2011年广东高职高考数学真题试卷

合集下载

2011年广东高考数学试题(文科)

2011年广东高考数学试题(文科)

2010年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时.请先用2B铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的.答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式V= 13Sh,其中S是锥体的底面积,h是锥体的高.线性回归方程y=+a中系数计算=x i−x(y i−y)1n(x i−x)2n1,=y−bx样本数据的标准差S=1n[x1−x2+x2−x2+⋯+x n−x2]其中x,y表示样本均值。

n是正整数,则a n−b n=a−b(a n−1+a n−2b+⋯+ab n−2+b n−1)一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z满足iz=1,其中i为虚数单位,则z=A.-iB.iC.-1D.12.已知集合A= 为实数,且 |,B= 为实数,且则的元素个数为A.4B.3C.2D.13.已知向量a=(1,2),b=(1,0),c=(3,4),若为实数,,则 =A. B. C.4 D.24.函 = +lg(1+x)的定义域是A. ( -∞,-1)B.(1,+ ∞)C. (-1,1) (1,+ ∞)D.(- ∞,+∞ )5.不等式2x2-x-1>0的解集是A.(- ,1)B.(1, +∞ )C. ( -∞,-1) (2,+ ∞)D. ( -∞, ) (1, +∞ )6.已知平面直角坐标系xOy上的区域由不等式组给定.若M(x,y)为D上的动点,点A 的坐标为(,1),则z= 的最大值为A.3B. 4C. 3D. 47.正五棱柱中,不同在任何侧面且不同在任何底面的两端的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A.20B.15C. 12D. 108.设圆C 与与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为A.抛物线B.双曲线C. 椭圆D. 圆9. 如图1~3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则集合体体积为10.设,,是R上的任意实值函数,如下定义两个函数和;对任意, = ; = ,则下列等式恒成立的是A. =B. =C. =D. =二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

至2018年广东省高职高考数学试题分章节汇编

至2018年广东省高职高考数学试题分章节汇编

2011至2018年高职高考数学试题分章节汇编前四章真题练习1、(2011)已知集合{}2M x x ==,{}3,1N =-,则M N =( )A. φB. {}3,2,1--C. {}3,1,2-D. {}3,2,1,2--2、(2011)下列不等式中,正确的是( )A 、()322327-=- B 、()322327⎡⎤-=-⎣⎦ C 、lg 20lg 21-= D 、lg5lg 21⋅=3、(2011)函数=y )A 、[]1,1-B 、()1,1-C 、(),1-∞D 、()1,-+∞4、(2011)已知函数()y f x =是函数x y a =的反函数,若()83f =,则a =() A 、2 B 、3 C 、4 D 、 85、(2011)不等式211x ≥+的解集是( )A 、{}11x x -<≤B 、{}1x x ≤C 、{}1x x >-D 、{}11x x x ≤>-或6、(2011)“7=x ”是“7≤x ”的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件7、(2011)设函数12log ,1()sin ,01,03x x f x x x xx ⎧>⎪⎪=≤≤⎨⎪⎪<⎩,则下列结论中正确的是( )A 、()f x 在区间()1,+∞上时增函数B 、()f x 在区间(],1-∞上时增函数C 、()12f π= D 、 (2)1f =8、(2012)已知集合{}1,3,5M =,{}1,2,5N =,则M N =( )A. {}1,3,5B. {}1,2,5C. {}1,2,3,5D. {}1,59、(2012)函数lg(1)y x =-的定义域是( )A 、()1,+∞B 、()1,-+∞C 、(),1-∞-D 、(),1-∞10、(2012)不等式312x -<的解集是( )A 、1,13⎛⎫- ⎪⎝⎭B 、1,13⎛⎫ ⎪⎝⎭C 、()1,3-D 、()1,3 11、(2012)“21x =”是“1x =”的( )A 、充分条件B 、必要条件C 、充要条件D 、既非充分也非必要条件12、(2012)已知函数()log a f x x =,其中01a <<,则下列各式中成立的是( )A 、11(2)()()34f f f >> B 、11()(2)()43f f f >>C 、11()(2)()34f f f >> D 、11()()(2)43f f f >>13、(2012)()f x 是定义在(0,)+∞上的增函数,则不等式()()23f x f x >-的解集是 ;14、(2013)设集合{}1,1M =-,{}0,1,2N =,则M N =( )A. {}0B. {}1C. {}0,1,2D. {}1,0,1,2-15、(2013)函数y = )A 、()2,2-B 、[]2,2-C 、(),2-∞-D 、()2,+∞16、(2013)设,a b 是任意实数,且a b >,则下列式子正确的是( )A 、22a b >B 、1ba < C 、()lg 0ab -> D 、22a b >17、(2013)下列函数为偶函数的是( )A 、x y e =B 、lg y x =C 、sin y x =D 、 cos y x =18、(2013)设函数()21,12,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则()()2f f =( )A 、1B 、2C 、3D 、419、(2013)在ABC ∆中,“30A ∠>︒”是“1sin 2A >”的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件20、(2013)对任意x R ∈,下列式子恒成立的是( )A 、2210x x -+>B 、10x ->C 、210x +>D 、()22log 10x +>21、(2013)不等式2230x x --<的解集为 ;22、(2014)已知集合{}2,0,1M =-,{}1,0,2N =-,则M N =( )A. {}0B. {}2,1-C. φD. {}2,1,0,1,2--23、(2014)函数()f x = ) A 、(),1-∞ B 、()1,-+∞ C 、[]1,1- D 、()1,1-24、(2014)下列不等式中,正确的是( )A 、lg 7lg31+=B 、7lg 7lg 3lg 3=C 、3lg 3log 7lg 7= D 、7lg 37lg 3= 25、(2014)下列函数在其定义域内单调递减的是( )A 、12y x =B 、2x y =C 、12xy ⎛⎫= ⎪⎝⎭ D 、2y x = 26、(2014)“()()120x x -+>”是“102x x ->+”的( ) A 、充分非必要条件 B 、必要非充分条件C 、充分必要条件D 、非充分非必要条件27、(2014)已知()f x 是偶函数,且0x ≥时,()3x f x =,则()2f -= ;28、(2014)若函数()22()f x x x k x R =-++∈的最大值为1,则k = ; 29、(2015)已知集合{}1,4M =,{}1,3,5N =,则M N =( )A. {}1B. {}4,5C. {}1,4,5D. {}1,3,4,530、(2015)函数()f x = )A 、(],1-∞-B 、[)1,-+∞C 、(],1-∞D 、(),-∞+∞31、(2015)不等式2760x x -+>的解集是( )A 、()1,6B 、()(),16,-∞+∞C 、∅D 、(),-∞+∞32、(2015)设0a >且1,,a x y ≠为任意实数,则下列算式错误的是( )A 、01a =B 、x y x y a a a +⋅=C 、xx y y a a a-= D 、()22x x a a =33、(2015)已知函数()f x 是奇函数,且()21f =,则()32f -=⎡⎤⎣⎦( )A 、8-B 、1-C 、1D 、834、(2015)“01a <<”是“log 2log 3a a >”的( )A 、充分非必要条件B 、必要非充分条件C 、充分必要条件D 、非充分非必要条件35、(2015)当0x >时,下列不等式正确的是( )A 、44x x +≤ B 、44x x +≥ C 、48x x +≤ D 、48x x +≥36、(2016)已知集合{}2,3,A a =,{}1,4B =,且{}4A B =,则a =( )A. 1B. 2C. 3D. 437、(2016)函数y = )A 、(),-∞+∞B 、3,2⎡⎫-+∞⎪⎢⎣⎭C 、3,2⎛⎤-∞- ⎥⎝⎦ D 、()0,+∞38、(2016)设,a b 为实数,则 “3b =”是“()30a b -=”的( )A 、充分条件B 、必要条件C 、充分必要条件D 、非充分非必要条件39、(2016)不等式2560x x --≤的解集是( )A 、{}23x x -≤≤B 、{}16x x -≤≤C 、{}61x x -≤≤D 、{}16x x x ≤-≥或40、(2016)下列函数在其定义域内单调递增的是( )A 、2y x =B 、13xy ⎛⎫= ⎪⎝⎭ C 、32xx y = D 、3log y x =-41、(2016)已知()f x 是偶函数,且()y f x =的图像经过点()2,5-,则下列等式恒成立的是()A 、()52f -=B 、()52f -=-C 、()25f -=D 、()25f -=-42、(2017)已知集合{}0,12,3,4M =,,{}3,4,5N =,则下列结论正确的是( )A. M N ⊆B. N M ⊆C. {}3,4M N =D. {}0,1,2,5M N =43、(2017)函数y = )A 、(],4-∞-B 、(),4-∞-C 、[)4,-+∞D 、()4,-+∞44、(2017)设()f x 是定义在R 上的奇函数,已知当0x ≥时,()234f x x x =-,则()1f -=( )A 、5-B 、3-C 、3D 、545、(2017)“4x >”是 “()()140x x -->”的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件46、(2017)下列运算不正确的是( )A 、22log 10log 51-=B 、222log 10+log 5log 15=C 、02=1D 、10822=4÷47、(2017)已知函数x y e =的图像与单调递减函数())y f x x R =∈(的图像相交于点(,)a b 给出下列四个结论:①ln a b = ②ln b a = ③()f a b = ④当x a >时,()x f x e <A 、1个B 、2个C 、3个D 、4个48、(2018)已知集合{}0,12,4,5A =,,{}0,2B =,则A B =( )A. {}1B. {}0,2C. {}3,4,5D. {}0,1,249、(2018)函数()f x )A 、3,4⎡⎫+∞⎪⎢⎣⎭B 、4,3⎡⎫+∞⎪⎢⎣⎭C 、 3,4⎛⎤-∞ ⎥⎝⎦D 、4,3⎛⎤-∞ ⎥⎝⎦ 50、(2018)下列等式正确的是( )A 、lg5lg3lg 2-=B 、lg5lg3lg8+=C 、lg10lg 5lg 5=D 、1lg =2100- 51、(2018)指数函数()01x y a a =<<的图像大致是( )A B C D52、(2018)“3x <-”是 “29x >”的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件53、(2018)()23,01,0x x f x x x -≥⎧=⎨-<⎩,则()()2f f =( ) A 、1 B 、0 C 、1- D 、2-54、(2018)设()f x 是定义在R 上的奇函数,且对于任意实数x ,有()()4f x f x +=, 若()13f -=,则()()45f f +=( )A 、3-B 、3C 、4D 、62011至2018年高职高考数学试题第五章数列真题练习1、(2011)在等差数列{}n a 中,若630a =,则39a a +=( )A 、20B 、40C 、60D 、 802、(2012)在等比数列{}n a 中,11a =,公比q =n a =n =( )A 、6B 、7C 、8D 、93、(2012)设n a 是等差数列,2a 和3a 是方程2560x x -+=的两个根,则14a a +=( )A 、2B 、3C 、5D 、64、(2013)若,,,a b c d 均为正实数,且c 是a 和b 的等差中项,d 是a 和b 的等比中项,则有()A 、ab cd >B 、ab cd ≥C 、ab cd <D 、ab cd ≤5、(2013)已知{}n a 为等差数列,且13248,12a a a a +=+=,则n a = ;6、(2014)已知数列{}n a 的前n 项和1n nS n =+,则5a =( )A 、142 B 、130 C 、45 D 、567、(2014)已知等比数列{}n a 满足*0()n a n N >∈,且579a a =,则6a = ;8、(2015)在各项为正数的等比数列{}n a 中,若1413a a ⋅=则3233log log a a +=( )A 、1-B 、1C 、3-D 、 39、(2015)若等比数列{}n a 满足124,20a a ==,则{}n a 的前n 项和n S = ;10、(2016)在等比数列{}n a 中,已知367,56a a ==,则该等比数列的公比是( )A 、2B 、3C 、4D 、 811、(2016)已知{}n a 为等差数列,且481050a a a ++=,则2102a a += ;12、(2017)已知数列{}n a 为等差数列,且12a =,公差2d =,若12,,k a a a 成等比数列,则k =( )A 、4B 、6C 、8D 、 1013、(2017)设等比数列{}n a 的前n 项和1133n n S -=-,则{}n a 的公比q = ; 14、(2018)234111111122222n -++++++=( )A 、()212n -B 、()212n --C 、()1212n --D 、()1212n --15、(2018)已知数列{}n a 为等比数列,前n 项和13n n S a +=+,则a =() A 、6- B 、3- C 、0 D 、32011至2018年高职高考数学试题第六章三角函数真题练习1、(2011)设α为任意角,在下列等式中,正确的是( )A 、sin cos 2παα⎛⎫-= ⎪⎝⎭B 、cos sin 2παα⎛⎫-= ⎪⎝⎭C 、()sin sin απα+=D 、()cos cos απα+=2、(2011)已知角θ终边上一点为()()0x x <,则tan cos θθ⋅=( )A 、B 、2-C 、3D 、23、(2011)函数()()2sin 2cos 2f x x x =-的最小正周期及最大值分别是() A 、,1π B 、,2π C 、,22πD 、,32π4、(2012)sin390︒=( )A 、12 B 、2 C 、2 D 、15、(2012)函数2sin cos y x x =最小正周期为 ;6、(2013)sin330︒=( )A 、12-B 、12 C 、 D 、7、(2013)函数()3cos2f x x =的最小正周期为 ;8、(2013)若4sin ,tan 05θθ=>,则cos θ= ; 9、(2014)函数()4sin cos ()f x x x x R =∈的最大值是( )A 、1B 、2C 、4D 、810、(2014)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,3P 是角θ终边上的一点,则tan θ=( )A 、35B 、45C 、43D 、3411、(2015)函数()2sin f x x ω=的最小正周期为3π,则ω=( )A 、13B 、23C 、1D 、2 12、(2015)在ABC ∆中,内角A ,B ,C ,所对应的边分别为,,.a b c 已知13,1,cos 3a c B ===,则b = ; 13、(2016)函数cos 2y x π⎛⎫=- ⎪⎝⎭在区间5,36ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A 、12B 、2C 、2D 、1 14、(2016)函数()2sin 2cos 2y x x =-的最小正周期是( )A 、2π B 、π C 、2π D 、4π 15、(2016)已知1sin cos 62παα⎛⎫-=- ⎪⎝⎭,则tan α= ; 16、(2017)已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为34,55P ⎛⎫- ⎪⎝⎭,则下列等式正确的是( ) A 、3sin 5θ= B 、4cos 5θ=- C 、4tan 3θ=- D 、3tan 4θ=- 17、(2017)函数()cos3cos sin3sin f x x x x x =-的最小正周期是( )A 、2π B 、23π C 、 π D 、2π18、(2018)已知ABC ∆,90BC AC C ==∠=︒,则( )A 、sin A =B 、cos A =C 、tan A =D 、cos()1A B += 19、(2018)已知ABC ∆对应边分别为的内角C B A ,,的对边分别为,,a b c ,已知34,2b a B A == ,则cos A = ;2011至2018年高职高考数学试题第七章向量真题练习1、(2011)已知三点()()(0,0),,2,3,4O A k B -,若OA AB ⊥,则k =( )A 、173-B 、83C 、7D 、11 2、(2011)已知向量()1,4AB =-,向量()3,1BC =,则AC =( )A 、B 、CD 、53、(2011)在边长为2的等边ABC ∆中,AB BC ⋅= ;4、(2012)已知向量()()3,5,2,a b x ==,且a b ⊥,则x =( ) A 、65 B 、65- C 、56 D 、56- 5、(2012)将函数()21y x =+的图像按向量a 经过一次平移后,得到2y x =的图像,则向量a =( )A 、()0,1B 、()0,1-C 、()1,0-D 、()1,06、(2012)已知向量()()1,2,2,3a b ==,则向量3a b -= ;7、(2013)若()()2,4,4,3AB BC ==,则AC =( )A 、()6,7B 、()2,1-C 、()2,1-D 、()7,68、(2013)若向量,a b 满足a b a b +=-,则必有( )A 、0a =B 、0b =C 、0a b ⋅=D 、a b =9、(2014)已知向量()2sin ,2cos a θθ=,则a =( )A 、 8B 、 4C 、 2D 、 110、(2014)设向量()()()4,5,1,0,2,a b c x ===,且()a b +∥c ,则x =( )A 、2-B 、12- C 、12 D 、211、(2014)在右图所示的平行四边形ABCD 中,下列等式不正确的是( )A 、AC AB AD =+ B 、AC AD DC =+C 、AC BA BC =-D 、AC BC BA =-12、(2015)在平面直角坐标系中,已知三点()()()1,2,2,1,0,2A B C ---,则AB BC +=() A 、1 B 、2 C 、3 D 、413、(2015)已知向量()()sin ,2,1,cos a b θθ==,若a b ⊥,则tan θ=( )A 、12- B 、12 C 、2- D 、214、(2015)已知向量a 和b 夹角为34π,且2,3a b ==,则 a b ⋅= ;15、(2016)设三点()()()1,2,1,3,1,5A B C x --,若AB 与BC 共线,则x =( )A 、4-B 、1-C 、 1D 、 416、(2016)设向量()()3,1,0,5a b =-=,则a b -=( )A 、1B 、3C 、4D 、517、(2016)在ABC ∆中,若2AB =,则()AB CA CB ⋅-= ;18、(2017)设向量()(),4,2,3a x b ==-,若2a b =,则x =( )A 、5-B 、2-C 、2D 、719、(2017)已知点()()()0,07,10,3,4O A B --,,设a OA OB =+,则a = ;20、(2017)设向量()()23sin ,4cos a b θθ==,,,若a b ∥,则tan θ= ;21、(2018)若向量()()1,2,3,4AB AC ==,则BC =( )A 、()4,6B 、()2,2--C 、()1,3D 、()2,222、(2018)已知向量()()43,4a b x ==,,,若a b ⊥,则b =;2011至2018年高职高考数学试题第八章解析几何真题练习1、(2011)垂直于x 轴的直线l 交抛物线24y x =交于A 、B 两点,且AB =点到直线l 的距离是( )A 、1B 、2C 、3D 、 42、(2011)设l 是过点(0,及过点(的直线,则点1,22⎛⎫⎪⎝⎭到l 的距离是 ;3、(2011)经过点(0,1)-和(1,0),且圆心在直线1y x =+上的圆的方程是 ;4、(2012)以点()(1,3),5,1P Q -为端点的线段的垂直平分线的方程为( ) A 、1220x y ++= B 、340x y ++= C 、380x y -+= D 、260x y --=5、(2012)椭圆2213625x y +=的两焦点坐标是( )A 、((0,,B 、()()6,0,6,0-C 、()()0,5,0,5-D 、()),6、(2012)圆2240x x y -+=的圆心到直线40x +-=的距离是 ;7、(2013)若直线l 过点()1,2,在y 轴上的截距为1,则l 的方程为( ) A 、310x y --= B 、310x y -+= C 、10x y --= D 、10x y -+=8、(2013)抛物线28x y =-的准线方程是( ) A 、4y = B 、4y =- C 、2y = D 、2y =-9、(2014)下列抛物线中,其方程形式为()220y px p =>的是( )A B C D 10、(2014)若圆2222432x y x y k k +-+=--与直线250x y ++=相切, 则k =( )A 、3或1-B 、3-或1C 、2或1-D 、2-或111、(2014)已知点(1,3)A 和点(3,1)B -,则线段AB 的垂直平分线的方程是 ; 12、(2015)下列方程的图像为双曲线的是( )A 、220x y -=B 、22x y =C 、22341x y +=D 、2222x y -=13、(2015)若圆()()22112x y -++=与直线0x y k +-=相切,则k =( )A 、2±B 、2±C 、22±D 、4±14、(2015)已知点(2,1)A 和点(4,3)B -,则线段AB 的垂直平分线在y 轴上的截距为 ; 15、(2016)抛物线24x y =的准线方程是( )A 、1y =-B 、1y =C 、1x =-D 、1x = 16、(2016)已知直线l 的倾斜角为4π,在y 轴上的截距为2,则l 的方程是( ) A 、20y x +-= B 、20y x ++= C 、20y x --= D 、20y x -+=17、(2016)已知直角三角形的顶点()(4,4),1,7A B --和(2,4)C ,则该三角形外接圆的方程是 ;18、(2017)抛物线28y x =-的焦点坐标是( )A 、()2,0-B 、()2,0C 、()02-,D 、()02,19、(2017)已知双曲线2221(0)6x y a a -=>的离心率为2,则a =( ) A 、6 B 、3 C 、3 D 220、(2017)设直线l 经过圆22+220x y x y ++=的圆心,且在y 轴上的截距为1,则直线l 的斜率为( )A 、2B 、2-C 、12 D 、12- 21、(2017)已知点(1,2)A 和(3,4)B -,则以线段AB 的中点为圆心,且与直线5x y +=相切的圆的标准方程是 ; 22、(2018)抛物线24y x =的准线方程是( )A 、1x =-B 、1x =C 、1y =-D 、1y =23、(2018)已知点()()1,4,5,2A B -,则AB 的垂直平分线是( ) A 、330x y --= B 、390x y +-=C 、3100x y --=D 、380x y +-=24、(2018)双曲线221432x y -=的离心率e = ; 25、(2018)以两直线0x y +=和230x y --=的交点为圆心,且与直线220x y -+=相切的圆的标准方程是 ;2011至2018年高职高考数学试题第九章概率统计真题练习1、(2011)一个容量为n 的样本分成若干组,若其中一组的频数和频率分别是40和0.25,则n =( )A 、10B 、40C 、100D 、 160 2、(2011)袋中装有6只乒乓球,其中4只是白球,2只是黄球,先后从袋中无放回地取出两球,则取到的两球都是白球的概率是 ; 3、(2012)现有某家庭某周每天用电量(单位:度)依次为:8.6、7.4、 8.0、6.0、8.5、8.5、9.0,则此家庭该周平均每天的用电量为( )A 、6.0B 、8.0C 、8.5D 、9.0 4、(2012则样本在区间[]60,100的频率为( )A 、0.6B 、0.7C 、0.8D 、0.9 5、(2012)从1,2,3,4,5五个数中任取一个数,则这个数是奇数的概率是 ; 6、(2013)已知x 是1210,,,x x x 的平均值,1a 为1234,,,x x x x 的平均值,2a 为5610,,,x x x 的平均值,则x =( )A 、12235a a + B 、12325a a + C 、12a a + D 、122a a+则样本数据落在区间[)10,40的频率为 ( )A 、0.35B 、0.45C 、0.55D 、0.65 8、(2013)设袋内装有大小相同,颜色分别为红、白、黑的球共100个,其中红球45个,从袋内任取1个球,若取出白球的概率为0.23,则取出黑球的概率为 ;9、(2014)在样本12345,,,,x x x x x 中,若123,,x x x 的均值为80,45,x x 的均值为90,则12345,,,,x x x x x 的均值是( )A 、80B 、84C 、85D 、90A 、44123B 、40123C 、59123D 、6412311、(2014)在1,2,3,4,5,6,7七个数中任取一个数,则这个数为偶数的概率是 ; 12、(2015)七位顾客对某商品的满意度(满分为10分)打出的分数为:8,5,7,6,9,6,8.去掉一个最高分和最低分后,所剩数据的平均值为( ) A 、6 B 、7 C 、8 D 、9 13、(2015)甲班和乙班各有两名男羽毛球运动员,从这四人中任意选出两人配对参加双打比赛,则这对运动员来自不同班的概率是( )A 、 13B 、 12C 、 23D 、 4314、(2015)质检部门从某工厂生产的同一批产品中随机抽取100件进行质检,发现其中有5件不合格品,由此估计这批产品中合格品的概率是 ;15、(2016)若样本数据3,2,,5x 的均值为3,则该样本的方差是( )A 、1B 、1.5C 、2.5D 、6 16、(2016)同时抛三枚硬币,恰有两枚硬币正面朝上的概率是( )A 、18B 、14C 、38D 、5817、(2016)某高中学校三个年级共有学生2000名,若在全校学生中随机抽取一名学生,抽到高二年级女生的概率为0.19,则高二年级的女生人数为 ;18、(2017)若样本5,4,6,73,的平均数和标准差分别为( )A 、5和2B 、5C 、6和3D 、619、(2017)从某班的21名男生和20名女生中,任意选派一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有( )A 、41种B 、420种C 、520种D 、820种 20、(2017)从编号为1,2,3,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是 ; 21、(2018)现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有( )棵A 、15B 、20C 、25D 、30 22、(2018)一个硬币抛两次,至少一次是正面的概率是( )A 、13B 、12C 、23D 、3423、(2018)已知数据10,,11,,12,x y z 的平均数为8,则,,x y z 的平均数为 ;2011至2018年高职高考数学试题解答题真题练习一、函数部分解答题1、(2011)设()f x 既是R 上的减函数,也是R 上的奇函数,且()12f =,(1)求()1f -的值;若()2312f t t -+>-,求t 的取值范围。

2011年广东高考数学试题(文科)试题(附答案)

2011年广东高考数学试题(文科)试题(附答案)

2011年普通高等学校招生全国统一考试(广东卷)数学(文科)参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高。

线形回归方程ˆˆˆybx a =+中系数计算公式121()()ˆˆˆ,,()niii ni i x x y y b ay bx x x ==--==--∑∑ 其中,x y 表示样本均值。

n 是正整数,则1221()(...)n n n n n n a b a b a a b ab b -----=-++++一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足iz = 1,其中i 为虚数单位,则z =()A .- iB .iC .- 1D .12.已知集合{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为()A .4B .3C .2D . 1 3.已知向量(1,2),(1,0),(3,4)a b c ===.若λ为实数,()//,a b c λλ+=则()A .14B .12C .1D . 2 4.函数1()lg(1)1f x x x=++-的定义域是() A .(,1)-∞-B .(1,)+∞ C .(1,1)(1,)-+∞ D . (,)-∞+∞ 5.不等式2210x x -->的解积是()A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞+∞D . 1(,)(1,)2-∞-+∞6.已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A的坐标为z OM OA =则的最大值为()A .3B .4 C. D. 7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱的对角线条数共有()A .20B .15C .12D . 108.设圆22(3)10C x y y C +-==与圆外切,与直线相切,则圆的圆心轨迹为()A .抛物线B .双曲线C .椭圆D . 圆9.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为A..4 C. D . 210.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()()()():f g x f g x ∙ 和对任意,()()(());()()()(),x R f g x f g x f g x f x g x ∈=∙= 则下列等式恒成立的是() A .(())()(()())()f g h x f h g h x ∙=∙∙ B .(())()(()())()f g h x f h g h x ∙=∙ C .(())()(()())()f g h x f h g h x = D .(())()(()())()f g h x f h g h x ∙∙=∙∙∙二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2011年普通高等学校招生全国统一考试(广东卷)数学试卷(理科)

2011年普通高等学校招生全国统一考试(广东卷)数学试卷(理科)

5
5
(3) ξ = 0, 1, 2 , P(ξ = i) = C2i C32−i (i = 0, 1, 2) ,ξ 的分布列为 C52
ξ
0
1
2
P
3
3
10
5
均值 E(ξ ) = 1× 3 + 2 × 1 = 4 . 5 10 5
18.解:(1) 取 AD 的中点 G,又 PA=PD,∴ PG ⊥ AD ,
试卷类型:A
2011 年普通高等学校招生全国统一考试(广东卷) 数学(理科)
本试题共 4 页,21 小题,满分 150 分,考试用时 120 分钟。 注意事项:
1、答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、 座位号,填写在答题卡上。用 2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。 将条形码横贴在答题卡右上角“条形码粘贴处”。
A.1 + i
B. 1− i
C. 2 + 2i
D. 2 − 2i
} 2.已知集合 A = {( x, y) ∣ x, y 为实数,且 x2 + y2 = 1 ,B = {( x, y) x, y 为实数,且 y = x} ,
则 A ∩ B 的元素个数为
A.0
B.1
C.2
D.3
3. 若向量a,b,c满足a∥b且a⊥b,则 c • (a + 2b) =
A.4
B.3
C.2
D.0
4. 设函数 f ( x) 和 g ( x) 分别是R上的偶函数和奇函数,则下列结论恒成立的是
A. f ( x) + g ( x) 是偶函数
B. f ( x) − g ( x) 是奇函数

2011年高考数学(广东卷,理科)word版(全解全析)

2011年高考数学(广东卷,理科)word版(全解全析)

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、 考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程 y bxa =+ 中系数计算公式121()()()nii i nii xx y y b xx ==--=-∑∑ , ay b x =- . 其中,x y 表示样本均值.n 是正整数,则()n na b a b -=-12(n n a a b --++ (21)n n ab b --+).一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i - 【解析】B ;依题意得211z i i==-+,故选B .2.已知集合{(,)|A x y =,x y 为实数,且}221x y +=,{(,)|B x y =,x y 为实数,且}y x =,则A B 的元素个数为A .0B .1C .2D .3 【解析】C;题意等价于求直线y x =与圆221x y +=的交点个数,画大致图像可得答案为C . 3. 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则⋅(2)=c a +bA .4B .3C .2D .0 【解析】D;因为a ∥b 且a ⊥c ,所以b ⊥c ,从而⋅⋅⋅(2)=20c a +b c a +c b =,故选D . 4. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是A .()()f x g x +是偶函数B .()()f x g x -是奇函数C .()()f x g x +是偶函数D .()()f x g x -是奇函数 【解析】A;依题意()(),()()f x f x g x g x -=-=-,故()|()|()|()|f x g x f x g x -+-=+,从而()|()|f x g x + 是偶函数,故选A .5. 在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A 的坐标为,则z OM OA =⋅的最大值为A .B .C .4D .3【解析】C;目标函数即z y =+,画出可行域如图所示,代入端点比较之,易得当2x y ==时z 取得最大值4,故选C .6. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获 得冠军的概率为A .12B .35C .23D .34【解析】D;设甲队获得冠军为事件A ,则A 包含两种情况:(1)第一局胜;(2)第一局负但第二局胜;故所求概率1113()2224P A =+⨯=,从而选D .7. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .B .C .D .【解析】B ;该几何体是以正视图所在的平行四边形为底面,高为 3的四棱柱,又平行四边形的底边长为3,,所以面积 S=从而所求几何体的体积V Sh ==故选B . 8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T ,V 是Z 的两个不相交的非空子集,T V Z = 且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B . ,T V 中至多有一个关于乘法是封闭的C . ,T V 中有且只有一个关于乘法是封闭的D . ,T V 中每一个关于乘法都是封闭的【解析】A;因为T V Z = ,故必.有.1∈T 或1∈V ,不妨设1∈T ,则令1c =,依题意对,a b T ∀∈,有ab T ∈,从而T 关于乘法是封闭的;(其实到此已经可以选A 了,但为了严谨,我们往下证明可以有一个不封闭以及可以两个都封闭),取T N =,则V 为所有负整数组成的集合,显然T 封闭,但V 显然是不封闭的,如(1)(2)2V -⨯-=∉;同理,若{T =奇数},{V =偶数},显然两者都封闭,从而选A .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年高考数学广东卷(文)全解析版

2011年高考数学广东卷(文)全解析版

2011年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

参考公式: 锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 为锥体的高. 线性回归方程y bx a =+中系数计算公式x b y a x xy y x xb ni ini i i-=---=∑∑==,)())((211样本数据12,,...n x x x 的标准差()()()[]222211x x x x x x ns n -++-+-=,其中y x ,表示样本均值,n 是正整数,则))((1221----++++-=-n n n n n n b ab b a a b a b a一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出四个选项中,只有一项符合题目要求。

1.设复数z 满足1=iz ,其中i 为虚数单位,则z =( ) A .i - B .i C .1- D .12.已知集合{}22(,)|,1A x y x y x y =+=为实数,且,{}(,)|,1B x y x y x y =+=为实数,且,则A B 的元素个数为( )A .4B .3C .2D .13.已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,//a b c λ+,则λ=( )A .41 B .21C .1D .2 4.函数)1lg(11)(x xx f ++-=的定义域是( ) A .()1,-∞- B .),1(+∞ C .),1()1,1(+∞- D .),(+∞-∞ 5.不等式0122>--x x 的解集是( ) A .⎪⎭⎫ ⎝⎛-1,21 B .),1(+∞ C .),2()1,(+∞-∞ D .),1(21,+∞⎪⎭⎫ ⎝⎛-∞-6.已知平面直角坐标系xOy 上的区域D 由不等式组⎪⎩⎪⎨⎧≤≤≤≤yx y x 2220给定。

若(,)M x y 为D 上的动点,点A 的坐标为),则z ∙=的最大值为( )A .3B .4C .23D .2427.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A .20B .15C .12D .108.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆9.如图1~3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形, 则几何体体积为( )A .34B .4C .32D .210.设()f x ,()g x ,()h x 是R 上的任意实值函数,如下定义两个函数()()fg x 和()()f g x ∙:对任意x R ∈,()()(())f g x f g x =;()()f g x ∙=()()f x g x ,则下列等式恒成立的是( )A .()()()()()())(x h g h f x h g f ∙∙=∙B .()()()()()())(x h g h f x h g f ∙=∙C .()()()()()())(x h g h f x h g f =D .()()()()()())(x h g h f x h g f ∙∙∙=∙∙ 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2011年普通高等学校招生全国统一考试—广东(文科数学)解析版

2011年普通高等学校招生全国统一考试—广东(文科数学)解析版

2011年普通高等学校招生全国统一考试【广东卷】(文科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:(每小题5分,共50分)【2011⋅广东文,1】1.设复数z 满足1iz =,其中i 为虚数单位,则z = ( ). A .i - B .i C .1 D .1- 【答案】A . 【解析】 1()iz i i i i -===-⨯-. 【2011⋅广东文,2】2.已知集合(){,|A x y x y =、为实数,且}221xy +=,(){,|B x y x y=、为实数,且}1x y +=,则AB 的元素个数为( ).A .4B .3C .2D .1 【答案】C . 【解析】AB 的元素个数等价于圆221x y +=与直线1x y +=的交点个数,显然有2个交点.【2011⋅广东文,3】3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ= ( ). A .14 B .12C .1D .2 【答案】B .【解析】 (1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=12. 【2011⋅广东文,4】4.函数1()lg(1)1f x x x=++-的定义域是( ). A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-+∞ D .(,)-∞+∞【答案】C .【解析】 10110x x x -≠⎧⇒>-⎨+>⎩且1x ≠,则()f x 的定义域是(1,1)(1,)-+∞.【2011⋅广东文,5】5.不等式2210x x -->的解集是( ). A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞+∞D .1(,)(1,)2-∞-+∞ 【答案】D .【解析】21210(1)(21)02x x x x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-+∞. 【2011⋅广东文,6】6. 已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(),M x y 为D 上的动点,点A的坐标为),则z OM OA =⋅的最大值为( ).A .3B .4 C. D. 【答案】B .【解析】z y =+,即y z =+,画出不等式组表示的平面区域,易知当直线y z =+经过点2)时,z取得最大值,max 24z =.【2011⋅广东文,7】7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( ).A .20B .15C .12D .10 【答案】D .【解析】正五棱柱中,上底面中的每一个顶点均可与下底面中的两个顶点构成对角线,所以一个正五棱柱对角线的条数共有5210⨯=条.【2011⋅广东文,8】8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切.则C 的圆心轨迹为( ).A .抛物线B .双曲线C .椭圆D .圆 【答案】A .【解析】依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线.【2011⋅广东文,9】9.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( ).A .B .4C .D . 2【答案】C .【解析】该几何体是一个底面为菱形的四棱锥,菱形的面积122S =⨯⨯=,四棱锥的高为3,则该几何体的体积11333V Sh ==⨯=.【2011⋅广东文,10】10.设||||HO HT +是R 上的任意实值函数.如下定义两个函数()()f g x 和()()f g x ;对任意x R ∈,()()()()f g x f g x =;()()()()f g x f x g x =.则下列等式恒成立的是( ). A .()()()()()()()f g h x f h g h x =B . ()()()()()()()f g h x f h g h x =C . ()()()()()()()fg h x f h g h x =D .()()()()()()()f g h x f h g h x =【答案】B . 【解析】 对A 选项 (()fg h )()x =()f g ()()x h x (())()f g x h x =,(()f h ()g h )()x =()f h (()()g h x )=()f h ((()()g x h x )(()())(()())f g x h x h g x h x =,故排除A ;对B 选项 (()f g h )()x =()(())f g h x =(())(())f h x g h x ,(()f h ()g h )()x =()()()()f h x g h x (())(())f h x g h x =,故选B ; 对C 选项 (()fg h )()x =()(())f g h x ((()))f g h x =,(()f g ()g h )()x =()(()())()((()))f g g h x f g g h x = . (((())))f g g h x =,故排除C ;对D 选项 (()f g h )()x =()()()()()()f g x h x f x g x h x =,(()f g ()g h )()x =()()()()()()()()f g x g h x f x g x g x h x =,故排除D .解析二:二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)第Ⅱ卷(非选择题 共100分)二、填空题:(每小题5分,共20分)【2011⋅广东文,11】11.已知{}n a 是递增等比数列,2432,4a a a =-=,则此数列的公比=q .【答案】 2.【解析】 2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或1q =-∵{}n a 是递增的等比数列,∴2q =.【2011⋅广东文,12】12.设函数3()cos 1.f x x x =+若()11f a =,则()f a -= . 【答案】 9-.【解析】3()cos 111f a a a =+=,即3()cos 10f a a a ==,则33()()cos()1cos 11019f a a a a a -=--+=-+=-+=-.【2011⋅广东文,13】13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打时间x (单位:小时)与当于投篮命中率y 之间的关系:小李这 5天的平均投篮命中率为 ,用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 . 【答案】 0.5;0.53.【解析】小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y b x x ==--++++-===-+-+++-∑∑,0.47a y bx =-= ∴线性回归方程0.010.47y x =+,则当6x =时,0.53y = ∴预测小李该月6号打6小时篮球的投篮命中率为0.53. (二)选做题(14、15题,考生只能从中选做一题)【2011⋅广东文,14】14.(坐标系与参数方程选做题)已知两曲线参数方程分别为⎩⎨⎧==θθsin cos 5y x (0≤θ <π) 和254x t yt⎧=⎪⎨⎪=⎩(t ∈R ),它们的交点坐标为 . 【答案】 . 【解析】 sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(01)x y <≤≤≤,254x t y t⎧=⎪⎨⎪=⎩表示抛物线245y x =,22221(01)5450145x y x y x x x y x ⎧+=≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去), 又因为01y ≤≤,所以它们的交点坐标为. 【2011⋅广东文,15】15.(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E 、F 分别为AD 、BC 上点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为 . 【答案】75. 【解析】如图,延长,AD BC ,AD BC P =,∵23CD EF =,∴49PCD PEF S S ∆∆=∵24CD AB =,∴416PCD PEF S S ∆∆=∴75ABEF EFCDS S =梯形梯形. 三、解答题:(本大题共6小题,共80分)【2011⋅广东文,16】16.(本小题满分12分)已知函数()12sin()36f x x π=-,x R ∈.(Ⅰ) 求()0f 的值; (Ⅱ) 设10,0,,(3),2213f ππαβα⎡⎤∈+=⎢⎥⎣⎦6(3),25f πβ+=求()sin αβ+的值. 【解析】 . (Ⅰ) (0)2sin()16f π=-=-;(Ⅱ) 110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α=16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β== ∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯=.【2011⋅广东文,17】17.(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为()1,2,,6n n =的同学所得成绩,且前5(Ⅰ) 求第6位同学成绩6,及这6位同学成绩的标准差;(Ⅱ) 从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间()68,75中的概率. 【解析】 . (Ⅰ) 611756n n x x ===∑5616675707672707290,n n x x x =∴=-=⨯-----=∑622222222111()(5135315)4966n n s x x ==-=+++++=∑,7.s ∴=(Ⅱ) 从5位同学中随机选取2位同学,共有如下10种不同的取法: {1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}, 选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种取法: {1,2},{2,3},{2,4},{2,5},故所求概率为25. 解法二: (1)61(7076727072)756x +++++=,解得690x =, 标准差7s ==. (2)前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠,则基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,这5位同学中,编号为1、3、4、5号的同学成绩在区间(68,75)中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间(68,75)中”,则A 中的基本事件有(1,2)、(2,3)、(2,4)、(2,5)共4种,则42()105P A ==. 【2011⋅广东文,18】18.(本小题满分12分)如图所示,将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右平移到的,,,A A B B ''分别为,,,,CD C D DE D E ''''的中点,1122,,,O O O O ''分别为,,,CD C D DE D E ''''的中点.(Ⅰ) 证明:12,,,O A O B ''四点共面;(Ⅱ) 设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=,证明:2BO H B G '''⊥面.【解析】 .// (Ⅰ) ,,A A CD C D '''分别为中点,11//O A O A ''∴连接BO 2直线BO 2是由直线AO 1平移得到12//AO BO ∴12//O A BO ''∴ 12,,,O A O B ''∴共面.(Ⅱ) 将AO 1延长至H 使得O 1H=O 1A ,连接1,,HO HB H H '' ∴由平移性质得12O O ''=HB21//BO HO ''∴11,,2A G H O H H A H O H H GA H π''''''''''==∠=∠=1GA H O H H ''''∴∆≅∆12H O H GH A π'''∴∠+=1O H H G ''∴⊥ 2BO H G ''∴⊥12212222222,,O O B O O O O O B O O O O '''''''''''⊥⊥⋂= 1222O O B BO O ''''∴⊥平面 122O O BO '''∴⊥ 2BO H B '''∴⊥H B H G H ''''⋂=2.BO H B G '''∴⊥平面解法二:证明:(1)连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心 ∴,,,CD C D DE D E ''''是圆柱底面圆的直径 ∵,,A B B ''分别为C D '',DE ,D E ''的中点 ∴1290A O D B O D ''''''∠=∠= ∴1A O ''∥2BO '∵BB '//22O ',四边形22O O B B ''是平行四边形 ∴2BO ∥2BO ' ∴1A O ''∥2BO∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB '' ∵11O H A O ''''=∴1O H ''2B '',四边形12O O B H ''''是平行四边形 ∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''=∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '' ∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=,∵11tan 2HH HO H O H '''∠=='',1tan 2A G A H G A H '''∠=='',∴1tan tan 1HO H A H G ''''∠⋅∠=, ∴190HO H A H G ''''∠+∠=, ∴1HO H G ''⊥易知12O O ''HB ,四边形12O O BH ''是平行四边形, ∴2BO '∥1HO ', ∴2BO H G ''⊥,H G H B H ''''=,∴2BO '⊥平面H B G ''.【2011⋅广东文,19】19.(本小题满分14分)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性. 【解析】 .函数()f x 的定义域为(0,)+∞.22(1)2(1)1(),a a x a x f x x---+'=当212(1)2(1)1a a a x a x ≠---+时,方程的判别式112(1)()3a a ∆=--.①当10,0,()3a f x '<<∆>时有两个零点,12110,22x x a a =>=+且当12120,()0,()(0,)(,)x x x x f x f x x x '<<>>+∞或时在与内为增函数; 当1212,()0,()(,)x x x f x f x x x '<<<时在内为减函数;②当11,0,()0,()(0,)3a f x f x '≤<∆≤≥+∞时所以在内为增函数;③当11,()0(0),()(0,)a f x x f x x'==>>+∞时在内为增函数;④当111,0,0,2a x a >∆>=->时210,()2x f x a '=<所以在定义域内有唯一零点1x ,且当110,()0,()(0,)x x f x f x x '<<>时在内为增函数;当1x x >时,1()0,()(,)f x f x x '<+∞在内为减函数。

2011年广东高考数学试卷及答案(文科)

2011年广东高考数学试卷及答案(文科)

2011年广东普通高等学校招生全国统一考试数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出四个选项中,只有一项符合题目要求。

1.设复数z 满足1=iz ,其中i 为虚数单位,则z =( ) A .i - B .i C .1- D .12.已知集合{}22(,)|,1A x y x y x y =+=为实数,且,{}(,)|,1B x y x y x y =+=为实数,且,则A B 的元素个数为( )A .4B .3C .2D .13.已知向量(1,2)a = ,(1,0)b = ,(3,4)c =,若λ为实数,//a b c λ+ ,则λ=( )A .41 B .21 C .1 D .24.函数)1lg(11)(x xx f ++-=的定义域是( )A .()1,-∞-B .),1(+∞C .),1()1,1(+∞-D .),(+∞-∞5.不等式0122>--x x 的解集是( ) A .⎪⎭⎫ ⎝⎛-1,21B .),1(+∞C .),2()1,(+∞-∞D .),1(21,+∞⎪⎭⎫ ⎝⎛-∞-6.已知平面直角坐标系xOy 上的区域D 由不等式组⎪⎩⎪⎨⎧≤≤≤≤yx y x 2220给定。

若(,)M x y 为D 上的动点,点A 的坐标为),则OA OM z ∙=的最大值为( )A .3B .4C .23D .247.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线A .20B .15C .12D .108.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆9.如图1~3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则几何体体积为( )A .34B .4C .32D .210.设()f x ,()g x ,()h x 是R 上的任意实值函数,如下定义两个函数()()f g x 和()()f g x ∙:对任意x R ∈,()()(())f g x f g x = ;()()f g x ∙=()()f x g x ,则下列等式恒成立的是( ) A .()()()()()())(x h g h f x h g f ∙∙=∙ B .()()()()()())(x h g h f x h g f ∙=∙ C .()()()()()())(x h g h fx h g f = D .()()()()()())(x h g h fx h g f ∙∙∙=∙∙二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011
年广东省高等职业院校招收中等职业学校毕业生考试
一、选择题:本大题共15小题,每小题5分,满分75分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x||x|=2},N={-3,1},则M ∪N=( )
A. ¢
B.{-3,-2,1}
C.{-3,1,2}
D.{-3,-2,1,2}
2.下列等式中,正确的是( )
A.(32-)23
=-27 B. [(32-)] 23=-27 C.lg20-lg2=1 D.lg5*lg2=1
3.函数y=x x +-1)
1(lg 的定义域是( )
A.[-1,1]
B.(-1,1)
C.( -∞,1)
D.(-1,+ ∞)
4.设α为任意角,则下列等式中,正确的是( )
A.sin(α-2π)=cos α
B.cos(α-2
π)=sin α C.sin(α+π)=sin α D.cos(α+π)=cos α 5.在等差数列{a n }中,若a 6=30,则a =+93a ( )
A.20
B.40
C.60
D.80
6.已知三点O(0,0),A(k,-2),B(3,4),若,→→AB ⊥OB 则k=( )
A.-3
17 B. 38 C.7 D.11 7.已知函数y=f(x)是函数y=a x 的反函数,若f(8)=3,则a=( )
A.2
B.3
C.4
D.8
8.已知角θ终边上一点的坐标为(x,) (cos θ*tan θ0),)(x 3=则<x
A.-3
B.-
23 C. 33 D. 23 9.已知向量AB
(||),13()4,1(==-=→
→→AC BC 则,,向量 ) A.10- B. 17 C.
29 D.5 10.函数f(χ)=(sin2χ-cos2x)2的最小正周期及最大值分别是( )
A.π,1
B.π,2
C.
2π,2 D. 2π,3 11.不等式1≥1
x 2+的解集是( ) A.{x|-1<x ≤1} B.{x|x ≤1} C.{x|x >-1} D.{x|x ≤1或x >-1}
12.“x=7”是“x ≤7”的( )
A.充分非必要条件
B.必要非充分条件
C.充分必要条件
D.既非充分,也非充要条件
Log x 2
1,x >1
13.已知函数f(x)= sinx , 0≤x ≤1 ,则下列结论中,正确的是( )
3x , x <0
A.f(x)在区间(1,+∞)上是增函数
B.f(x)在区间(-∞,1]上是增函数
C.f(1)2=π
D. f(2)=1
14.一个容量为n 的样本分成若干组,若其中一组的频数和频率分别是40和0.25,则n=( )
A.10
B.40
C.100
D.160
15.垂直于x 轴的直线l 交抛物线y 2=4x 于A 、B 两点,且|AB|=43,则该抛物线的焦点到直线l 的距离是( )
A.1
B.2 B.3 D.4
二、填空题:本大题共5小题,每小题5分,满分25分。

16.在边长为2的等边△ABC 中, AB →→BC *=_______________
17.设l 是过点(0,-2)及过点(1,2)的直线,则点(2
1,2)到l 的距离是____________ 18.袋中装有6只乒乓球,其中4只是白球,2只是黄球,先后从袋中无放回地取出两球,则取到的两球都是 白球的概率是________
19.已知等比数列{a n }满足a 1a 321=++a ,a 2a 654-=++a ,则{a n }的公比q=__________
20.经过点(0,-1)及点(1,0),且圆心在直线y=x+1上的圆的方程是____________
三.解答题:本大题共4小题,第21-23题各12分,第24题14分,满分50分。

解答须写出文字说明、证明过程 和演算步骤。

21.(本小题满分12分)
已知△ABC 为锐角三角形,a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积。

若a=2,b=4,S=23 求边长c 。

22.(本小题满分12分)
设f(x)既是R 上的减函数,也是R 上的奇函数,且f(1)=2.
(1) 求f (-1)的值
(2) 若f(t 2
-3t+1) >-2,求t 的取值范围
23.(本小题满分12分) 已知椭圆1x
y y x 22
22=+的左、右两个焦点F1、F2为双曲线13y 4x 2222=-的顶点。

且双曲线的离心率是椭圆的离心率 的7倍。

(1)求椭圆的方程
(2)过F1的直线l 与椭圆的两个交点为A (x )(B ),2,211y x y 和,且|y |y 21-=3,若圆C 的周长与三角形ABF 2的周长 相等,求圆C 的面积及△ABF 2的面积。

24.(本小题满分14分)
已知数列{a n }的前n 项和为S n ,且满足a 1=1,a 1n +=s n +1(n ∈N *)。

(1)求{a n }的通项公式; (2)设等差数列{b n }的前n 项和为T n ,若T 3=30,{b n }≥0(n ∈N *),且332211b a b a b a +++,,成等比数列,求T n
(3)证明:9≤a T n n (n ∈N *)。

相关文档
最新文档