数学高职高考试题
高职高考数学试卷含答案

1. 若函数f(x) = 2x - 3,则f(2)的值为:A. 1B. 3C. 5D. 7答案:C2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an的值为:A. 17B. 19C. 21D. 23答案:C3. 若log2(3x+1) = 3,则x的值为:A. 1B. 2C. 3D. 4答案:B4. 已知等比数列{bn}的首项b1=2,公比q=3,则第5项bn的值为:A. 162B. 156C. 150D. 144答案:A5. 若sinθ = 1/2,则cosθ的值为:A. √3/2B. -√3/2C. 1/2D. -1/2答案:A6. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴为:A. x=1B. x=2C. x=3D. x=4答案:B7. 若三角形ABC中,角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则sinB的值为:A. 3/5B. 4/5C. 5/3D. 5/4答案:B8. 若等差数列{an}的前n项和为Sn,首项a1=2,公差d=3,则S10的值为:A. 50B. 60C. 70D. 809. 已知函数f(x) = (x-1)/(x+1),则f(-1)的值为:A. 0B. 1C. -1D. 2答案:A10. 若等比数列{bn}的首项b1=4,公比q=2,则第n项bn的值为:A. 4^nB. 2^nC. 2^n+1D. 2^n-1答案:A二、填空题(每题5分,共25分)11. 若log2(3x-1) = 4,则x的值为______。
答案:912. 已知等差数列{an}的首项a1=5,公差d=2,则第7项an的值为______。
答案:1513. 若sinθ = -√3/2,则cosθ的值为______。
答案:1/214. 已知函数f(x) = x^2 + 2x + 1,则f(x)的顶点坐标为______。
答案:(-1,0)15. 若三角形ABC中,角A、B、C的对边分别为a、b、c,且a=5,b=7,c=8,则sinA的值为______。
2024职高高考数学试卷

2024职高高考数学试卷一、选择题(本大题共10小题,每小题5分,共50分)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. B⊂neqq AD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (0,1]D. (0,+∞)3. 已知向量→a=(1,2),→b=( - 1,1),则→a+→b等于()A. (0,3)B. (2,1)C. (1,3)D. (2,3)4. 若sinα=(1)/(3),且α是第一象限角,则cosα等于()A. (2√(2))/(3)B. -(2√(2))/(3)C. (√(2))/(3)D. -(√(2))/(3)5. 等比数列{a_n}中,a_1 = 1,公比q = 2,则a_3等于()A. 1.B. 2.C. 4.D. 8.6. 过点(1,2)且斜率为3的直线方程是()A. y - 2=3(x - 1)B. y+2 = 3(x+1)C. y - 1=3(x - 2)D. y+1=3(x + 2)7. 函数y = sin(2x+(π)/(3))的最小正周期是()A. πB. 2πC. (π)/(2)D. (2π)/(3)8. 已知二次函数y=ax^2+bx + c(a≠0)的图象开口向上,对称轴为x = 1,则下列结论正确的是()A. f(-1)B. f(1)C. f(1)D. f(2)9. 在ABC中,a = 3,b = 4,c = 5,则cos B等于()A. (3)/(5)B. (4)/(5)C. (1)/(2)D. (√(3))/(2)10. 若log_a2<1(a>0且a≠1),则a的取值范围是()A. (0,1)B. (1,2)C. (0,1)∪(2,+∞)D. (2,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11. 计算limlimits_x→1(x^2 - 1)/(x - 1)=_2。
专科高职高考数学试卷

考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 3.14D. √-12. 已知 a、b 是方程x² - 3x + 2 = 0 的两个根,则 a + b 的值是()A. 2B. 3C. 4D. 53. 下列函数中,定义域为实数集 R 的是()A. y = √xB. y = |x|C. y = x²D. y = 1/x4. 下列各式中,正确的是()A. a² + b² = (a + b)²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. a² - b² = (a + b)(a - b)5. 已知函数 y = kx + b(k ≠ 0),当 x = 1 时,y = 2;当 x = 2 时,y = 3。
则该函数的解析式为()A. y = 2x - 1B. y = x + 1C. y = 2x + 1D. y = x - 16. 下列各数中,无理数是()A. √4B. √9C. √16D. √-47. 已知 a、b 是方程x² - 5x + 6 = 0 的两个根,则 ab 的值是()A. 5B. 6C. 7D. 88. 下列函数中,奇函数是()A. y = x²B. y = |x|C. y = x³D. y = 1/x9. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²10. 已知函数 y = kx + b(k ≠ 0),当 x = 0 时,y = 3;当 x = 1 时,y = 4。
专科高职数学试题及答案

专科高职数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = x^5 \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\) 的值是多少?A. 0B. 1C. \(\frac{1}{2}\)D. 2答案:B3. 以下哪个选项是微分方程 \(y'' + y = 0\) 的解?A. \(y = e^x\)B. \(y = \cos x\)C. \(y = e^{-x}\)D. \(y = \sin x\)答案:B4. 矩阵 \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\) 的行列式是多少?A. 2B. 5C. 6D. 10答案:B5. 计算不定积分 \(\int x^2 dx\) 的结果是什么?A. \(\frac{1}{3}x^3 + C\)B. \(\frac{1}{2}x^2 + C\)C. \(x^3 + C\)D. \(x^2 + C\)答案:A6. 函数 \(y = \ln(x)\) 的导数是什么?A. \(\frac{1}{x}\)B. \(x\)C. \(\ln(x)\)D. \(e^x\)答案:A7. 以下哪个选项是二项式定理的展开式?A. \((a + b)^n = a^n + b^n\)B. \((a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\)C. \((a + b)^n = a^n - b^n\)D. \((a + b)^n = a^n \cdot b^n\)答案:B8. 计算定积分 \(\int_{0}^{1} x dx\) 的值是多少?A. 0B. 1C. \(\frac{1}{2}\)D. 2答案:C9. 以下哪个函数是周期函数?A. \(y = x^2\)B. \(y = \sin x\)C. \(y = e^x\)D. \(y = \ln x\)答案:B10. 矩阵 \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) 是什么类型的矩阵?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 非奇异矩阵答案:B二、填空题(每题4分,共20分)1. 函数 \(y = x^3 - 3x + 1\) 的导数是 \_\_\_\_\_\_。
高职高考数学必刷题

高职高考数学必刷题一、选择题(每题3分,共30分)已知f(x)=x−21,则f(x)的定义域为( )A. (−∞,2)∪(2,+∞)B. (−∞,2)C. (2,+∞)D. R若x,y∈R,且x+y=1,则x2+y2的最小值为( )A. 21B. 1C. 41D. 0下列函数中,在(0,+∞)上单调递减的是( )A. y=x2B. y=lnxC. y=x1D. y=ex设A={x∣1<x<4},B={x∣x<a},若A∩B=A,则实数a的取值范围是( )A. a≥4B. a>4C. a≤1D. a<1已知a>0,b>0,则不等式ab+ba≥2成立的条件是( )A. a=bB. a=bC. a>bD. a<b已知函数f(x)=sin(2x+φ)的图象关于点(6π,0)对称,则φ可能是( )A. 6πB. 3πC. 32πD. 65π已知等差数列{an}的前n项和为Sn,若a1=1,S3=9,则a5= ( )A. 7B. 9C. 11D. 13下列命题中,真命题的个数是( )① "若x>1,则x2>1"的否命题;② "若x>y,则x2>y2";③ "若x,y都是无理数,则x+y也是无理数";④ "若a,b都是偶数,则a+b也是偶数"。
A. 1B. 2C. 3D. 4设随机变量X服从正态分布N(2,σ2),若P(X<4)=0.9,则P(0<X<2)= ( )A. 0.4B. 0.3C. 0.2D. 0.1已知直线l过点(2,3)且与直线2x−y+1=0垂直,则直线l的方程为( )A. x+2y−10=0B. 2x+y−7=0C. x−2y+5=0D. x−2y+3=0二、填空题(每题4分,共16分)已知等比数列{an}中,a1=2,公比q=21,则a4= _______.函数y=4−x2的定义域为[_____, _____]。
高职高考数学试卷月考

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. -√3C. πD. 0.1010010001…2. 已知等差数列 {an} 的前n项和为 Sn,若 S3=9,S6=36,则第4项 a4 等于()A. 6B. 7C. 8D. 93. 函数 y=2x-1 的图象上,x 的取值范围是()A. x≤0B. x≥0C. x≠0D. x>04. 下列命题中,正确的是()A. 若 a^2=b^2,则 a=bB. 若 a^2=b^2,则a=±bC. 若 a^2=b^2,则 |a|=|b|D. 若 a^2=b^2,则 ab=05. 在△ABC中,∠A=45°,∠B=60°,则∠C的大小为()A. 30°B. 45°C. 60°D. 75°6. 已知函数 y=3x^2+2x-1,若 x=2,则 y 的值为()A. 11B. 9C. 7D. 57. 下列不等式中,正确的是()A. 2x+3<5B. 2x+3>5C. 2x+3≤5D. 2x+3≥58. 在平面直角坐标系中,点P(2,3)关于y轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)9. 下列各式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2+2ab-b^2D. (a-b)^2=a^2-2ab-b^210. 下列函数中,为一次函数的是()A. y=2x^2-3x+1B. y=x^3-2x+1C. y=3x+5D. y=2/x二、填空题(每题5分,共50分)1. 等差数列 {an} 的公差为d,首项为a1,第n项 an 等于__________。
2. 若 a、b、c 成等比数列,则 b^2=__________。
3. 函数y=√(x^2-1) 的定义域为__________。
职高数学高考试题及答案

职高数学高考试题及答案题目一:选择题(每题4分,共25题)1. 已知函数$f(x) = 2x^2 + 3x - 4$,则$f(-1)$的值等于()。
A. -8B. -7C. -6D. -52. 在等差数列$\{a_n\}$中,已知$a_1 = 5$,$d = 2$,若$a_{10} = 23$,则$a_2$的值等于()。
A. 9B. 10C. 11D. 123. 函数$f(x) = a^x$($a > 0$)的定义域为全体实数,当$a > 1$时,$f(x)$是()函数。
A. 增函数B. 减函数C. 常数函数D. 正值函数4. 若方程$x^3 - mx^2 + (m - 4)x - 4 = 0$的一个实根是4,则$m$的值等于()。
A. 2B. 4C. 6D. 85. 在等差数列$\{a_n\}$中,已知$a_5 - a_3 = 8$,若$a_2 = 7$,则$d$的值等于()。
A. 1B. 2C. 3D. 46. 抛物线$y = ax^2 + bx + c$的图象关于直线$x = 1$对称,则$a + b + c$的值等于()。
A. -1B. 0C. 1D. 27. 在等差数列$\{a_n\}$中,已知$a_1 = 3$,$a_n = 17$,$S_n = 85$,则$n$的值等于()。
A. 5B. 6C. 7D. 88. 若$\log_2{x} = \log_{\frac{1}{2}}{y}$,则$x$与$y$的关系是()。
A. $x = \frac{1}{y}$B. $x = y$C. $xy = 1$D. $x + y = 0$9. 在等差数列$\{a_n\}$中,$a_1 = 3$,$a_2 = 5$,若$a_1 + a_2 +\ldots + a_n = 2n^2 + n$,则$n$的值等于()。
A. 3B. 4C. 5D. 610. 在平面直角坐标系中,点$A(1, 2)$到直线$2x - y + 3 = 0$的距离等于()。
高职高考数学试卷及答案

一、选择题(每题5分,共30分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为:A. -5B. -2C. 1D. 42. 下列各组数中,不是等差数列的是:A. 1, 4, 7, 10, ...B. 3, 6, 9, 12, ...C. 2, 4, 8, 16, ...D. 5, 10, 15, 20, ...3. 若a, b, c是等比数列,且a + b + c = 12,abc = 64,则b的值为:A. 4B. 8C. 16D. 324. 已知圆的方程为x² + y² - 4x - 6y + 9 = 0,则圆的半径为:A. 2B. 3C. 4D. 55. 下列函数中,在定义域内单调递增的是:A. y = x²B. y = -x²C. y = 2xD. y = -2x二、填空题(每题5分,共20分)6. 若log₂x + log₂(x + 2) = 3,则x的值为______。
7. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为______。
8. 已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,则数列的通项公式an=______。
9. 已知等差数列{an}的公差为2,若a1 + a5 + a9 = 30,则a3的值为______。
10. 函数y = x² - 4x + 3的图像与x轴的交点坐标为______。
三、解答题(每题20分,共40分)11. (解答题)已知函数f(x) = x² - 4x + 3,求f(x)的图像的顶点坐标。
12. (解答题)已知等差数列{an}的前n项和为Sn,且S5 = 50,求该数列的通项公式。
四、附加题(30分)13. (附加题)已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,S3 = 6,求该数列的通项公式an。
答案一、选择题1. B2. C3. A4. C5. C二、填空题6. 47. 75°8. an = n9. 510. (1, 0) 和 (3, 0)三、解答题11. 顶点坐标为(2, -1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省高等职业院校招收中等职业学校毕业生考试
数学
一、 选择题(每题5分, 共75分)
1、已知集合}5,4,3{},4,3,2,1,0{==N M , 则下列结论正确的是()
A .N M ⊆
B .M N ⊆
C .}4,3{=N M
D .}5,2,1,0{=N M
2、函数A .(,∞-3A .5-B 4、样本A .5和25、设(f () A .5-B 6)5
4,53(-P A .sin θ7、“>x A .C .8A .log 22222C .120=D .422810=÷
9、函数x x x x x f sin 3sin cos 3cos )(-=的最小正周期为()
A .2π
B .3
2πC .πD .π2 10、抛物线x y 82-=的焦点坐标是()
A .)0,2(-
B .)0,2(
C .)2,0(-
D .)2,0(
11、已知双曲线)0(162
22>=-a y a
x 的离心率为2, 则=a () A .6B .3C .3D .2
12、从某班的21名男生和20名女生中, 任意选派一名男生和一名女生代表班级参加评教座谈会, 则不同的选派方案共有()
A .41种
B .420种
C .520种
D .820种
13、已知数列}{n a 为等差数列, 且21=a , 公差2=d , 若k a a a ,,21成等比数列, 则=k () A .4B .6C .8D .10
14、设直线l 经过圆02222=+++y x y x 的圆心, 且在y 轴上的截距为1, 则直线l 的斜率为() A .2B .2-C .21D .2
1- 15、已知函数x e y =的图象与单调递减函数))((R x x f y ∈=的图象相交于点),(b a , 给出下列四个结论:
①b a ln =②a b ln =③b a f =)(④当a x >时, x e x f <)(
其中正确的结论共有()
A .1个
B .2个
C .3个
D .4个
二、 填空题(每题5分, 共25分)
三、 17、设向量)sin 3,2(θ=a , )cos ,4(θ=b , 若b a //, 则=θtan .
16、已知点)0,0(O , )10,7(-A , )4,3(-B , 设AB OA a += , 则=a .
18、从编号分别为1,2,3,4的4张卡片中随机抽取两张不同的卡片, 它们的编号之和为5的概率是.
19、已知点)2,1(A 和)4,3(-B , 则以线段AB 的中点为圆心, 且与直线5=+y x 相切的圆的标准方程是.
20、设等比数列{}n a 的前n 项和13
1
3--=n n S , 则{}n a 的公比=q .
四、 解答题(第21、22、23题每题12分, 第24题14分,
共50分) 21、如果1, 已知两点)0,6(A 和)4,3(B , 点C 在y 轴上, 四
边形OABC 为梯形, P 为线段OA 上异于端点的一点, 设
x OP =.
(1)求点C 的坐标;
(2)试问当x 为何值时, 三角形ABP 的面积与四边形OPBC 的
面积相等?
21、设ABC ∆的内角C B A ,,的对边分别是c b a ,,, 已知5,3,2===c b a .
(1)求C sin ;
(2)求C B A 2sin )cos(++的值.
23、已知数列{}n a 是等差数列, n S 是{}n a 的前n 项和, 若26,16127==a a .
(1)求n a 及n S ;
(2)设2
1+=
n n S b , 求数列{}n b 的前n 项和n T .
24、如图2, 设21,F F 分别为椭圆)0(116:22
22>=-+a a y a x C 的左、右焦点, 且2221=F F . (1)求椭圆C 的标准方程;
(2)设P 为第一象限内位于椭圆C 上的一点, 过点P 和2F 的直线交y 轴于点Q , 若21QF QF ⊥, 求线段PQ 的长.。