利用定积分的定义求极限
利用定积分定义求和式极限问题的探讨

.
上 式 的 和 是 函 数 F (x,y)=5x 一18×2y +5y4在 D={(x,y)
= 击 .
酬 =击 + =
。 = l0≤×≤1,0≤y≤1}上 的一个 积分 和 。该题 在 求解 过程 中将 D:
{(x,y)=10≤x≤1,0≤y≤1}进 行等 分 成 个 n 小 区域 ,按 照 划
+
这里取f(x)= ,区间为[a,b】,极限转化为击
J x d×。若取 分—— 求 和 —— 取 极 限 的 方 法 来进 行 分 析 ,且 已知 函 数 F(x)
= 5x 一侣 ×2y +5y 在 整个 闭区域上 是连续 的 ,故二 重积分 存在 ,可
f(x)=[a+(b—a)x】。,区间为[0,1】,极限转化为J。[a+(b—a)×]Dd×。后 以利用 二重积 分来计 算该极 限和 。
f sin sin
1
椭 【 0 叶哥
有些特殊 的和 的极 限可 以利用二重 积分 的定义 求解。
例4 计算 。。 ∑ ∑(5m 一18m 。+5k )。
n m 。 。
解 : 。。 ∑ ∑ (5m 一18m2k2+5k ): ∑ ∑
[5 例2 求极限 sin ’ ∑[na+i(b—a)] (p>o。a<b)
的 空间 ,让他 们 用手 中的立体 图形和 平面 图形 自由结合 创造 出一 些模 型 、图案 ,然后 让代 表在讲 台前展 示并给 自己的模型 作简 短 的 介绍 ,就这 样把本 节课推 入 了高潮 。
不管是 怎样 的教学模 式 ,本着 “在 活动 中体验 ,在活动 中感 悟 、 在感悟 中成 长”的理 念 ,努 力地 创设 问题 情境 ,使 内容 活动 化 ,活动 内容化 ,使我 们的教学设计 真正 是学生活动 的设计 。让学生在 民主 和谐 的环境 中学 习 ,在激 烈竞争 的环境 中探 索 ,给学 生一 个 自由翱 翔的空 间和发 挥的舞 台,让 学生充分 体验到投 入实践 和探索 的成就 感。让学生没有 理由不爱上数 学 !带着一种欣 赏的眼光去聆 听学生 们的话语 ,使 你不能不 为孩 子丰富的想象 力 、大胆的创造 力而惊叹 !
利用定积分定义求极限的原理

利用定积分定义求极限的原理定积分是微积分的一个重要概念,用于计算函数在一定区间上的面积。
定积分的定义可以用来求极限,这是一项重要的数学技巧。
本文将介绍利用定积分定义求极限的原理,并通过实例说明其应用。
首先,我们来回顾一下定积分的定义。
对于一个函数f(x)在[a,b]区间上的定积分,可以用极限的概念表达为:∫(a,b) f(x) dx = lim(n→∞) Σ[i=1,n] f(x_i) Δx其中,Δx = (b - a) / n 是每个小区间的宽度,x_i 是区间中的任意一点,lim(n→∞)代表当n趋向于无穷大时取的极限,Σ[i=1,n]表示对每个小区间做求和运算。
根据定积分的定义,我们可以利用它来求解一些函数的极限。
具体步骤如下:第一步,确定求解的函数。
首先需要选择一个待求解的函数f(x),并找到一个包含区间[a,b]的闭区间来计算。
第二步,进行积分近似。
利用定积分的定义,将函数f(x)分割成若干个小区间,并在每个小区间上选择一个代表点x_i。
然后,计算相应的Σ[i=1,n]f(x_i)Δx。
第三步,求解极限。
根据极限的定义,将积分近似的结果取极限,即lim(n→∞) Σ[i=1,n] f(x_i) Δx。
第四步,验证结果。
通过比较求得的极限与给定函数的极限是否相等,来验证我们的结果。
接下来,我们通过一个具体的实例来说明利用定积分定义求极限的原理。
例子1:求解函数f(x) = x^2在区间[0, 1]上的极限lim(n→∞) Σ[i=1,n] f(x_i) Δx。
首先,将区间[0,1]分割成n个小区间,每个小区间的宽度为Δx=1/n。
然后,在每个小区间上选择一个代表点x_i,可以选择x_i=Δx/2接下来,计算Σ[i=1,n]f(x_i)Δx:Σ[i=1,n]f(x_i)Δx=Σ[i=1,n](Δx/2)^2Δx=Σ[i=1,n]Δx^3/4=(∑[i=1,n]Δx^3)/4=nΔx^3/4=n(1/n)^3/4=1/4n^2最后,取极限得到极限结果:lim(n→∞) Σ[i=1,n] f(x_i) Δx = lim(n→∞) (1 / 4n^2) = 0我们知道函数f(x)=x^2在区间[0,1]上的极限为0,因此利用定积分的方法求得的极限结果与函数极限相等,验证了我们的结果。
定积分的定义在求无穷和式极限中的应用

度、操作技能的掌握程度、收集整理资料的能力以及观察 问题和分析解决问题的能力等,充分发挥学生的主观能动 性。 3 实施方案
(1)根据素质教育要求和教育部“关于进一步深化本 科教学改革全面提高教学质量的若干意见”,结合专业实 际在充分调研的基础上调整好食品质量与安全专业实践教 学体系。
(2)以学科与课程组为单位,编写实验教学大纲和实 习实践教学大纲,在修订实验大纲以及实验教材时,增加 综合性、设计性实验比重,并把学科发展的新成果充实到 教学内容中去。
(6)对已建立协议的教学实习基地要不断加强联系与 交流,建立牢固的长期合作关系,每学年邀请基地领导来 我院共同研究实习基地建设问题,并做好年度实习基地建 设工作总结。继续考察、遴选新的实习基地,加快建立满 足新专业要求的实习基地。
(7)积极开展第二课堂活动,推进导师制,言传身教 使学生在参加科技实践创新活动中,提高实践能力及创新 能力。
在高等数学的教学中,介绍了很多求函数极限的方
法。但是当我们遇到极限为“无穷多个无穷小之和”的形
式(以下简称无穷和式),就不能用这些常规的方法了。
通常是先求出无穷数列前n项的和,再求和式的极限。但当
数列的前n项的和不易求出时,我们就可以考虑用定积分的
定义来求它的极限了。
学过定积分的定义,我们知道定积分是积分和的极
参考文献: [1] 常 庚 哲 等 .数 学 分 析 教 程 (上 )[M].北 京 :高 等 教 育 出 版
社,2003:300~331. [2] 吉米多维奇.数学分析习题集题解(六)[M].济南:山东科学技术
出版社,2002:103~148. [3] 上海财经大学应用数学系.高等数学[M].上海:上海财经大学出
(3)出台相应的激励政策,鼓励教师参与实践教学的 改革,并通过实践教学活动和科研有机结合起来,产学研 相长,不断提高实践教学水平。
定积分的定义法求极限

定积分的定义法求极限:
用定积分定义求极限的方法如下:
分子齐(都是1次或0次),分母齐(都是2次),分母比分子多一次。
定积分定义求极限是1/n趋近于0,积分下限是0,n/n是1,积分上限是1。
“极限”是数学中的分支,微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
洛必达法则。
此法适用于解0/0型和8/8型等不定式极限,但要注意适用条件(不只是使用洛必达法则要注意这点,数学本身是逻辑性非常强的学科,任何一个公式,任何一条定理的成立都是有使其成立的前提条件的,不能想当然的随便乱用。
定积分法:此法适用于待求极限的函数为或者可转化为无穷项的和与一个分数单位之积,且这无穷项为等差数列,公差即为那个分数单位。
当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x)在区间上的定积分.记作/abf(x)dx即/abf(x)dx=limn>00[f(r1)+...+f(rn)],这里,a与b叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。
求极限13种方法

求极限的 13种方法(简叙)龘龖龍 极限概念与求极限的运算贯穿了高等数学课程的始终, 极限思想亦是高等数学的核心与 基础, 因此,全面掌握求极限的方法与技巧是高等数学的基本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多 变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
n例 1、求极限 lim (1 a)(1 a 2)...(1 a 2) ,其中 a 1 n分析 由于积的极限等于极限的积这一法则只对有限个因子成立,n因为 (1 a)(1 a 2)...(1 a 2)1(1 a)(1 a)(1 a 2 )...(1 a 21a12 22n(1 a 2)(1 a 2)...(1 a 2) 1a1 2n 111a(1 a 2)22n0,从而 lim (1 a)(1 a 2)...(1 a 2)=n1 a二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量, 提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
此, 应先对其进行恒等变形。
n 时2n 12n 1a 2例 2、求极限 lim x 1,其中 m,n 为正整数。
x 1nx 1分析 这是含根式的( 0)型未定式,应先将其利用变量代换进行化简,再进一步计算极限1解 令 t x mn,则当 x 1时,t 1三、利用对数转换求极限原式=lim e(cos x 1)csc 2x exo 四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。
例 4、求极限 l n im n n !n n n分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使 用夹逼准则。
解 因为 o n n! 1 2 n 1 n 1,n n n n n n 且不等式两端当趋于无穷时都以 0为极限,所以 l n im n n !=0 n n n五、利用单调有界准则求极限利用单调有界准则求极限主要应用于给定初始项与递推公式原式=l t im1 ttlim (t 1)(t t 1(t 1)(t n1m1t n 2... 1) t m 2...t n1t n 2 ... 1 t m 1 t m 2 (1)利用对数转换求极限主要是通过公式 u ve lnuv,进行恒等变形,特别的情形,在( 1 )型未定式时可直接运用 (u 1)ve例 3、求极限l x im o(cosx)csc 2x12 sin x lim22x 0sin 2x n 1 f (x n )的数列极限。
8定积分应用(求极限,变上限求导,面积,体积,不等式)

y
o
x
4.设 y ax与 y x 2 围成图形的面积为s1 , 它们与x 1 围成图形的面积为s2 , 且 0 a 1 (1) 求 a , 使 s1 s2 最小
(2) 求此最小值对应的平面 图形绕 x 轴旋转而得的旋转 体体积. 解 (1) 0 a 1 时, s s1 s2
例
x sin( xt ) f ( x) . lim 2 ,其中 f ( x) 2 dt x x 0 x t
例 : 设f ( x )连续, 且f ( 0 ) 0
求 lim
x0
x
0
( x t ) f (t )dt
x 0
x f ( x t )dt
1 ( ) 2
例.
例
3
设隐函数y y( x )由
o
x
1 3 1 2 ( ) (1 y 2 y) dy ( y y y ) . 1 S 0 3 3 0 2 2 1 2 2 (2) V ( x) dx ( x 1) dx 0 1 6 2
1 2
1
(3)绕直线 x 2 旋转所得旋转体的体积.
例
.设f ( x)为奇函数,且当 0时,f ( x) 0 x
sin( xt ) f ( x) 0, 其中 f ( x) 2 dt,令 x t
x
F ( x) f ( xt)dt tf (t 2 x 2 )dt,
1 0
1
x
判别F (x)在 , 上的凹凸性
3 2 2
2 f ( ) f ( ) 0
(2).设f ( x)在2,4上可导, 且
f (2) ( x 1) f ( x)dx 。
浅谈极限的求解方法毕业论文

共17页第1页浅谈函数极限求解方法学生:陈智年指导老师:赵守江三峡大学理学院摘要:极限是数学分析的基础,数学分析的基本概念的表述,都可以用极限来描述。
如函数在某点处导数的定义,定积分的定义,偏导数的定义,二重积分的定义,三重积分的定义,无穷级数的定义都是用极限来定义的。
极限是研究数学分析的基本工具。
极限是贯穿数学分析的一条主线。
学好极限要从以下两个方面着手:1)是考察所给函数是否存在极限;2)若函数存在极限,则考虑如何计算此极限。
本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
对于简单的极限的计算,利用定义求值或利用极限的四则运算法则求值都是可行的,但是对于一个比较复杂的极限的计算,例如的值时则不能直接采用一般的定义或者定理,即使采用洛必达法则也是比较繁琐的,然而用泰勒展示则计算简单多了,这就说明为一般地解决极限求值问题时,就必须利用有效有针对性的计算方法,对各个具体问题还要善于发现和利用其特点以简化手续.传统的极限的计算方法不下十几种,但具体到计算不同特征的极限时,究竟采用哪种方法,很多人总感到无从下手.只有将这些方法进行归纳总结,从而才可以针对不同特征的式子选择适当的计算方法,进而简化计算Abstract:Limit is the basis of mathematical analysis ,the basic concepts of mathematical analysis of expression ,can be used to describe the limit as a function definition derivative at some point ,the definition of the definite integral , the definition of partial derivative , the definition of double integrals ,triple integral definition , infinite series of definitions are used to define the limits of the limit is the basic tool to study the limits of mathematical analysis is a main theme throughout the mathematical analysis to learn the limits from the following two aspects is to investigate the function if there is a limit .If there is a limit function , then consider how to calculate this limit this article is the second question that under the conditions of the existence of the limit , how to find the limits are reviewed for a simple calculation of the limit of the use . define the limits of the evaluation or the use of four evaluation algorithms are feasible,but for a more complicated limit calculations,such asFind in coslimx when exxx values are not directly using the general definition or theorem, even with the Hospital's Rule is more complicated , however,Taylor shows the calculation is much simpler ,which is generally described when the limit is evaluated to solve the problem , we must use effective targeted method of calculation for each specific issues but also good at finding and using its features to simplify procedures. The traditional method of calculating the limit of no less than a dozen,but when calculating the limits specific to different characteristics ,whether using either method, a lot of people always feel unable to start . These methods will only be summarized, so that we can choose the appropriate method of calculation formulas for different characteristics ,and thus simplify the calculation 关键词:极限;极限的定义;极限的性质;罗必达法则;泰勒公式;单调有限法则;积分中值定理;拉格朗日中值定理共17页第2页Keywords :Limit;ultimate limits of nature;Luo's Rule; Taylor formula;monotonous limited law;integral mean value theorem; Lagrange mean value theorem与一切科学方法一样,极限法也是社会实践的产物。
定积分的定义公式分割近似求和取极限

定积分的定义公式分割近似求和取极限定积分这玩意儿,在数学里那可是个相当重要的角色。
它的定义公式——分割近似求和取极限,听起来好像挺复杂,但咱们慢慢捋捋,其实也没那么可怕。
我记得有一次,我在课堂上讲定积分的时候,有个学生一脸迷茫地看着我,那小眼神仿佛在说:“老师,这都是啥呀?”我就跟他说:“别着急,咱们一步一步来。
”咱先说分割。
这就好比你有一块大蛋糕,你要把它切成好多小块。
比如说,一个函数的区间[a,b] ,咱把它分成 n 个小区间,这就是分割。
每个小区间的长度不一定相等,但加起来就是整个区间的长度。
然后是近似。
这就像你切完蛋糕,要估计每一小块的大小。
对于每个小区间里的函数值,咱找个简单的数来近似代替,比如说区间里某一点的函数值。
再说说求和。
把每个小区间里近似的函数值乘以小区间的长度,然后加起来,这就是求和。
最后是取极限。
当把区间分得越来越细,小区间的数量越来越多,每个小区间的长度越来越小,这个求和的结果就会越来越接近一个确定的值,这个值就是定积分的值。
比如说,你要计算从 0 到 1 区间上 x²的定积分。
咱先把这个区间分成 n 个小区间,每个小区间的长度就是 1/n 。
然后在每个小区间里,咱用区间中点的函数值来近似代替。
比如第 i 个小区间的中点是 i/n ,那这个小区间里的函数值就近似为 (i/n)²。
把每个小区间的近似值乘以小区间长度 1/n 再加起来,得到一个式子。
最后让 n 趋向于无穷大,取这个式子的极限,就能得到定积分的值 1/3 。
在实际生活中,定积分也有很多用处呢。
就像你要计算一个不规则图形的面积,或者计算一个物体在一段时间内移动的路程,都能用到定积分。
还记得有一次我装修房子,要计算一面墙的不规则形状的面积,来确定需要多少壁纸。
我就用定积分的思路,把那面墙的形状分割成好多小部分,近似计算每一部分的面积,最后求和取极限,算出了差不多准确的面积,成功买到了合适数量的壁纸。