⇒=≠=x g x f A x g x f (2)幂指函数的极限设()lim 0f x A =>,()B x g =lim 则 ()[]()B x g A x f =lim ()0>A三、极限存在准则 1、夹逼准则若存在N ,当N n >时,n n n z x y ≤≤,且,lim lim a z y n n n n ==∞→∞→则.lim a x n n =∞→1、 单调有界准则单调有界数列必有极限。

四、两个重要极限公式 (1) 1sin lim0=→xxx(2) 1lim(1)x x x →+=e xxx =+∞→)11(lim 五、无穷小与无穷大1、无穷小、无穷大的定义若()0lim =x f ,则称()x f 为无穷小()∞=x f lim ,则称()x f 为无穷大。

注:(1)无穷小、无穷大与x 的变化过程有关,01lim=∞→x x ,当∞→x 时,x1为无穷小,而0x x →或其它时,x1不是无穷小(2)无穷大与无界的关系:无穷大量⇒无界变量,反之不成立。

2、无穷小与无穷大的关系 在x 的同一个变化过程中 若()x f 为无穷大,则()x f 1为无穷小, 若()x f 为无穷小,且()0≠x f ,则()x f 1为无穷大 3、无穷小与极限的关系()()()x A x f A x f α+=⇔=lim 其中()0lim =x α 4、无穷小的比较设()0lim =x f ,()0lim =x g ,且()()l x g x f =lim(1)0=l ,称()x f 是比()x g 高阶的无穷小,记以()()[]x g x f 0= (2) l =∞,称()x g 是比()x f 低阶的无穷小。

(3)0≠l ,称()x f 与()x g 是同阶无穷小。

(4)1=l ,称()x f 与()x g 是等价无穷小,记以()()x g x f ~(5) 无穷小的阶:若0)]([)(lim≠=C x x kβα,称)(x α是)(x β的k 阶无穷小。

5、常见的等价无穷小 当0→x 时x x ~s i n ,x x ~tan ,x x ~arcsin ,x x ~arctan 221~c o s 1x x -,x e x ~1-,()x x ~1ln +,()x x αα~11 -+ 6.无穷小的重要性质(1)有限个无穷小的和仍是无穷小. (2)有限个无穷小的积仍是无穷小. (3)无穷小量与有界量的积仍是无穷小.B 典型例题一、求极限:1通过各种基本技巧化简后直接求出极限 例1、求下列极限 (1)xx x x --+→11lim(2) ()x x x x x 3lim 22--++∞→例2、设0≠m a ,0≠n b 求01110111lim b x b xb x b a x a x a x a n n n n m m m m x ++++++++----∞→例3、求n n nn n 3223lim 11+-++∞→例4、设0≠a ,1<r ,当()1lim -∞→+++n n ar ar a解:()rar r a arar a n n n n -=--=+++∞→-∞→111lim lim 1例5当1x →时,函数11211---x e x x 的极限( ) (A )等于2. (B )等于0. (C )为∞ (D )不存在但不为∞2、用两个重要公式 例1、求xxx -→ππsin lim例2、求()x x xx x cos 1sin 1tan 1lim-+-+→解一:原式()()()()x x x x x x x sin 1tan 1cos 11sin 1tan lim+++-+-+=→()()21tan lim 21cos 1cos 1tan lim 2100==--=→→x x x x x x x x 解二:原式()()()()x x x x x x x x x x cos 1sin tan lim 21cos 11sin 11tan 1lim00--=--+--+=→→21tan lim 210==→x x x 例3、求n n xx x 2cos 4cos 2cos lim ∞→例4、求下列极限 (1)1021lim +∞→⎪⎭⎫ ⎝⎛-x x x (2)xx x x 1011lim ⎪⎭⎫⎝⎛+-→(3)xx x x ⎪⎭⎫⎝⎛+-∞→11lim (4)11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x例5、求下列极限 (1) ()xx x cot tan 1lim +∞→ (2)141lim -→x x x(3) ()xx x 2cot 0cos lim → (4)()()x x x 3csc 02cos lim →3、用夹逼定理求极限 例1、12lim 12n n n n n n →∞⎡⎤+++⎢⎥+++⎣⎦例2、nnnn 321lim ++∞→4、利用单调有界原理 例1、设.,2,121,0,011 =⎪⎪⎭⎫ ⎝⎛+=>>+n x a x x x a n n n ,求极限n n x ∞→lim .例1、 证明数列2,22,222,+++的极限存在。

5、利用等价无穷小代换例1、.)1ln(lim 2tan sin 0x x e e xx x +-→例2、求0ln(1)lim________1cos x x x x→+=-.6、求分段函数的极限例 (1)()⎪⎪⎩⎪⎪⎨⎧>-<=0 ,cos 10 ,2sin 2x xx x xxx f (2)()⎪⎪⎩⎪⎪⎨⎧≥+<--=1 ,211 ,1122x x x x x x g二、无穷小量阶的比较例1、当20,sin x x x x →-时是的( )(A )低阶无穷小。

(B )高阶无穷小。

(C )等价无穷小。

(D )同阶但非等价无穷小。

1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m mm n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim0=→x x x 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

相关文档
最新文档