初二数学竞赛训练(十)(含答案)-

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。

解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。

代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。

答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。

求△ABC的面积。

解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。

底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。

答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。

解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。

将所有项移到一边得:3x² - 12x + 11 = 0。

对方程进行因式分解得:(x - 1)(3x - 11) = 0。

由此可得x = 1 或 x = 11/3。

答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。

已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。

解:由题意可推出ABCD为平行四边形,而AE = CD。

根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。

答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。

解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。

初二数学竞赛测试题(含答案)-

初二数学竞赛测试题(含答案)-

初二数学竞赛测试题 班级 姓名_____________________ 一、选择题(每小题4分,共32分)1.如果a >b,则2a -b 一定是( C ) A 、负数 B 、非负数 C 、正数 D 、非正数。

2.已知x ﹥0,y ﹤0,∣x ∣﹤∣y ∣,则x+y 是( C )A 、零B 、正数C 、负数D 、不确定。

3.如图,△ABC 中,∠B=∠C ,D 在BC 边上, ∠BAD=500,在AC 上取一点E ,使得∠ADE=∠AED ,则∠EDC 的度数为( B )A 、150B 、250C 、300D 、504.满足等式 2003200320032003=+--+xy y x x y y x的正整数对(x,y )的个数是( )A 、1B 、2C 、3D 、45.今有四个命题:①若两实数的和与积都是奇数,则这两数都是奇数。

②若两实数的和与积都是偶数,则这两数都是偶数。

③若两实数的和与积都是有理数,则这两数都是有理数。

④若两实数的和与积都是无理数,则这两数都是无理数。

其中正确命题个数为( )A 、0B 、1C 、2D 、46.若M=3x 2-8xy+9y 2-4x+6y+13(x,y 是实数),则M 的值一定是( )A 、正数B 、负数C 、零D 、整数7.设A=48)41001441431(222+++-+-⨯Λ则与A 最接近的正整数是( ) A 、18 B 、20 C 、24 D 、25 8.如果关于x 的方程k(k+1) (k-2)x 2-2(k+1) (k+2)x+k+2=0,只有一个实数解,则实数k 可取不同的值的个数为( )(A)2 (B)3 (C)4 (D)5.二.填空题(每小题5 分共30分)9.如图,有一块矩形ABCD,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE,再将△AED 沿DE 向上翻折,AE 与BC 的交点为F,则△CEF 的面积为 .10.关于x 的方程∣∣x-2 ∣-1∣=a 有三个整数解,则a 的值是 .11.已知关于x 的方程a 2x 2-(3a 2-8a)x+2a 2-13a+15=0(其中a 是非负整数),至少有一个整数根,那么a= .12.若关于x 的方程13213+-=++x x ax x 有增根x=-1,则a= . 13.已知三个质数a,b,c 满足a+b+c+abc=99,那么a c c b b a -+-+-= .14.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心).若现在时间恰好是12点整,则经过 秒钟后,△OAB 的面积第一次达到最大.三、解答题:15.如图已知△ABC 中,∠ACB=900, AC=BC ,CD ∥AB ,BD=AB ,求∠D 的度数。

数学竞赛8年级真题试卷【含答案】

数学竞赛8年级真题试卷【含答案】

数学竞赛8年级真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1)的值为?A. 0B. 1C. 2D. 32. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 若a > b,则下列哪个选项是正确的?A. a c > b cB. a + c < b + cC. ac < bcD. a/c > b/c (c ≠ 0)4. 下列哪个方程的解集是实数集?A. x² + 1 = 0B. x² 2x + 1 = 0C. x² + x + 1 = 0D. x² x + 1 = 05. 若一组数据的平均数为10,则这组数据的和为?A. 5B. 10C. 20D. 50二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。

()2. 两个负数相乘的结果是正数。

()3. 任何实数的平方都是非负数。

()4. 若a、b、c是等差数列,则a²、b²、c²也是等差数列。

()5. 两个无理数的和一定是无理数。

()三、填空题(每题1分,共5分)1. 若a + b = 5,a b = 3,则a = ______,b = ______。

2. 若x² 5x + 6 = 0,则x = ______或x = ______。

3. 若一组数据的方差为4,则这组数据的平均数为______。

4. 若等差数列{an}的前n项和为Sn = 2n² + 3n,则a1 = ______,d = ______。

5. 若函数f(x) = 2x + 3,则f(2) = ______。

四、简答题(每题2分,共10分)1. 解释什么是无理数。

2. 什么是等差数列?给出一个等差数列的例子。

3. 解释函数的定义。

-初中数学竞赛题(含答案)

-初中数学竞赛题(含答案)

初中数学竞赛一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( B ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( C ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b ,则化简a b (a+1)+ba(b+1)得( ).(A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)=10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是 梨 梨 苹果 苹果 30 梨 型 梨 梨 28 荔枝 香蕉 苹果 梨 20 香蕉 香蕉 荔枝 苹果 ? 19 20 25 3014.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月. 18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中 a 1=6×2+l ; a 2=6×3+2; a 3=6×4+3; a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = . 20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a+1 06. 10.一43.6.11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-1511 6.1. 1 7.1988;1. 18.1022.5;101 8. 1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c=2001,且a+b+c=2001k ,那么k 的值为( )。

初二数学竞赛试题含答案

初二数学竞赛试题含答案

初二数学竞赛试题一选择题(每小题5分,共45分)1.a.b.c 是正整数,a >b 且a 2-ab-ac+bc=7.则a-c 等于(D ) A. -1 B. –1或-7 C . 1 D . 1或7 2. 已知a ≠0. b ≠0且a1+b1=4 则bab a bab a 323434-+-++等于(B )A .411- B.1019- C.0 D. 10193.对于非负数a 1.a 2…a 5满足M=(a 1+a 2+a 3+a 4)(a 2+a 3+a 4+a 5) N=(a 1+a 2+a 3+a 4+a 5)(a 2+a 3+a 4) ,则(B ) A. M >N B. M ≥N C. M <N D. M ≤N4.下列各图是纸箱厂剩下的废纸片,全是由全等的正方形组成的图形,为了充分5.,以使所作三角形与ABC 全等,这样的三角形最多可以画出(C ) A 8 个 B 6个 C 4个 D2个 6.有下列四个命题:(1) (2) 两边和第三边上的高对应相等的两个锐角三角形不一定是全等三角形 (3) 两边和第三边上的高对应相等的两个三角形是全等三角形(4) 两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形 其中正确的是(D ) A.(1) (2) B. (2) (3) C. (3) (4) D.(4) (1)7.若x =a1-a ,则24x x +的值为(B )A . a-a 1 B.a1-a C. a+a1 D.不能确定8.如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的 第三边所对的角(D )A .相等 B.不相等 C.互余 D.互补或相等 9 .已知实数a 满足 2000-a +2001-a =a,则a-20002的值为(C )A .1999 B.2000 C.2001 D.2002 二.填空题(每题5分,共40分) 10. 已知A=3232--+,化简后,A=211.设x=nn n n ++-+11,y=nn n n -+++11.且19x 2+143xy+19y 2=2005,则整数n=_2______.12.若m 适合于关系式y x y x m y x m y x --+-=-++--+199.19932253,则m=_201__ 13.满足23)31(2x x --=-的所有整数x 的和是___5_____14.在△ABC 中,∠C=90°,BC=40,AD 是∠BAC 的平分线交BC 于D,且DC :DB=3:5则点D 到AB 的距离是__15______15.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是_2<AD <7___16.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=21(AB+AD ),则∠ABC+∠17.张家村、李家村和杨家村三个村庄的位置不在同一眼机井,要求机井到三条道路的距离相等,那么打机井的位置有__4____处.三.三所学校分别记作A 、B 、C ,体育场记作O ,它是△ABC 的三条角平分线的交点,O 、A 、B 、C 每两地之间有直线道路相连,一支长跑队伍从体育场O 出发,跑遍各校再回到O 点,指出哪条路线跑的距离最短(已知AC >BC >AB ),并说明理由(9分)解:O →A →B →C →O (或 O →C →B →A →O )四.设a+b+c+3=2(a +11-++cb ),求a 2+b 2+c 2的值(8分)解:a=1,b=0.c=2 . a 2+b 2+c 2=5五.已知c b a x --+a c b x --+b c a x --=3,且a 1+b1+c1≠0,求(x-a-b-c )2005的值(9分)解: (x-a-b-c )2005=0六、如图,,已知AD ∥BC,∠EAD=∠EAB,∠EBA=∠EBC,直线DC 过E 交AD 于D,交BC 于C,求证: AD+BC=AB (9分)。

2023年湖州市初二年级数学竞赛试卷含答案

2023年湖州市初二年级数学竞赛试卷含答案

湖州市初二年级数学竞赛试卷答题时注意: 1. 用圆珠笔或钢笔作答.2. 解答书写时不要超过装订线.D旳四个选项, 其中有且只有一种选项是对旳旳. 请将对旳选项旳代号填入题后旳括号里. 不填、多填或错填均得零分)1. 旳末位数字是().A. 1B. 3C. 5D. 72.设a、b是方程旳两个实数根, 则旳值是()A. B. C. D.3.桌上放着6张扑克牌,所有正面朝下。

你已被告知其中有两张且只有两张是老K,不过你不懂得老K在哪个位置。

你随便取了两张并把它们翻开,会出现下面两种状况:(1)两张牌中至少有l张是老K;(2)两张牌中没有l张是老K。

比较这两种状况旳也许性, 可知 ( )A. (1)旳也许性大B. (2)旳也许性大C. 两者同样.D. 不能确定4.如图, △ABC中, AD是∠BAC内旳一条射线, BE⊥AD, M是BC上旳点, 把△BEM绕点M旋转1800得到△CHM, 延长CH交AD于F, 则下列结论错误旳是()A. BM=CMB. FM= EHC. CF⊥ADD. F M⊥BC5. 如图所示,是矩形内一点,已知PA=6 PB=8 PC=10,则PD旳值为()A. B. 8 C. D. 96.一种人步行从A 地出发, 匀速向B 地走去.同步另一种人骑摩托车从B 地出发, 匀速向A 地驶去.二人在途中相遇, 骑车者立即把步行者送到B 地, 再向A 地驶去, 这样他在途中所用旳时间是他从B 地直接驶往A 地原计划所用时间旳2.5倍, 那么骑摩托车者旳速度与步行者旳速度之比是( ) A. 2:1 B. 3:1 C. 4:1 D. 5:17.某人月初用x 元人民币投资股票,由于行情很好,他旳资金每月都增长 ,虽然他每月末都取出1000元用于平常开销,他旳资金仍然在三个月后增长了一倍,那么x 旳值是( ) A. 9000 B. 10000 C. 11000 D. 111008. 一堂“探索与实践”活动课上, 小明借助学过旳数学知识, 运用三角形和矩形为班里旳班报设计了一种报徽, 设计图案如下: 如图, 两条线段EF 、MN 将大长方形ABCD 提成四个小矩形, 已知DE=a, AE=b, AN=c, BN=d, 且S1旳面积为8, S2旳面积为6, S3旳面积为5, 则阴影三角形旳面积为( ) A . B .3 C .4 D.二、填空题(共6小题, 每题5分, 满分30分) 9. 若m= ,a 是m 旳小数部分, 则a=____________.10. 若有关 旳不等式组 无实数解, 则 旳取值范围是11. 你玩过“数字黑洞”旳游戏吗? 下面我们就来玩一种数字游戏, 它可以产生“黑洞数”, 操作环节如下: 第一步, 任意写出一种自然数(如下称为原数);第二步, 再写出一种新旳三位数, 它旳百位数字是原数中偶数数字旳个数, 十位数字是原数中奇数数字旳个数, 个位数字是原数旳位数;如下每一步, 都对上一步得到旳数按照第二步旳规则继续操作, 直至这个数不再变化为止. 不管你开始写旳是一种什么数, 几步之后变成旳自然数总是相似旳, 最终这个总相似旳数就称为“黑洞数”. 请你认为例进行尝试: 这个数字游戏旳“黑洞数”是(零作为偶数)得 分 评卷人610第5题 ABCD8第4题12.如图, △ABC中, ∠A=30°以BE为边, 将此三角形对折, 另一方面, 又以BA为边, 再一次对折, C点落在BE上, 此时∠CDB=84°, 则原三角形旳∠B =____________度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学竞赛训练(十)
一、选择题:
1、下列几个关于不变量的叙述:
(1)边长确定的平行四边形ABCD ,当∠A 变化时,其任意一组对角之和不变; (2)当多边形的边数不断增加时,它的外角和不变;
(3)当△ABC 绕顶点A 旋转时,△ABC 各内角的大小不变; (4)在放大镜下观察,含角α的图形放大时,角α的大小不变; (5)当圆的半径变化时,圆的周长与半径的比值不变; (6)当圆的半径变化时,圆的周长与面积的比值不变, 其中,错误的叙述有 ( )
(A)2个 (B)3个 (C)4个 (D)5个 2.设m=|1|-+x x ,则m 的最小值是( )
(A )0
(B )1
(C )―1
(D )2 3.已知2
3
10x x x +++=,则2008
3
2
1x
x x x +++++ 的值为( )
(A )0 (B )1 (C )―1 (D )2008
4.如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC ,且A 、B 、C 分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是( )
5、n 个连续自然数按规律排成右表:
0 3 → 4 7 → 8 11 … ↓ ↑ ↓ ↑ ↓ ↑
1 →
2 5 →6 9 → 10 根据规律, 从2006到2008, 箭头的方向依次应为( ) (A) ↑→ (B) →↑ (C) ↓→ (D) →↓
6、某人月初用x 元人民币投资股票,由于行情较好,他的资金每月都增加
3
1
,即使他每月末都取出1000元用于日常开销,他的资金仍然在三个月后增长了一倍,那么x 的值是( )
A .9000
B .10000
C .11000
D .11100
(A)(B)(C)
(D)
A
B
C
(A)
二、填空题:
7、盒子中有红球和白球各2个,小玲把球从盒子中一个一个地摸出来,则红球和白球相间出现(可以是“红白红白”也可以是“白红白红”)的可能性是。

8、如图是一个3×3的正方形, 则图中∠1+∠2+∠3+…+∠9的度数应该是________ 。

9、图中的三十六个小等边三角形面积都等于1,则△ABC的面积为____ __。

10、用大小相同的正六边形瓷砖按如图所示的方式来铺设广场,中间的正六边形瓷砖记为
A,定义为第一组,在它的周围铺上六块同样大小的正六边形瓷砖,定义为第二组,在第二组的外围用同样大小的正六边形瓷砖来铺满,定义为第三组,…,按这种方式铺下去,用现有的2007块瓷砖最多能完整地铺满组,此时还剩余块瓷砖。

(第8题)(第9题)(第10题)
11、在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,
且∠A=60°,则∠BOC=____度.
12、一辆卡车在公路上匀速行使,起初看到里程碑上的数字为xy,过了一小时里程碑上
x0,则第三次看到里程碑上的数字为yx,又行使了一小时里程碑上的数字为三位数y
的数字是_________.
三、解答题:
13、已知实数x,y满足x2+ 2 y= 3 ,y2+ 2 x= 3 且x≠y,求x+y和xy的值。

14、在一次数学考试中,老师出了一道解方程组的题:
222
2007
x y z xy yz zx x y z
⎧++=++⎨
++=

小明认为老师出的题目有错,没办法解,因为只有两个方程,而有三个未知数。

你同意小明的观点吗?若不同意,试一试解这个方程组。

15.某商场对顾客购物实行优惠,规定:(1)一次购物不超过100元不优惠;(2)一次购物超过100元但不超过300元,按标价的九折优惠;(3)一次超过300元的,300元内的部分按(2)优惠,超过300元的部分按八折优惠.老王第一次去购物享受了九折优惠,第二次去购物享受了八折优惠。

商场告诉他:如果他一次性购买同样多的商品还可少花19元;如果商品不打折,他将比现在多花67元钱。

问老王第一次购物、第二次购物实际各支付了多少钱?
16.如图,△ABC中,∠C=90°,∠CAD=30°,AC=BC=AD.求证:BD=CD.
C
参考答案
一、选择题:1、A 2、B 3、B 4、B 5、A 6、D 二、填空题: 7、
3
1
8、405º 9、21 10、26,54 11、120°或60° 12、106 (11、分锐角三角形和钝角三角形两种情况。

12、(10y+x)-(10x+y)=(100x+y)-(10y+x) ) 三、解答题:
13、x+y= 2 ,xy=2- 3 14、由①得x 2
+y 2
+z 2
-xy -yz -zx =0,
∴2x 2+2y 2+2z 2-2xy -2yz -2zx =0 ∴(x-y )2+(y-z)2+(z-x)2
=0 ∴x=y=z
15.解:设老王第一次购物的标价为x 元,实际支付0.9x 元,第二次购物的标价为y 元,实际支付8.0)300(9.0300⨯-+⨯y 元.依题意,得 19]8.0)300(9.0300[]9.03008.0)300(9.0[=⨯-++⨯-⨯+⨯-+y x y x ……① 67]9.03008.0)300(9.0[)(=⨯+⨯-+-+y x y x …………………………②
由①得,191.0=x ,∴x = 190(元)
由②得,972.01.0=+y x ,将x 代入,得 y =390 (元)
故第一次支付 0.9×190=171(元),第二次支付270+(390―300)×0.8=342(元)
答:老王第一次支付了171(元),第二次支付了342(元)
16.证法一:如图,过C 作CE ⊥AD 于E ,过D 作DE ⊥BC 于F .
∵∠CAD=30°,∴∠ACE=60°,且CE=
2
1
AC , ∵AC=AD ,∠CAD=30°,∴∠ACD=75°, ∴∠FCD=90°―∠ACD=15°, ∠ECD=∠ACD ―∠ACE=15° ∴△CED ≌△CFD ,
∴CF=CE=
21AC=2
1
BC ,∴CF=BF . ∴Rt △CDF ≌Rt △BDF , ∴BD=CD .
A
B
C
D
A
B
C
D
E
F
证法二:如图,作△AEB,使AEBC为正方形,连结ED.
∵∠BAD=45°―∠CAD=45°―30°=15°,
∴∠EAD=∠EAB+∠BAD=60°,又AD=AC=AE,
∴△ADE是等边三角形,∴ED=AD=AC=EB,
∴∠DEB=90°―∠AED=30°,∴△ACD≌△EBD,∴CD=BD.。

相关文档
最新文档