2015年广东省高职高考数学真题及答案
2015高考数学广东卷(理科)及解析

2015数学广东卷(理科)参考公式:样本数据x1,x2,…,x n的方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015高考广东卷,理1)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N等于( D )(A){1,4} (B){-1,-4} (C){0} (D)○解析:化简集合得M={-4,-1},N={1,4},显然M∩N=⌀,故选D.2.(2015高考广东卷,理2)若复数z=i(3-2i)(i是虚数单位),则等于( A )(A)2-3i (B)2+3i (C)3+2i (D)3-2i解析:因为i(3-2i)=3i-2i2=2+3i,所以z=2+3i,所以=2-3i,故选A.3.(2015高考广东卷,理3)下列函数中,既不是奇函数,也不是偶函数的是( D )(A)y=(B)y=x+(C)y=2x+(D)y=x+e x解析:易知y=与y=2x+是偶函数,y=x+是奇函数,故选D.4.(2015高考广东卷,理4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( B )(A)(B)(C)(D)1解析:从15个球中任取2个球,取法共有种,其中恰有1个白球,1个红球的取法有×种,所以所求概率为P==,故选B.5.(2015高考广东卷,理5)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( A )(A)2x+y+5=0或2x+y-5=0(B)2x+y+=0或2x+y-=0(C)2x-y+5=0或2x-y-5=0(D)2x-y+=0或2x-y-=0解析:切线平行于直线2x+y+1=0,故可设切线方程为2x+y+c=0(c≠1),结合题意可得=,解得c=±5.故选A.6.(2015高考广东卷,理6)若变量x,y满足约束条件则z=3x+2y的最小值为( B )(A)4 (B)(C)6 (D)解析:由约束条件画出可行域如图.由z=3x+2y得y=-x+,易知目标函数在直线4x+5y=8与x=1的交点A1,处取得最小值,故z min=,故选B.7.(2015高考广东卷,理7)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( C )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:由已知得解得故b=3,从而所求的双曲线方程为-=1,故选C.8.(2015高考广东卷,理8)若空间中n个不同的点两两距离都相等,则正整数n的取值( B )(A)至多等于3 (B)至多等于4(C)等于5 (D)大于5解析:首先我们知道正三角形的三个顶点满足两两距离相等,于是可以排除C,D.又注意到正四面体的四个顶点也满足两两距离相等,于是排除A,故选B.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.(2015高考广东卷,理9)在(-1)4的展开式中,x的系数为.解析:(-1)4的展开式通项为T r+1=()4-r(-1)r=(-1)r··,令=1,得r=2,从而x的系数为(-1)2=6.答案:610.(2015高考广东卷,理10)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= .解析:利用等差数列的性质可得a3+a7=a4+a6=2a5,从而a3+a4+a5+a6+a7=5a5=25,故a5=5,所以a2+a8=2a5=10.答案:1011.(2015高考广东卷,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b= .解析:在△ABC中,由sin B=可得B=或B=,结合C=可知B=.从而A=π,利用正弦定理=,可得b=1.答案:112.(2015高考广东卷,理12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)解析:因为同学之间两两彼此给对方仅写一条毕业留言,且全班共有40人,所以全班共写了40×39=1560(条)毕业留言.答案:156013.(2015高考广东卷,理13)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=.答案:(二)选做题(14~15题,考生只能从中选做一题)14.(2015高考广东卷,理14)(坐标系与参数方程选做题)已知直线l的极坐标方程为2ρsinθ-=,点A的极坐标为A2,,则点A到直线l的距离为.解析:将直线l的极坐标方程2ρsinθ-=化为直角坐标方程为x-y+1=0.由A2,得A点的直角坐标为(2,-2),从而点A到直线l的距离d==.答案:15.(2015高考广东卷,理15)(几何证明选讲选做题)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于点D和点P,则OD= .解析:易得AC==,由OP∥BC,且O为AB的中点可知CP=AC=,OP=BC=,∠APO=∠ACB=90°.所以∠CPD=90°.因为EC是切线,所以∠DCP=∠B,从而△CPD∽△BCA,故=,所以DP=.故OD=DP+OP=+=8.答案:8三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015高考广东卷,理16)在平面直角坐标系xOy中,已知向量m=,-,n=(sin x,cos x),x∈.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为,求x的值.解:(1)因为m⊥n,所以m·n=sin x-cos x=0.即sin x=cos x,又x∈0,,所以tan x==1.(2)易求得|m|=1,|n|==1.因为m与n的夹角为,所以cos==.则sin x-cos x=sin x-=.又因为x∈0,,所以x-∈-,.所以x-=,解得x=.17.(本小题满分12分)(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在-s与+s之间有多少人?所占的百分比是多少?(精确到0.01%)?解:(1)由系统抽样知识知,将36名工人分为9组(4人一组),每组抽取一名工人.因为在第一分段里抽到的是年龄为44的工人,即编号为2的工人,故所抽样本的年龄数据为44,40,36,43,36,37,44,43,37.(2)均值==40;方差s2=×[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=.(3)由(2)可知s=.由题意,年龄在-s与+s之间,即在区间[37,43]内的工人共有23人,所占的百分比为×100%≈63.89%.18.(本小题满分14分)(2015高考广东卷,理18)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P AD C的正切值;(3)求直线PA与直线FG所成角的余弦值.(1)证明:因为PD=PC,点E为DC中点,所以PE⊥DC.又因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,所以PE⊥平面ABCD.又FG⊂平面ABCD,所以PE⊥FG.(2)解:由(1)可知PE⊥AD.因为四边形ABCD为长方形,所以AD⊥DC.又因为PE∩DC=E,所以AD⊥平面PDC.而PD⊂平面PDC,所以AD⊥PD.由二面角的平面角的定义可知∠PDC为二面角P AD C的一个平面角.在Rt△PDE中,PE==,所以tan∠PDC==.从而二面角P AD C的正切值为.(3)解:连接AC.因为==,所以FG∥AC.易求得AC=3,PA==5.所以直线PA与直线FG所成角等于直线PA与直线AC所成角,即∠PAC,在△PAC中,cos∠PAC==.所以直线PA与直线FG所成角的余弦值为.19.(本小题满分14分)(2015高考广东卷,理19)设a>1,函数f(x)=(1+x2)e x-a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.(1)解:函数f(x)的定义域为R.因为f'(x)=2x·e x+(1+x2)e x=(x2+2x+1)e x=(x+1)2e x≥0,所以函数f(x)在R上单调递增,即f(x)的单调递增区间为(-∞,+∞),无单调递减区间.(2)证明:因为a>1,所以f(0)=1-a<0,f(ln a)=(1+ln2a)e ln a-a=aln2a>0,所以f(0)·f(ln a)<0,由零点存在性定理可知f(x)在(0,ln a)内存在零点.又由(1)知f(x)在R上单调递增,故f(x)在(-∞,+∞)上仅有一个零点.(3)证明:设点P(x0,y0),由题意知,f'(x0)=(x0+1)2=0,解得x0=-1.所以y0=(1+)-a=-a,所以点P的坐标为-1,-a.所以k OP=a-.由题意可得f'(m)=(m+1)2e m=a-.要证明m≤-1,只需要证明m+1≤,只需要证明(m+1)3≤a-=(m+1)2e m,只需要证明m+1≤e m.构造函数:h(x)=e x-x-1(x∈R),则h'(x)=e x-1.当x<0时,h'(x)<0,即h(x)在(-∞,0)上单调递减;当x>0时,h'(x)>0,即h(x)在(0,+∞)上单调递增;所以函数h(x)有最小值,为h(0)=0,则h(x)≥0.所以e x-x-1≥0,故e m-m-1≥0,即m+1≤e m,故原不等式成立.20.(本小题满分14分)(2015高考广东卷,理20)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.解:(1)圆C1的方程x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆心坐标为(3,0).(2)设A(x1,y1),B(x2,y2),M(x0,y0),则x0=,y0=.由题意可知直线l的斜率必存在,设直线l的方程为y=tx.将上述方程代入圆C1的方程,化简得(1+t2)x2-6x+5=0.由题意可得Δ=36-20(1+t2)>0(*),x1+x2=,所以x0=,代入直线l的方程得y0=.因为+=+===3x0,所以x0-2+=.由(*)解得t2<,又t2≥0,所以<x0≤3.所以线段AB的中点M的轨迹C的方程为x-2+y2=<x≤3.(3)由(2)知,曲线C是在区间,3上的一段圆弧.如图,D,,E,-,F(3,0),直线L过定点G(4,0).于是k GD=-,k GE=.当直线L与圆C相切时,=,解得k=±,由图可知,当k∈-,∪-,时直线L与曲线C只有一个交点.21.(本小题满分14分)(2015高考广东卷,理21)数列{a n}满足:a1+2a2+…+na n=4-,n∈N*.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+1+++…+a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2ln n.(1)解:当n=1时,a1=1;当n=2时,a1+2a2=2,解得a2=;当n=3时,a1+2a2+3a3=,解得a3=.(2)解:当n≥2时,a1+2a2+…+(n-1)a n-1+na n=4-,①a1+2a2+…+(n-1)a n-1=4-,②由①-②得na n=,所以a n=(n≥2),经检验,a1=1也适合上式,所以a n=(n∈N*).所以数列{a n}是以1为首项,为公比的等比数列.所以T n==2-.(3)证明:b1=1,b n=-·+1+++…+·(n≥2).当n=1时,S1=1<2+2ln 1.当n≥2时,b n=+1+++…+·a n=+1+++…+·(T n-T n-1)=+1+++…+·T n-1+++…+·T n-1=1+++…+·T n-1+++…+·T n-1,所以S n=1+1+·T2-1·T1+1++·T3-1+·T2+…+1+++…+·T n-1+++…+·T n-1=1+++…+·T n<21+++…+=2+2++…+,以下证明++…+<ln n(n≥2).构造函数h(x)=ln x-1+(x>1),则h'(x)=-=>0(x>1),所以函数h(x)在区间(1,+∞)上单调递增,即h(x)>h(1)=0.所以ln x>1-(x>1),分别令x=2,,,…,得ln 2>1-=,ln >1-=,ln >1-=,…ln>1-=.累加得ln 2+ln +…+ln>++…+,即ln 2+(ln 3-ln 2)+…+[ln n-ln(n-1)]>++…+,所以++…+<ln n(n≥2).综上,S n<2+2ln n,n∈N*.。
2015年广东省高考数学试题与答案(理科)【解析版】

2015年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5 分)(2015 ?广东)若集合M={x| (x+4)(x+1)=0} ,N={x| (x﹣4)(x﹣1)=0} ,则M ∩N=()A ?{1 ,4} B { ﹣1,﹣4} C {0} D ....考点:交集及其运算.专题:集合.分析:求出两个集合,然后求解交集即可.解答:解:集合M={x| (x+4)(x+1)=0}={ ﹣1,﹣4} ,N={x| (x﹣4)(x﹣1)=0}={1 ,4} ,则M ∩N= ?.故选:D.点评:本题考查集合的基本运算,交集的求法,考查计算能力.2.(5 分)(2015 ?广东)若复数z=i(3﹣2i)(i 是虚数单位),则=()A2﹣3i B 2+3i C 3+2i D 3﹣2i ....考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘法运算法则化简求解即可.解答:解:复数z=i(3﹣2i)=2+3i ,则=2﹣3i,故选:A.点评:本题开采方式的代数形式的混合运算,复数的基本概念,考查计算能力.3.(5 分)(2015 ?广东)下列函数中,既不是奇函数,也不是偶函数的是()x Ax+ DB C y=x+ey=2y= y=x+....考点:函数奇偶性的判断.专题:函数的性质及应用.分析:直接利用函数的奇偶性判断选项即可.解答:解:对于A,y= 是偶函数,所以 A 不正确;对于B,y=x+ 函数是奇函数,所以 B 不正确;x对于C,y=2+ 是偶函数,所以 C 不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以 D 正确.故选:D.1点评:本题考查函数的奇偶性的判断,基本知识的考查.4.(5 分)(2015 ?广东)袋中共有15 个除了颜色外完全相同的球,其中有10 个白球, 5 个红球.从袋中任取 2 个球,所取的 2 个球中恰有 1 个白球,1 个红球的概率为()AB C D 1....考古典概型及其概率计算公式.点:专概率与统计.题:分首先判断这是一个古典概型,从而求基本事件总数和“所取的 2 个球中恰有 1 个白析:球,1 个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15 个球任取2 球的取法,而在求“所取的 2 个球中恰有 1 个白球, 1 个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.解解:这是一个古典概型,从15 个球中任取 2 个球的取法有;答:∴基本事件总数为105;设“所取的 2 个球中恰有 1 个白球,1 个红球”为事件 A ;则A 包含的基本事件个数为=50;∴P(A)= .故选:B.点考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.评:2 25.(5 分)(2015?广东)平行于直线2x+y+1=0 且与圆x +y =5 相切的直线的方程是()A .2x+y+5=0 或2x+y﹣5=0 B.2x+y+ =0 或2x+y ﹣=0C.2x﹣y+5=0 或2x﹣y﹣5=0 D.2x﹣y+ =0 或2x﹣y﹣=0考圆的切线方程.点:专计算题;直线与圆.题:分设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,析:即可求出直线方程.解解:设所求直线方程为2x+y+b=0 ,则,答:所以= ,所以b=±5,所以所求直线方程为:2x+y+5=0 或2x+y﹣5=0故选:A .点本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.评:26.(5 分)(2015 ?广东)若变量x,y 满足约束条件,则z=3x+2y 的最小值为()A4 B C 6 D....考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,根据z 的几何意义,利用数形结合即可得到最小值.解答:解:不等式组对应的平面区域如图:由z=3x+2y 得y=﹣x+ ,平移直线y= ﹣x+ ,则由图象可知当直线y=﹣x+ ,经过点 A 时直线y=﹣x+ 的截距最小,此时z 最小,由,解得,即A(1,),此时z=3×1+2×= ,故选:B.点评:本题主要考查线性规划的应用,根据z 的几何意义,利用数形结合是解决本题的关键.7.(5 分)(2015?广东)已知双曲线C:﹣=1 的离心率e= ,且其右焦点为F2(5,0),则双曲线 C 的方程为()3AB C D.﹣=1 .﹣=1 .﹣=1 .﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解答:解:双曲线C:﹣=1 的离心率e= ,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b= =3,所求双曲线方程为:﹣=1.故选:C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.8.(5 分)(2015?广东)若空间中n 个不同的点两两距离都相等,则正整数n 的取值()A 至多等于 3B 至多等于 4C 等于 5D 大于 5....考点:棱锥的结构特征.专题:创新题型;空间位置关系与距离.分析:先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.解答:解:考虑平面上, 3 个点两两距离相等,构成等边三角形,成立;4 个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n 大于4,也不成立;在空间中, 4 个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5 时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径等于边长,即有球心与正四面体的底面吗的中心重合,故不成立;同理n>5,不成立.故选:B.点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题.二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)的展开式中,x 的系数为 6 .49.(5 分)(2015 ?广东)在(﹣1)考点:二项式定理的应用.专题:计算题;二项式定理.4分析:根据题意二项式(﹣1)4 r的展开式的通项公式为T r+1= ?(﹣1)? ,分析可得,r=1 时,有x 的项,将r=1 代入可得答案.解答:4 解:二项式(﹣1)r的展开式的通项公式为T r+1= ?(﹣1)? ,令2﹣=1,求得r=2,4∴二项式(﹣1)的展开式中x 的系数为=6,故答案为:6.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题10.(5 分)(2015?广东)在等差数列{a n} 中,若a3+a4+a5+a6+a7=25,则a2+a8= 10 .考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列的性质,化简已知的等式即可求出a5 的值,然后把所求的式子也利用等差数列的性质化简后,将a5 的值代入即可求出值.解答:解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.点评:本题主要考查了等差数列性质的简单应用,属于基础试题11.(5 分)(2015 ?广东)设△ABC 的内角 A ,B,C 的对边分别为a,b,c.若a= ,sinB= ,C= ,则b= 1 .考点:正弦定理;两角和与差的正弦函数.专题:计算题;解三角形.分析:由sinB= ,可得B= 或B= ,结合a= ,C= 及正弦定理可求 b解答:解:∵sinB= ,∴B= 或B=当B= 时,a= ,C= ,A= ,由正弦定理可得,则b=15当B= 时,C= ,与三角形的内角和为π矛盾故答案为: 1点评:本题考查了正弦、三角形的内角和定理,熟练掌握定理是解本题的关键12.(5 分)(2015?广东)某高三毕业班有40 人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560 条毕业留言.(用数字作答)考点:排列、组合的实际应用.专题:排列组合.分析:通过题意,列出排列关系式,求解即可.解答:解:某高三毕业班有40 人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560 条.故答案为:1560.点评:本题考查排列数个数的应用,注意正确理解题意是解题的关键.13.(5 分)(2015?广东)已知随机变量X 服从二项分布B(n,p),若E(X)=30,D(X)=20,则P= .考点:离散型随机变量的期望与方差.专题:概率与统计.分析:直接利用二项分布的期望与方差列出方程求解即可.解答:解:随机变量X 服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q= ,则p= ,故答案为:.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.14.(5 分)(2015?广东)已知直线l 的极坐标方程为2ρsin(θ﹣)= ,点A 的极坐标为A (2 ,),则点 A 到直线l 的距离为.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.解答:解:直线l 的极坐标方程为2ρsin(θ﹣)= ,对应的直角坐标方程为:y﹣x=1,点A 的极坐标为 A (2 ,),它的直角坐标为(2,﹣2).点A 到直线l 的距离为:= .6故答案为:.点评:本题考查极坐标与直角坐标方程的互化,点到直线的距离公式的应用,考查计算能力.15.(2015?广东)如图,已知AB 是圆O 的直径,AB=4 ,EC 是圆O 的切线,切点为C,BC=1.过圆心O 作BC 的平行线,分别交EC 和AC 于D 和点P,则OD= 8 .考相似三角形的判定.点:专选作题;创新题型;推理和证明.题:分析:2连接OC,确定OP⊥AC,OP= BC= ,Rt△OCD 中,由射影定理可得OC=OP?OD,即可得出结论.解解:连接OC,则OC⊥CD,答:∵AB 是圆O 的直径,∴BC ⊥AC,∵OP∥BC,∴OP⊥AC,OP= BC= ,2Rt△OCD 中,由射影定理可得OC =OP?OD,∴4= OD,∴OD=8 .故答案为:8.点本题考查圆的直径与切线的性质,考查射影定理,考查学生的计算能力,比较基础.评:三、解答题716.(12 分)(2015?广东)在平面直角坐标系xOy 中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx 的值;(2)若与的夹角为,求x 的值.考平面向量数量积的运算;数量积表示两个向量的夹角.点:专平面向量及应用.题:分析:(1)若⊥,则?=0,结合三角函数的关系式即可求tanx 的值;(2)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求x 的值.解答:解:(1)若⊥,则? =(,﹣)?(sinx,cosx)= sinx﹣c osx=0,即sinx= cosxsinx=cosx,即tanx=1;(2)∵| |=1,| |=1,? =(,﹣)?(sinx,cosx)= sinx﹣c osx,∴若与的夹角为,则? =| |?| |cos = ,即sinx﹣c osx= ,则s in(x﹣)= ,∵x∈(0,).∴x﹣∈(﹣,).则x﹣=即x= + = .点本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基评:础.17.(12 分)(2015 ?广东)某工厂36 名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄81 40 10 36 19 27 28 342 44 11 31 20 43 29 393 40 12 38 21 41 30 434 41 13 39 22 37 31 385 33 14 43 23 34 32 426 40 15 45 24 42 33 537 45 16 39 25 37 34 378 42 17 38 26 44 35 499 43 18 36 27 42 36 39 (1)用系统抽样法从36 名工人中抽取容量为9 的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;2(2)计算(1)中样本的均值和方差s;(3)36 名工人中年龄在﹣s和+s 之间有多少人?所占百分比是多少(精确到0.01%)?考点:极差、方差与标准差;系统抽样方法.专题:概率与统计.分析:(1)利用系统抽样的定义进行求解即可;2 (2)根据均值和方差公式即可计算(1)中样本的均值和方差s;(3)求出样本和方差即可得到结论.解答:解:(1)由系统抽样知,36 人分成9 组,每组 4 人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,⋯,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得= (44+40+36+43+36+37+44+43+37 )=40.2 2由方差公式得s= [(44﹣40)+(40﹣40)2 2+⋯+(37﹣40)] = .2(3)∵s= .∴s= ∈(3,4),∴36 名工人中年龄在﹣s和+s 之间的人数等于区间[37,43]的人数,即40,40,41,⋯,39,共23 人.∴36 名工人中年龄在﹣s和+s 之间所占百分比为≈63.89%.点评:本题主要考查统计和分层抽样的应用,比较基础.18.(14 分)(2015 ?广东)如图,三角形△PDC 所在的平面与长方形A BCD 所在的平面垂直,PD=PC=4,AB=6 ,BC=3 ,点 E 是CD 的中点,点F、G 分别在线段AB 、BC 上,且AF=2FB ,CG=2GB .(1)证明:PE⊥FG;(2)求二面角P﹣A D﹣C的正切值;(3)求直线P A 与直线F G 所成角的余弦值.9考点:二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(1)通过△POC 为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD ,则∠PDC 为二面角P﹣AD ﹣C 的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC ,在△PAC 中,利用余弦定理即得直线PA 与直线FG 所成角即为直线PA 与直线FG 所成角∠PAC的余弦值.解答:(1)证明:在△POC 中PO=PC 且E 为CD 中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD ,平面PDC∩平面ABCD=CD ,PE? 平面PCD,∴PE⊥平面ABCD ,又∵FG? 平面ABCD ,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD ,∴PE⊥AD,又∵CD⊥AD 且PE∩CD=E ,∴AD ⊥平面PDC,又∵PD? 平面PDC,∴AD ⊥PD,又∵AD ⊥CD,∴∠PDC 为二面角P﹣AD ﹣C 的平面角,在Rt△PDE 中,由勾股定理可得:PE= = = ,∴tan∠PDC= = ;(3)解:连结AC,则AC= =3 ,在Rt△ADP 中,AP= = =5,∵AF=2FB ,CG=2GB ,∴FG∥AC,∴直线PA 与直线FG 所成角即为直线PA 与直线FG 所成角∠PAC,在△PAC 中,由余弦定理得cos∠PAC=== .10定理、勾股点评:本题考查线线垂直的判定、二面角及线线角的三角函数值,涉及到余弦定理等知识,注意解题方法的积累,属于中档题.2 x)e ﹣a. 19.(14 分)(2015 ?广东)设a>1,函数 f (x)=(1+x;(1)求f(x)的单调区间(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;直线OP (3)若曲线y=f (x)在点P 处的切线与x轴平行,且在点M(m,n)处的切线与平行,(O 是坐标原点),证明:m≤﹣1.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.用.合应题:常规题型;导数的综专.分析:(1)利用f'(x)≥0,求出函数单调增区间(2)证明只有 1 个零点,需要说明两个方面:①函数单调;②函数有零点.杂.为复(3)利用导数的最值求解方法证明,思路较x 2 x 2解答:解:(1)f'(x)=e (x (x+1)+2x+1 )=e ⋯2 分∴f′(x)≥0,∴f(x)=(1+x 2 x)e ﹣a 在(﹣∞,+∞)上为增函数.⋯3 分(2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数.又f(0)=1﹣a,∵a>1.∴1﹣a<0⋯5 分∴f(0)<0.当x→+∞时,f(x)>0 成立.∴f(x)在(﹣∞,+∞)上有且只有一个零点⋯7 分x 2(3)证明:f'(x)=e (x+1),x0 2设点P(x0,y0)则)f'(x)=e (x0+1),x0 2 ∵y=f (x)在点P 处的切线与x轴平行,∴f'(x0)=0,即:e (x0+1)=0,∴x0=﹣1⋯9 分将x0=﹣1 代入y=f (x)得y0= .∴,∴⋯10 分m令g(m)=e ﹣(m+1),m则g'(m)=e ﹣1,由g'(m)=0 得m=0.当m∈(0,+∞)时,g'(m)>0当m∈(﹣∞,0)时,g'(m)<0∴g(m)的最小值为g(0)=0⋯12 分m∴g(m)=e ﹣(m+1)≥0m∴e≥m+111m∴e (m+1)2 3 ≥(m+1)即:∴m≤⋯14 分点评:本题考查了导数在函数单调性和最值上的应用,属于综合应用,在高考中属于压轴题目,有较大难度.2 220.(14 分)(2015 ?广东)已知过原点的动直线l 与圆C1:x+y﹣6x+5=0 相交于不同的两点A ,B.(1)求圆C1 的圆心坐标;(2)求线段A B 的中点M 的轨迹 C 的方程;(3)是否存在实数k,使得直线L:y=k (x﹣4)与曲线 C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.考轨迹方程;直线与圆的位置关系.点:专创新题型;开放型;圆锥曲线的定义、性质与方程.题:分(1)通过将圆C1 的一般式方程化为标准方程即得结论;析:(2)设当直线l 的方程为y=kx ,通过联立直线l 与圆C1 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L 与圆C1 的方程,利用根的判别式△=0 及轨迹 C 的端点与点解答:(4,0)决定的直线斜率,即得结论.2 2解:(1)∵圆C1:x﹣6x+5=0 ,+y2 2整理,得其标准方程为:(x﹣3)+y =4,∴圆C1 的圆心坐标为(3,0);(2)设当直线l 的方程为y=kx 、A(x1,y1)、B(x2,y2),联立方程组,2 2消去y 可得:(1+k )x﹣6x+5=0 ,2 2由△=36﹣4(1+k )×5>0,可得k <由韦达定理,可得x1+x2= ,∴线段A B 的中点M 的轨迹 C 的参数方程为,其中﹣<k<,∴线段A B 的中点M 的轨迹 C 的方程为:(x﹣)2+y 2 = ,其中<x≤3;12(3)结论:当k∈(﹣,)∪{ ﹣,} 时,直线L:y=k (x﹣4)与曲线C 只有一个交点.理由如下:联立方程组,消去y,可得:(1+k 2 2)x ﹣(3+8k)x+16k 2=0,2 2令△=(3+8k)﹣4(1+k )?16k 2=0,解得k=±,又∵轨迹 C 的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k (x﹣4)与曲线 C 只有一个交点时,k 的取值范围为(﹣,)∪{ ﹣,} .点本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于评:中档题.+21.(14 分)(2015 ?广东)数列{a n}满足:a1+2a2+⋯na n=4﹣,n∈N.(1)求a3 的值;(2)求数列{a n} 的前n 项和T n;(3)令b1=a1,b n= +(1+ + +⋯+ )a n(n≥2),证明:数列{b n} 的前n 项和S n 满足S n<2+2lnn .考点:数列与不等式的综合;数列的求和.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)利用数列的递推关系即可求a3 的值;(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n 项和公式即可求数列{a n} 的前n 项和T n;(3)利用构造法,结合裂项法进行求解即可证明不等式.解答:+解:(1)∵a1+2a2+⋯na n=4﹣,n∈N .∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2= ,∵a1+2a2+⋯+na n=4﹣,n∈N + .+∴a1+2a2+⋯+(n﹣1)a n .﹣1=4﹣,n∈N两式相减得na n=4﹣﹣(4﹣)= ,n≥2,13则a n= ,n≥2,当n=1 时,a1=1 也满足,∴a n= ,n≥1,则a3= ;(2)∵a n= ,n≥1,∴数列{a n} 是公比q= ,1﹣n2.则数列{a n} 的前n 项和T n= =2﹣(3)b n= +(1+ + +⋯+ )a n,∴b1=a1,b2= +(1+ )a2,b3= (1+ + )a3,∴S n=b1+b2+⋯+b n=(1+ + +⋯+ )(a1+a2+⋯+a n)=(1+ + +⋯+ )T n1﹣n)<2×(1+ + +⋯+ ),=(1+ + +⋯+ )(2﹣21,x>1,设f(x)=lnx+﹣.则f′(x)=﹣即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N?时,,∴f()=ln +﹣1>0,即ln >,∴ln ,,⋯,即=lnn,∴2×(1+ + +⋯+ )<2+lnn,即S n<2(1+lnn )=2+2lnn .本题主要考查数列通项公式以及前n 项和的计算,以及数列和不等式的综合,利点评:性力,综合用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能14WORD文档较强,难度较大.152015年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5 分)(2015 ?广东)若集合M={x| (x+4)(x+1)=0} ,N={x| (x﹣4)(x﹣1)=0} ,则M ∩N=()A .{ 1,4} B.{ ﹣1,﹣4} C.{0} D.?2.(5 分)(2015 ?广东)若复数z=i(3﹣2i)(i 是虚数单位),则=()A .2﹣3i B.2+3i C.3+2i D.3﹣2i3.(5 分)(2015 ?广东)下列函数中,既不是奇函数,也不是偶函数的是()xA .C.y=2x+ D.y =x+e B.y= y=x+4.(5 分)(2015 ?广东)袋中共有15 个除了颜色外完全相同的球,其中有10 个白球, 5 个红球.从袋中任取 2 个球,所取的 2 个球中恰有 1 个白球,1 个红球的概率为()A .B.C.D.12 25.(5 分)(2015?广东)平行于直线2x+y+1=0 且与圆x +y =5 相切的直线的方程是()A .2x+y+5=0 或2x+y﹣5=0 B.2x+y+ =0 或2x+y ﹣=0C.2x﹣y+5=0 或2x﹣y﹣5=0 D.2x﹣y+ =0 或2x﹣y﹣=06.(5 分)(2015 ?广东)若变量x,y 满足约束条件,则z=3x+2y 的最小值为()A .4 B.C.6 D.7.(5 分)(2015?广东)已知双曲线C:﹣=1 的离心率e= ,且其右焦点为F2(5,0),则双曲线 C 的方程为()A .B.C.D.﹣=1 ﹣=1 ﹣=1 ﹣=18.(5 分)(2015?广东)若空间中n 个不同的点两两距离都相等,则正整数n 的取值()A .至多等于 3 B.至多等于 4 C.等于5 D.大于516二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)49.(5 分)(2015 ?广东)在(﹣1)的展开式中,x 的系数为.10.(5 分)(2015?广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= .11.(5 分)(2015 ?广东)设△ABC 的内角 A ,B,C 的对边分别为a,b,c.若a= ,sinB= ,C= ,则b= .12.(5 分)(2015?广东)某高三毕业班有40 人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5 分)(2015?广东)已知随机变量X 服从二项分布B(n,p),若E(X)=30,D(X)=20,则P= .14.(5 分)(2015?广东)已知直线l 的极坐标方程为2ρsin(θ﹣)= ,点A 的极坐标.为A(2 ,),则点 A 到直线l 的距离为15.(2015?广东)如图,已知AB 是圆O的直径,AB=4 ,EC 是圆O的切线,切点为C,BC=1.过圆心O 作BC 的平行线,分别交EC 和AC 于D 和点P,则OD= .三、解答题16.(12 分)(2015?广东)在平面直角坐标系xOy 中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx 的值;(2)若与的夹角为,求x 的值.17.(12 分)(2015 ?广东)某工厂36 名工人年龄数据如图:年龄工人编号年龄工人编号年龄年龄工人编号工人编号171 40 10 36 19 27 28 342 44 11 31 20 43 29 393 40 12 38 21 41 30 434 41 13 39 22 37 31 385 33 14 43 23 34 32 426 40 15 45 24 42 33 537 45 16 39 25 37 34 378 42 17 38 26 44 35 499 43 18 36 27 42 36 399的样本,且在第一分段里用随机抽样法抽到(1)用系统抽样法从36 名工人中抽取容量为;的年龄数据为44,列出样本的年龄数据2(2)计算(1)中样本的均值和方差s;0.01%)?s和+s 之间有多少人?所占百分比是多少(精确到(3)36 名工人中年龄在﹣18.(14 分)(2015 ?广东)如图,三角形△PDC 所在的平面与长方形A BCD 所在的平面垂直,PD=PC=4,AB=6 ,BC=3 ,点 E 是CD 的中点,点F、G 分别在线段AB 、BC 上,且AF=2FB ,CG=2GB .(1)证明:PE⊥FG;C的正切值;(2)求二面角P﹣A D﹣(3)求直线PA 与直线FG 所成角的余弦值.2 x)e﹣a. 19.(14 分)(2015 ?广东)设a>1,函数 f (x)=(1+x间;(1)求f(x)的单调区(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f (x)在点P 处的切线与x 轴平行,且在点M(m,n)处的切线与直线OP1.平行,(O 是坐标原点),证明:m≤﹣2 220.(14 分)(2015 ?广东)已知过原点的动直线l 与圆C1:x﹣6x+5=0 相交于不同的两+y点A ,B.(1)求圆C1 的圆心坐标;C的方程;(2)求线段AB 的中点M 的轨迹4)与曲线 C 只有一个交点?若存在,求出(3)是否存在实数k,使得直线L:y=k (x﹣k 的取值范围;若不存在,说明理由.+21.(14 分)(2015 ?广东)数列{a n}满足:a1+2a2+⋯na n=4﹣,n∈N.(1)求a3 的值;(2)求数列{a n} 的前n 项和T n;18(3)令b1=a1,b n= +(1+ + +⋯+ )a n(n≥2),证明:数列{b n} 的前n 项和S n 满足S n<2+2lnn .19。
2015年普通高等学校招生全国统一考试理科数学(广东卷)(含答案全解析)

2015年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上,用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:样本数据x 1,x 2,…,x n 的方差s 2=1[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015广东,理1)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M ∩N=( ) A.{1,4} B.{-1,-4} C.{0} D.⌀ 答案:D解析:由题意知集合M={-4,-1},N={4,1},M 和N 没有相同的元素.故M ∩N=⌀. 2.(2015广东,理2)若复数z=i(3-2i)(i 是虚数单位),则z = ( )A.2-3iB.2+3iC.3+2iD.3-2i 答案:A解析:因为z=i(3-2i)=3i -2i 2=2+3i,所以z =2-3i .3.(2015广东,理3)下列函数中,既不是奇函数,也不是偶函数的是( ) A.y= 2 B.y=x+1 C.y=2x +12x D.y=x+e x答案:D解析:根据函数奇偶性的定义,易知函数y= 2y=2x +1x 为偶函数,y=x+1为奇函数,所以排除选项A,B,C.故选D.4.(2015广东,理4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.5B.10C.11D.1答案:B解析:从15个球中任取2个球,其中白球的个数服从超几何分布,根据超几何分布的概率公式,得所取的2个球中恰有1个白球,1个红球的概率为C 101C 51C 152=10×5=10. 5.(2015广东,理5)平行于直线2x+y+1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x+y+5=0或2x+y-5=0 B.2x+y+ =0或2x+y- =0 C.2x-y+5=0或2x-y-5=0 D.2x-y+ 5=0或2x-y- 5=0 答案:A解析:设与直线2x+y+1=0平行的直线方程为2x+y+m=0(m ≠1),因为直线2x+y+m=0与圆x 2+y 2=5相切,即点(0,0)到直线2x+y+m=0的距离为 5,所以 5= 5,|m|=5.故所求直线的方程为2x+y+5=0或2x+y-5=0.6.(2015广东,理6)若变量x ,y 满足约束条件 4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z=3x+2y 的最小值为( )A.4B.235C.6 D.315答案:B解析:作出题中约束条件表示的可行域如图中阴影部分所示,由z=3x+2y可得y=-32x+z2.z指的是直线y=-3x+z在y轴上的截距,根据图形可知当直线y=-3x+z通过点A时,可使z取得最小值,即z取得最小值.易知点A的坐标为1,45,所以z min=3×1+2×4=23.7.(2015广东,理7)已知双曲线C:x 2a2−y2b2=1的离心率e=54,且其右焦点为F2(5,0),则双曲线C的方程为()A.x 24−y23=1 B.x29−y216=1C.x 2−y2=1 D.x2−y2=1答案:C解析:因为双曲线C的右焦点为F2(5,0),所以c=5.因为离心率e=ca =54,所以a=4.又a2+b2=c2,所以b2=9.故双曲线C的方程为x 2−y2=1.8.(2015广东,理8)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3B.至多等于4C.等于5D.大于5答案:B解析:特殊值法.当n=3时,正三角形的三个顶点之间两两距离相等,故n=3符合;当n=4时,联想正四面体的四个顶点之间两两距离相等,故n=4符合.由此可以排除选项A,C,D.故选B.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.(2015广东,理9)在(x-1)4的展开式中,x的系数为.答案:6解析:该二项展开式的通项为T r+1=C4r(x)4-r(-1)r,当x的指数为1时,4-r=2,解得r=2.故T3=C42(x)2(-1)2=6x,即x的系数为6.10.(2015广东,理10)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=. 答案:10解析:根据等差数列的性质,得a3+a4+a5+a6+a7=5a5=25,解得a5=5.又a2+a8=2a5,所以a2+a8=10.11.(2015广东,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=.答案:1解析:由sin B=12解得B=π6或B=5π6.根据三角形内角和定理,舍去B=5π,所以B=π6,A=2π3.根据正弦定理asin A =bsin B,得3sin2π3=bsinπ6,解得b=1.12.(2015广东,理12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案:1 560解析:该问题是一个排列问题,故共有A402=40×39=1 560条毕业留言.13.(2015广东,理13)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=. 答案:13解析:根据二项分布的均值、方差公式,得E(X)=np=30,D(X)=np(1−p)=20,解得p=13.(二)选做题(14-15题,考生只能从中选做一题)14.(2015广东,理14)(坐标系与参数方程选做题)已知直线l的极坐标方程为2ρsin θ−π4=2,点A的极坐标为A22,7π4,则点A到直线l的距离为.答案:522解析:2ρsin θ−π=2,即2ρsin θcosπ-2ρcos θsinπ=2,将其化为直角坐标方程为y-x=1.又点A的直角坐标为22cos7π4,22sin7π4=(2,-2),所以点A(2,-2)到直线y-x=1的距离d=2=522.15.(2015广东,理15)(几何证明选讲选做题)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1,过圆心O作BC的平行线,分别交EC和AC于点D和点P,则OD=.答案:8解析:设OD交劣弧AC于点M,由OP∥BC,得OP=1,P为AC的中点,PM=3.由切割线定理得DC2=DM·(DM+4).①在△ABC中,AC为直角边,且AC=2−BC2=42−12=15,所以CP=152.在Rt△DCP中,DC2=(DM+PM)2+CP2, ②联立①②可求得DM=6,所以OD=8.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015广东,理16)在平面直角坐标系xOy中,已知向量m=22,−22,n=(sin x,cos x),x∈0,π.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为π3,求x的值.解:(1)∵m=2,−2,n=(sin x,cos x),且m⊥n,∴m·n=22,−2·(sin x,cos x)=2sin x-2cos x=sin x−π=0.又x∈0,π2,∴x-π4∈ −π4,π4.∴x-π=0,即x=π.∴tan x=tanπ4=1.(2)由(1)和已知得cosπ3=m·n|m|·|n|=sin x−π422+−22·sin2x+cos2x=sin x−π4=12,又x-π∈ −π,π,∴x-π4=π6,即x=5π12.17.(本小题满分12分)(2015广东,理17)某工厂36名工人的年龄数据如下表:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值x和方差s2;(3)36名工人中年龄在x-s与x+s之间有多少人?所占的百分比是多少(精确到0.01%)?解:(1)依题意知所抽取的样本编号是一个首项为2,公差为4的等差数列,故其所有样本编号依次为2,6,10,14,18,22,26,30,34,对应样本的年龄数据依次为44,40,36,43,36,37,44,43,37.(2)由(1)可得其样本的均值x=44+40+36+43+36+37+44+43+379=40,方差s2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=19[42+02+(-4)2+32+(-4)2+(-3)2+42+32+(-3)2]=100.(3)由(2)知s=10,所以x-s=3623,x+s=4313.因为年龄在x-s与x+s之间共有23人,所以其所占的百分比是2336≈63.89%.18.(本小题满分14分)(2015广东,理18)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P-AD-C的正切值;(3)求直线PA与直线FG所成角的余弦值.(1)证明:∵PD=PC,且点E为CD边的中点,∴PE⊥DC.又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,PE⊂平面PDC,∴PE⊥平面ABCD.又FG⊂平面ABCD,∴PE⊥FG.(2)解:∵四边形ABCD是矩形,∴AD⊥DC.又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,AD⊂平面ABCD,∴AD⊥平面PDC.∵PD⊂平面PDC,∴AD⊥PD.∴∠PDC即为二面角P-AD-C的平面角.在Rt△PDE中,PD=4,DE=1AB=3,PE= PD2−DE2=7,∴tan∠PDC=PEDE =73,即二面角P-AD-C的正切值为73.(3)解:如图所示,连接AC,∵AF=2FB,CG=2GB,即AF=CG=2,∴AC ∥FG ,∴∠PAC 即为直线PA 与直线FG 所成的角或其补角. 在△PAC 中,PA=2+AD 2=5, AC=2+CD 23 由余弦定理可得cos ∠PAC=PA 2+AC 2−PC 2=2 5)222×5×3 5=9 5, ∴直线PA 与直线FG 所成角的余弦值为9 525.19.(本小题满分14分)(2015广东,理19)设a>1,函数f (x )=(1+x 2)e x -a.(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y=f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤a −2e3-1.解:(1)由题意可知函数f (x )的定义域为R ,f'(x )=(1+x 2)'e x +(1+x 2)(e x )'=(1+x )2e x ≥0,故函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间. (2)∵a>1,∴f (0)=1-a<0,且f (a )=(1+a 2)e a -a>1+a 2-a>2a-a=a>0. ∴函数f (x )在区间(0,a )上存在零点.又由(1)知函数f (x )在(-∞,+∞)上单调递增, ∴函数f (x )在(-∞,+∞)上仅有一个零点. (3)由(1)及f'(x )=0,得x=-1.又f (-1)=2e -a ,即P −1,2e −a ,∴k OP =2e−a−0−1−0=a-2e .又f'(m )=(1+m )2e m ,∴(1+m )2e m =a-2.令g (m )=e m -m-1,则g'(m )=e m -1,∴由g'(m )>0,得m>0,由g'(m )<0,得m<0.∴函数g (m )在(-∞,0)上单调递减,在(0,+∞)上单调递增. ∴g (m )min =g (0)=0,即g (m )≥0在R 上恒成立, 即e m ≥m+1.∴a-2e =(1+m )2e m ≥(1+m )2(1+m )=(1+m )3, 即 a −23≥1+m. 故m ≤ a −23-1.20.(本小题满分14分)(2015广东,理20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A ,B. (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y=k (x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 解:(1)由x 2+y 2-6x+5=0,得(x-3)2+y 2=4,从而可知圆C 1的圆心坐标为(3,0). (2)设线段AB 的中点M (x ,y ),由弦的性质可知C 1M ⊥AB ,即C 1M ⊥OM. 故点M 的轨迹是以OC 1为直径的圆,该圆的圆心为C 3,0 ,半径r=1|OC 1|=1×3=3, 其方程为 x −322+y 2= 322,即x 2+y 2-3x=0.又因为点M 为线段AB 的中点,所以点M 在圆C 1内, 所以 2+y 2<2. 又x 2+y 2-3x=0,所以可得x>5. 易知x ≤3,所以5<x ≤3.所以线段AB 的中点M 的轨迹C 的方程为x 2+y 2-3x=0 53<x ≤3 . (3)存在实数k 满足题意.由(2)知点M 的轨迹是以C 32,0 为圆心,32为半径的圆弧EF(如图所示,不包括两个端点), 且E 53,2 53 ,F 53,−2 53. 又直线L :y=k (x-4)过定点D (4,0), 当直线L 与圆C 相切时,由k 32−4 −0 k +1=32,得k=±34.又k DE =-k DF =-0− −2 534−53=2 5,结合上图可知当k ∈ −3,3 ∪ −2 5,2 5时,直线L :y=k (x-4)与曲线C 只有一个交点.21.(本小题满分14分)(2015广东,理21)数列{a n }满足:a 1+2a 2+…+na n =4-n +22n−1,n ∈N *.(1)求a 3的值;(2)求数列{a n }的前n 项和T n ; (3)令b 1=a 1,b n =T n−1+ 1+1+1+⋯+1a n (n ≥2),证明:数列{b n }的前n 项和S n 满足S n <2+2ln n.解:(1)依题意知3a 3=(a 1+2a 2+3a 3)-(a 1+2a 2)=4-3+223−1− 4−2+222−1 =34,即a 3=14.(2)∵当n ≥2时,na n =(a 1+2a 2+…+na n )-[a 1+2a 2+…+(n-1)a n-1]=4-n +22n−1− 4−n +12n−2=n2n−1,∴a n = 12 n−1.又a 1=4-1+220=1也适合此式, ∴a n = 1n−1,即数列{a n }是首项为1,公比为12的等比数列.故T n =1− 12n1−12=2- 1n−1. (3)由b n =a 1+a 2+⋯+a n−1n + 1+12+⋯+1n a n ,且b 1=a 1,知b 2=a 12+ 1+12 a 2,b 3=a 1+a 23+ 1+12+13a 3,……∴S n =b 1+b 2+…+b n = 1+1+⋯+1 (a 1+a 2+…+a n )= 1+1+⋯+1T n= 1+1+⋯+1 2−12n−1 <2× 1+1+⋯+1.记f (x )=ln x+1x -1(x>1),则f'(x )=1−12=x−12>0,∴f (x )在(1,+∞)上是增函数, 又f (1)=0,即在(1,+∞)上f (x )>0.又k ≥2,且k ∈N *时,kk−1>1, ∴f k =ln k+1k k−1-1>0,即lnk >1.∴1<ln 2,1<ln 3,……,1<ln n,即有1+1+…+1<ln 2+ln 3+…+ln n=ln n. ∴2× 1+1+1+⋯+1<2+2ln n , 即S n <2+2ln n.。
【数学】2015年高考真题——广东卷(理)(word版含解析)

一.选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则MN =( )A .∅B .{}1,4--C .{}0D .{}1,4 2.若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i - B .32i + C .23i + D .23i - 3.下列函数中,既不是奇函数,也不是偶函数的是( ) A .x e x y += B .x x y 1+= C .x xy 212+= D .21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .1 B.2111 C. 2110 D. 215 5.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( )A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x6.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为( )A .531 B. 6 C. 523 D. 4 7.已知双曲线C :12222=-by a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为( )A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3第Ⅱ卷(共110分)二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.在4)1(-x 的展开式中,x 的系数为10.在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += 11.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a = 1sin 2B =,6C =π,则b =12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)13、已知随机变量X 服从二项分布(),n p B ,若()30E X =,()D 20X =,则p = . (二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为74A π⎛⎫⎪⎝⎭,则点A 到直线l 的距离为 15.(几何证明选讲选作题)如图1,已知AB 是圆O 的直径,4AB =,EC 是圆O 的切线,切点为C ,1BC =,过圆心O 做BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD =图1三.解答题:本大题共6小题,满分80分.16.(本小题满分12分)在平面直角坐标系xoy中,已知向量2m ⎛= ⎝⎭,()sin ,cos n x x =,0,2x π⎛⎫∈ ⎪⎝⎭。
2015年广东省3+证书高职高考数学试卷〖含答案〗(真题)和答案

22. (本小题满分 12 分)
已知函数
f
(x)
a
cos(
x
6
)
的图像经过点
2
,
1 2
.
(1)求 a 的值;
(2)若 sin 1 , 0 ,求 f ( ) .
3
2
23.(本小题满分 14 分)
在等差数列an 中,已知 a4 9, a6 a7 28 .
(1)求数列 an 的通项公式;
16. 若等比数列an 满足 a1 4 , a2 20 ,则an 的前 n 项和 an
.
17.质检部门从某工厂生产的同一批产品中随机抽取100 件进行质检,发现其中有 5
件不合格品,由此估计这批产品中合格品的概率是
.
18.已知向量 a 和 b 的夹角为 3 ,且 a 2 , b 3 ,则 a b
只有一项是符合题目要求的。)
题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
号
答
案
1. 设集合 M 1, 4 , N 1,3,5 ,则 M N=
(
).
A.0
B. 1
C. 0,1, 2
D. 1,0,1, 2
2. 函数 f (x) 1 x 的定义域是
(
).
A. ,1
B. 1,
C. ,1
D. (, )
3. 不等式 x2 7x 6 0 的解集是
(
).
A. 1,6
B. ,1 6,
C.
D. (, )
4. 设 a 0 且 a 1,x, y 为任意实数,则下列算式错误的是
(
).
A. a0 1
B. ax ay axy
2015年普通高等学校招生全国统一考试文科数学(广东卷)(含答案全解析)

2015年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上,用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015广东,文1)若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1}B.{1}C.{0}D.{-1,1}答案:B解析:因为M,N的公共元素只有1,所以M∩N={1}.2.(2015广东,文2)已知i是虚数单位,则复数(1+i)2=()A.2iB.-2iC.2D.-2答案:A解析:(1+i)2=1+2i+i2=1+2i-1=2i.3.(2015广东,文3)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin 2xB.y=x2-cos xC.y=2x+12x D.y=x2+sin x答案:D解析:A为奇函数,B和C为偶函数,D既不是奇函数,也不是偶函数.4.(2015广东,文4)若变量x,y满足约束条件{x+2y≤2,x+y≥0,x≤4,则z=2x+3y的最大值为()A.2B.5C.8D.10 答案:B解析:约束条件表示的可行域如图阴影部分所示,而z=2x+3y可变形为y=-23x+z3,z3表示直线y=-23x在y轴上的截距,由图可知当直线经过点A(4,-1)时z取最大值,最大值为z=2×4+3×(-1)=5.5.(2015广东,文5)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2√3,cos A=√32且b<c,则b=() A.3 B.2√2 C.2 D.√3答案:C解析:由余弦定理a2=b2+c2-2bc cos A,得4=b2+12-2·b·2√3×√32,即b2-6b+8=0,解得b=2或4.又因为b<c,所以b=2.6.(2015广东,文6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案:D解析:l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.7.(2015广东,文7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为 ( ) A.0.4 B.0.6 C.0.8 D.1 答案:B解析:设正品分别为A 1,A 2,A 3,次品分别为B 1,B 2,从中任取2件产品,基本事件共有10种,分别为{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.8.(2015广东,文8)已知椭圆x 225+y 2m2=1(m>0)的左焦点为F 1(-4,0),则m=( ) A.2 B.3 C.4 D.9 答案:B解析:由已知a 2=25,b 2=m 2,c=4,又由a 2=b 2+c 2,可得m 2=9.因为m>0,所以m=3.9.(2015广东,文9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2 答案:A解析:AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(1,-2)+(2,1)=(3,-1),所以AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(2,1)·(3,-1)=2×3+1×(-1)=5.10.(2015广东,文10)若集合E={(p ,q ,r ,s )|0≤p<s ≤4,0≤q<s ≤4,0≤r<s ≤4且p ,q ,r ,s ∈N },F={(t ,u ,v ,w )|0≤t<u ≤4,0≤v<w ≤4且t ,u ,v ,w ∈N },用card(X )表示集合X 中的元素个数,则card(E )+card(F )=( ) A.200 B.150 C.100 D.50 答案:A解析:E 中有序数组的要求为s 均大于p ,q ,r ,当s 取4时,p 可取0,1,2,3,q 也可取0,1,2,3,r 也可取0,1,2,3,此时不同数组有4×4×4=64个;同理当s 取3时,p ,q ,r 均可从0,1,2中任取1个,此时不同数组有3×3×3=27个;当s 取2时,p ,q ,r 可从0,1中任取1个,不同数组有2×2×2=8个;当s 取1时,p ,q ,r 只能都取0,不同数组有1个,因此E 中不同元素共有64+27+8+1=100个.F 中元素要求为t<u ,v<w ,当u 取4时,t 可取0,1,2,3;当u 取3时,t 可取0,1,2;当u 取2时,t 可取0,1; 当u 取1时,t 取0,所以t ,u 的不同组合为10种.同理,v ,w 不同组合也有10种,故F 中元素个数为10×10=100,所以card(E )+card(F )=200. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.(2015广东,文11)不等式-x 2-3x+4>0的解集为 .(用区间表示) 答案:(-4,1)解析:不等式可化为x 2+3x-4<0,即(x-1)(x+4)<0,解得-4<x<1.12.(2015广东,文12)已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为 . 答案:11解析:由题意,y i =2x i +1(i=1,2,…,n ),则y =2x +1=2×5+1=11.13.(2015广东,文13)若三个正数a ,b ,c 成等比数列,其中a=5+2√6,c=5-2√6,则b= . 答案:1解析:因为a ,b ,c 成等比数列,所以b 2=ac ,即b 2=(5+2√6)(5-2√6)=1. 又b 是正数,所以b=1.(二)选做题(14-15题,考生只能从中选做一题)14.(2015广东,文14)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为{x =t 2,y =2√2t ,(t 为参数),则C 1与C 2交点的直角坐标为 . 答案:(2,-4)解析:∵ρ(cos θ+sin θ)=-2,∴曲线C 1的直角坐标方程为x+y=-2. 由已知得曲线C 2的普通方程为y 2=8x. 由{x +y =-2,y 2=8x ,得y 2+8y+16=0, 解得y=-4,x=2.所以C 1与C 2交点的直角坐标为(2,-4).15.(2015广东,文15)(几何证明选讲选做题)如图,AB 为圆O 的直径,E 为AB 延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D.若AB=4,CE=2√3,则AD= . 答案:3解析:由切割线定理得EC 2=EB ·EA ,即12=EB ·(EB+4),可求得EB=2. 连接OC ,则OC ⊥DE ,所以OC ∥AD ,所以EO EA=OC AD ,即46=2AD,所以AD=3.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015广东,文16)已知tan α=2.(1)求tan (α+π4)的值;(2)求sin2αsin 2α+sinαcosα-cos2α-1的值.解:(1)tan (α+π4)=tanα+tan π41-tanαtan π4=tanα+11-tanα=2+11-2=-3. (2)sin2αsin 2α+sinαcosα-cos2α-1=2sinαcosαsin 2α+sinαcosα-(2cos 2α-1)-1=2sinαcosαsin 2α+sinαcosα-2cos 2α=2tanαtan 2α+tanα-2 =2×222+2-2=1.17.(本小题满分12分)(2015广东,文17)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230. 因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a , 由(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,得a=224, 所以月平均用电量的中位数是224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户), 月平均用电量在[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量在[260,280)的用户有0.005×20×100=10(户),月平均用电量在[280,300]的用户有0.002 5×20×100=5(户),抽取比例为1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).18.(本小题满分14分)(2015广东,文18)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD=PC=4,AB=6,BC=3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.(1)证明:因为四边形ABCD 是长方形,所以BC ∥AD.因为BC ⊄平面PDA ,AD ⊂平面PDA , 所以BC ∥平面PDA.(2)证明:因为四边形ABCD 是长方形,所以BC ⊥CD.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,BC ⊂平面ABCD , 所以BC ⊥平面PDC.因为PD ⊂平面PDC ,所以BC ⊥PD.(3)解:取CD 的中点E ,连接AE 和PE.因为PD=PC ,所以PE ⊥CD.在Rt △PED 中,PE=√PD 2-DE 2=√42-32=√7.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,PE ⊂平面PDC , 所以PE ⊥平面ABCD. 由(2)知BC ⊥平面PDC. 由(1)知BC ∥AD. 所以AD ⊥平面PDC.因为PD ⊂平面PDC ,所以AD ⊥PD. 设点C 到平面PDA 的距离为h , 因为V 三棱锥C-PDA =V 三棱锥P-ACD ,所以13S △PDA ·h=13S △ACD ·PE , 即h=S △ACD ·PE S △PDA=12×3×6×√712×3×4=3√72, 所以点C 到平面PDA 的距离是3√72. 19.(本小题满分14分)(2015广东,文19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n+1+S n-1.(1)求a 4的值;(2)证明:{a n+1-12a n }为等比数列; (3)求数列{a n }的通项公式.(1)解:当n=2时,4S 4+5S 2=8S 3+S 1,即4(1+32+54+a 4)+5(1+32)=8(1+32+54)+1, 解得a 4=78. (2)证明:因为4S n+2+5S n =8S n+1+S n-1(n ≥2),所以4S n+2-4S n+1+S n -S n-1=4S n+1-4S n (n ≥2), 即4a n+2+a n =4a n+1(n ≥2).因为4a 3+a 1=4×54+1=6=4a 2, 所以4a n+2+a n =4a n+1(n ∈N *). 因为a n+2-12a n+1a n+1-12a n=4a n+2-2a n+14a n+1-2a n=4a n+1-a n -2a n+14a n+1-2a n=2a n+1-a n 2(2a n+1-a n )=12,所以数列{a n+1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列. (3)解:由(2)知数列{a n+1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列,所以a n+1-12a n =(12)n -1, 即a n+1(12)n+1−a n(12)n =4,所以数列{a n(12)n }是以a 112=2为首项,公差为4的等差数列,所以a n(12)n =2+(n-1)×4=4n-2,即a n =(4n-2)×(12)n =(2n-1)×(12)n -1.所以数列{a n }的通项公式是a n =(2n-1)×(12)n -1. 20.(本小题满分14分)(2015广东,文20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A ,B.(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y=k (x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 解:(1)圆C 1:x 2+y 2-6x+5=0可化为(x-3)2+y 2=4,所以圆C 1的圆心坐标为(3,0). (2)设线段AB 的中点M (x ,y ),由弦的性质可知C 1M ⊥AB ,即C 1M ⊥OM. 故点M 的轨迹是以OC 1为直径的圆,该圆的圆心为C (32,0),半径r=12|OC 1|=12×3=32, 其方程为(x -32)2+y 2=(32)2,即x 2+y 2-3x=0.又因为点M 为线段AB 的中点,所以点M 在圆C 1内, 所以√(x -3)2+y 2<2. 又x 2+y 2-3x=0,所以可得x>53. 易知x ≤3,所以53<x ≤3.所以线段AB 的中点M 的轨迹C 的方程为x 2+y 2-3x=0(53<x ≤3). (3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线.结合图形,(x 0-32)2+y 02=94(53<x 0≤3)表示的是一段关于x 轴对称,起点为F (53,-2√53)按逆时针方向运动到E (53,2√53)的圆弧(不含端点). 根据对称性,只需讨论在x 轴下方的圆弧. 由F (53,-2√53),则k FT =2√534-53=2√57, 而当直线L 与轨迹C 相切时,|3k 2-4k |√k +132,解得k=±34.在这里暂取k=34,因为2√57<34,所以k FT <k.结合图形,可得对于x 轴下方的圆弧,当0≤k ≤2√57或k=34时,直线L 与x 轴下方的圆弧有且只有一个交点.根据对称性可知当-2√57≤k<0或k=-34时,直线L 与x 轴上方的圆弧有且只有一个交点. 综上所述,当-2√57≤k ≤2√57或k=±34时,直线L :y=k (x-4)与曲线C 只有一个交点.21.(本小题满分14分)(2015广东,文21)设a 为实数,函数f (x )=(x-a )2+|x-a|-a (a-1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x在区间(0,+∞)内的零点个数. 解:(1)f (0)=a 2+|a|-a 2+a=|a|+a.因为f (0)≤1,所以|a|+a ≤1. 当a ≤0时,0≤1,显然成立;当a>0时,则有2a ≤1,所以a ≤12.所以0<a ≤12.综上所述,a 的取值范围是a ≤12.(2)f (x )={x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a-1)x ,其图象的对称轴为x=2a -12=a-12<a ,开口向上, 所以f (x )在[a ,+∞)上单调递增;对于u 2=x 2-(2a+1)x+2a ,其图象的对称轴为x=2a+12=a+12>a ,开口向上, 所以f (x )在(-∞,a )上单调递减.综上,f (x )在[a ,+∞)上单调递增,在(-∞,a )上单调递减. (3)由(2)得f (x )在[a ,+∞)上单调递增,在(0,a )上单调递减, 所以f (x )min =f (a )=a-a 2.①当a=2时,f (x )min =f (2)=-2,f (x )={x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x=0,即f (x )=-4x(x>0). 因为f (x )在(0,2)上单调递减, 所以f (x )>f (2)=-2,而y=-4x 在(0,2)上单调递增,y<f (2)=-2, 所以y=f (x )与y=-4x在(0,2)上无交点. 当x ≥2时,令f (x )=x 2-3x=-4x, 即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0. 所以(x-2)2(x+1)=0.因为x ≥2,所以x=2,即当a=2时,f (x )+4x有一个零点x=2.②当a>2时,f (x )min =f (a )=a-a 2, 当x ∈(0,a )时,f (0)=2a>4,f (a )=a-a 2,而y=-4x在x ∈(0,a )上单调递增,当x=a 时,y=-4a.下面比较f (a )=a-a 2与-4a 的大小.因为a-a 2-(-4a)=-(a 3-a 2-4)a =-(a -2)(a 2+a+2)a<0,所以f (a )=a-a 2<-4a.结合图象不难得当a>2时,y=f (x )与y=-4x有两个交点. 综上,当a=2时,f (x )+4x 有一个零点x=2; 当a>2时,y=f (x )与y=-4x有两个零点.。
2015年普通高等学校招生全国统一考试文科数学(广东卷)(含答案全解析) (1)

2015年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上,用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015广东,文1)若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1}B.{1}C.{0}D.{-1,1}答案:B解析:因为M,N的公共元素只有1,所以M∩N={1}.2.(2015广东,文2)已知i是虚数单位,则复数(1+i)2=()A.2iB.-2iC.2D.-2答案:A解析:(1+i)2=1+2i+i2=1+2i-1=2i.3.(2015广东,文3)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin 2xB.y=x2-cos xC.y=2x+D.y=x2+sin x答案:D解析:A为奇函数,B和C为偶函数,D既不是奇函数,也不是偶函数.4.(2015广东,文4)若变量x,y满足约束条件则z=2x+3y的最大值为()A.2B.5C.8D.10答案:B解析:约束条件表示的可行域如图阴影部分所示,而z=2x+3y可变形为y=-x+表示直线y=-x在y轴上的截距,由图可知当直线经过点A(4,-1)时z取最大值,最大值为z=2×4+3×(-1)=5.5.(2015广东,文5)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=且b<c,则b=()A.3B.2C.2D.答案:C解析:由余弦定理a2=b2+c2-2bc cos A,得4=b2+12-2·b·2,即b2-6b+8=0,解得b=2或4.又因为b<c,所以b=2.6.(2015广东,文6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案:D解析:l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.7.(2015广东,文7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为() A.0.4 B.0.6 C.0.8 D.1答案:B解析:设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P==0.6.8.(2015广东,文8)已知椭圆=1(m>0)的左焦点为F1(-4,0),则m=()A.2B.3C.4D.9答案:B解析:由已知a2=25,b2=m2,c=4,又由a2=b2+c2,可得m2=9.因为m>0,所以m=3.9.(2015广东,文9)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,-2),=(2,1),则=()A.5B.4C.3D.2答案:A解析:=(1,-2)+(2,1)=(3,-1),所以=(2,1)·(3,-1)=2×3+1×(-1)=5.10.(2015广东,文10)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200B.150C.100D.50答案:A解析:E中有序数组的要求为s均大于p,q,r,当s取4时,p可取0,1,2,3,q也可取0,1,2,3,r也可取0,1,2,3,此时不同数组有4×4×4=64个;同理当s取3时,p,q,r均可从0,1,2中任取1个,此时不同数组有3×3×3=27个;当s取2时,p,q,r可从0,1中任取1个,不同数组有2×2×2=8个;当s取1时,p,q,r只能都取0,不同数组有1个,因此E中不同元素共有64+27+8+1=100个.F中元素要求为t<u,v<w,当u取4时,t可取0,1,2,3;当u取3时,t可取0,1,2;当u取2时,t可取0,1;当u取1时,t取0,所以t,u的不同组合为10种.同理,v,w不同组合也有10种,故F中元素个数为10×10=100,所以card(E)+card(F)=200.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.(2015广东,文11)不等式-x2-3x+4>0的解集为.(用区间表示)答案:(-4,1)解析:不等式可化为x2+3x-4<0,即(x-1)(x+4)<0,解得-4<x<1.12.(2015广东,文12)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1的均值为.答案:11解析:由题意,y i=2x i+1(i=1,2,…,n),则=2+1=2×5+1=11.13.(2015广东,文13)若三个正数a,b,c成等比数列,其中a=5+2,c=5-2,则b=.答案:1解析:因为a,b,c成等比数列,所以b2=ac,即b2=(5+2)(5-2)=1.又b是正数,所以b=1.(二)选做题(14-15题,考生只能从中选做一题)14.(2015广东,文14)(坐标系与参数方程选做题)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.答案:(2,-4)解析:∵ρ(cos θ+sin θ)=-2,∴曲线C1的直角坐标方程为x+y=-2.由已知得曲线C2的普通方程为y2=8x.由-得y2+8y+16=0,解得y=-4,x=2.所以C1与C2交点的直角坐标为(2,-4).15.(2015广东,文15)(几何证明选讲选做题)如图,AB为圆O的直径,E为AB延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4,CE=2则AD=.答案:3解析:由切割线定理得EC2=EB·EA,即12=EB·(EB+4),可求得EB=2.连接OC,则OC⊥DE,所以OC∥AD,所以,即,所以AD=3.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015广东,文16)已知tan α=2.(1)求tan的值;(2)求--的值.解:(1)tan-=--=-3.(2)--=---=-=-=-=1.17.(本小题满分12分)(2015广东,文17)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以直方图中x的值是0.007 5.(2)月平均用电量的众数是=230.因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,得a=224,所以月平均用电量的中位数是224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),月平均用电量在[240,260)的用户有0.007 5×20×100=15(户),月平均用电量在[260,280)的用户有0.005×20×100=10(户),月平均用电量在[280,300]的用户有0.002 5×20×100=5(户),抽取比例为,所以月平均用电量在[220,240)的用户中应抽取25×=5(户).18.(本小题满分14分)(2015广东,文18)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.(1)证明:因为四边形ABCD是长方形,所以BC∥AD.因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.(2)证明:因为四边形ABCD是长方形,所以BC⊥CD.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂平面ABCD,所以BC⊥平面PDC.因为PD⊂平面PDC,所以BC⊥PD.(3)解:取CD的中点E,连接AE和PE.因为PD=PC,所以PE⊥CD.在Rt△PED中,PE=--.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知BC⊥平面PDC.由(1)知BC∥AD.所以AD⊥平面PDC.因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h,因为V三棱锥C-PDA=V三棱锥P-ACD,所以S△PDA·h=S△ACD·PE,即h=△△,所以点C到平面PDA的距离是.19.(本小题满分14分)(2015广东,文19)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+2+5S n=8S n+1+S n-1.(1)求a4的值;(2)证明:-为等比数列;(3)求数列{a n}的通项公式.(1)解:当n=2时,4S4+5S2=8S3+S1,即4+5=8+1,解得a4=.(2)证明:因为4S n+2+5S n=8S n+1+S n-1(n≥2),所以4S n+2-4S n+1+S n-S n-1=4S n+1-4S n(n≥2),即4a n+2+a n=4a n+1(n≥2).因为4a3+a1=4×+1=6=4a2,所以4a n+2+a n=4a n+1(n∈N*).因为-------=--,所以数列-是以a2-a1=1为首项,公比为的等比数列. (3)解:由(2)知数列-是以a2-a1=1为首项,公比为的等比数列,所以a n+1-a n=-,即=4,所以数列是以=2为首项,公差为4的等差数列, 所以=2+(n-1)×4=4n-2,即a n=(4n-2)×=(2n-1)×-.所以数列{a n}的通项公式是a n=(2n-1)×-.20.(本小题满分14分)(2015广东,文20)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.解:(1)圆C1:x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设线段AB的中点M(x,y),由弦的性质可知C1M⊥AB,即C1M⊥OM.故点M的轨迹是以OC1为直径的圆,该圆的圆心为C,半径r=|OC1|=×3=,其方程为-+y2=,即x2+y2-3x=0.又因为点M为线段AB的中点,所以点M在圆C1内,所以-<2.又x2+y2-3x=0,所以可得x>.易知x≤3,所以<x≤3.所以线段AB的中点M的轨迹C的方程为x2+y2-3x=0.(3)由题意知直线L表示过定点T(4,0),斜率为k的直线.结合图形,-表示的是一段关于x轴对称,起点为F-按逆时针方向运动到E的圆弧(不含端点).根据对称性,只需讨论在x轴下方的圆弧.由F-,则k FT=-,而当直线L与轨迹C相切时,-,解得k=±.在这里暂取k=,因为,所以k FT<k.结合图形,可得对于x轴下方的圆弧,当0≤k≤或k=时,直线L与x轴下方的圆弧有且只有一个交点.根据对称性可知当-≤k<0或k=-时,直线L与x轴上方的圆弧有且只有一个交点.综上所述,当-≤k≤或k=±时,直线L:y=k(x-4)与曲线C只有一个交点.21.(本小题满分14分)(2015广东,文21)设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2时,讨论f(x)+在区间(0,+∞)内的零点个数.解:(1)f(0)=a2+|a|-a2+a=|a|+a.因为f(0)≤1,所以|a|+a≤1.当a≤0时,0≤1,显然成立;当a>0时,则有2a≤1,所以a≤.所以0<a≤.综上所述,a的取值范围是a≤.(2)f(x)=---对于u1=x2-(2a-1)x,其图象的对称轴为x=-=a-<a,开口向上,所以f(x)在[a,+∞)上单调递增;对于u2=x2-(2a+1)x+2a,其图象的对称轴为x==a+>a,开口向上, 所以f(x)在(-∞,a)上单调递减.综上,f(x)在[a,+∞)上单调递增,在(-∞,a)上单调递减.(3)由(2)得f(x)在[a,+∞)上单调递增,在(0,a)上单调递减,所以f(x)min=f(a)=a-a2.①当a=2时,f(x)min=f(2)=-2,f(x)=--令f(x)+=0,即f(x)=-(x>0).因为f(x)在(0,2)上单调递减,所以f(x)>f(2)=-2,而y=-在(0,2)上单调递增,y<f(2)=-2,所以y=f(x)与y=-在(0,2)上无交点.当x≥2时,令f(x)=x2-3x=-,即x3-3x2+4=0,所以x3-2x2-x2+4=0.所以(x-2)2(x+1)=0.因为x≥2,所以x=2,即当a=2时,f(x)+有一个零点x=2.②当a>2时,f(x)min=f(a)=a-a2,当x∈(0,a)时,f(0)=2a>4,f(a)=a-a2,而y=-在x∈(0,a)上单调递增, 当x=a时,y=-.下面比较f(a)=a-a2与-的大小.因为a-a2-----=--<0,所以f(a)=a-a2<-.结合图象不难得当a>2时,y=f(x)与y=-有两个交点.综上,当a=2时,f(x)+有一个零点x=2;当a>2时,y=f(x)与y=-有两个零点.。
2015年广东省高考数学试卷(文科)附详细解析

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)24.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()9.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)2,是偶函数;4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()y=y=,解得,5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=(),cosA=×6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任件的取法为8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()利用椭圆+椭圆=19.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()==∴10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.的平均数为均值的均值为:13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.,2∴坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).,把的参数方程为,解得,几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.,可得∴∴三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.+===117.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?)月平均用电量的众数是=×18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.PE==.h==的距离是.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.,求得,由此可得数列{}是以为首项,公比为的{为首项,公比为{为首项,∵∵{是以为首项,公比为的等比数列;{是以为首项,公比为的等比数列,∴为首项,∴,即的通项公式是20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.联立方程组,,其中﹣<)=,其中<,﹣,联立方程组,±,的端点(,±±的取值范围为(﹣,}21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.+a,a.,x==a+=a﹣=时,=═,.当,=.,即参与本试卷答题和审题的老师有:wkl197822;changq;maths;双曲线;刘长柏;吕静;孙佑中;qiss;lincy;sxs123;cst(排名不分先后)菁优网2015年7月20日。