浅谈大数据对统计学的挑战和机遇
浅谈大数据时代统计学的挑战与机遇

浅谈大数据时代统计学的挑战与机遇随着互联网的快速发展和信息技术的进步,大数据时代已经来临。
在这个时代,数据的规模和复杂性呈指数级增长,传统的统计学方法已经难以适应这个新的环境。
大数据时代给统计学带来了新的挑战和机遇。
大数据时代给统计学带来了数据的规模和复杂性的挑战。
在过去,统计学主要处理的是小样本的数据,而现在的大数据往往包含了数亿甚至数十亿的观测值。
这种规模的数据对传统的统计学方法提出了很大的挑战,需要统计学家开发新的技术和方法来处理这些庞大的数据集。
大数据往往具有高维性和复杂性,包含了多个变量的同时变化以及各种类型的数据。
传统的统计学方法很难在这种复杂的数据环境下准确地进行分析和建模。
统计学需要发展新的多变量分析方法、复杂数据模型和数据可视化技术,以更好地理解和利用大数据。
大数据时代也为统计学提供了巨大的机遇。
大数据可以为统计学家提供更多、更准确的数据样本,从而提高统计分析的可靠性和准确性。
传统的小样本统计往往受到样本偏差的影响,而大数据可以有效地避免这个问题。
通过分析大数据,统计学家可以得出更准确的结论,为决策提供更可靠的依据。
大数据时代的统计学也可以通过发现隐藏的模式和关联关系来获取更深入的洞察。
大数据中蕴含着大量的信息,通过挖掘其中的规律和模式,可以发现之前未被发现的知识和见解。
这些发现可以帮助人们更好地理解现象和问题的本质,为决策和创新提供新的思路和方法。
大数据时代的统计学还可以促进跨学科的合作和交流。
大数据往往涉及多个领域的数据和知识,需要统计学家与其他学科的专家共同合作,才能更好地理解和分析数据。
通过与计算机科学、数学、经济学等学科的交叉合作,可以加强对大数据的理解和应用,为解决实际问题提供更强大的工具和方法。
大数据时代给统计学带来了新的挑战和机遇。
面对数据规模和复杂性的挑战,统计学需要不断发展新的技术和方法。
大数据也为统计学提供了更多、更准确的数据样本和丰富的知识资源,为统计学的发展和应用提供了更广阔的空间。
浅谈大数据时代统计学的挑战与机遇

浅谈大数据时代统计学的挑战与机遇
随着大数据时代的到来,统计学面临着巨大的挑战和机遇。
本文将从三个方面来谈论
这些挑战和机遇,分别是数据的规模和复杂性、数据的质量和可信度以及统计学的理论和
方法的创新。
大数据时代带来了数据的规模和复杂性的挑战。
传统统计学主要是针对小样本数据的
分析和推断,而大数据时代的数据量巨大、种类繁多,数据的规模和复杂性远远超过了传
统统计学所能处理的范围。
这就要求统计学家具备更强的计算和编程能力,能够运用高效
的算法和工具来处理大规模的数据,从而实现对数据的挖掘和分析。
大数据时代的数据质量和可信度也是一个重要的挑战。
由于数据规模庞大,数据的来
源和质量也变得更加复杂和不确定。
存在着数据质量不高、数据缺失、数据主观性等问题,这些都会对统计分析的结果产生影响。
统计学家需要更加关注数据的质量和可信度,发展
适应大数据环境的数据清洗和预处理技术,提高数据的可靠性和准确性。
大数据时代为统计学的理论和方法的创新提供了机遇。
传统统计学主要关注样本的抽
样和推断,而大数据时代的数据通常是全样本的,这就给统计学家提供了更多的机会来研
究和应用新的理论和方法。
基于大数据的机器学习方法、深度学习算法等已经在各个领域
取得了巨大的成功,这些方法不仅能够处理大规模的数据,还能够挖掘数据中的隐藏模式
和规律。
统计学家可以借鉴和引入这些新的方法,来处理和分析大数据,并为决策提供更
准确和可靠的信息。
大数据对统计学的挑战和机遇

大数据对统计学的挑战和机遇从学科角度而言,大数据对海量数据进行存储、整合、处理和分析,可视为一种新的数据分析方法,这种基于数据关系的内在本质决定了大数据与统计学之间的必然关系,大数据对统计学的发展既提出了挑战又提供了机遇。
大数据对统计学的挑战体现在:大样本标准的调整、样本选取标准和形式的重新确定、统计软件有待升级和开发及实质性统计方法的大数据化。
大数据对统计学的机遇体现在:统计质量的提高、统计成本的下降、统计学作用领域的扩大、统计学科体系的延伸及统计学家地位的提升。
大数据统计学挑战机遇一、大数据与统计学的比较统计学在大数据的研究中存在一定的应用,表现在将“大数据”变成“小数据”,对海量数据的搜索、聚类和分类依赖于统计学的一般方法,因而大数据的研究继承了统计学科的一些特点。
但大数据尚未被统计学吸纳和应用,这主要是由于大数据与统计学存在两个很关键的差别。
第一,样本统计和全样本统计的差别。
统计学依赖于样本统计(普查除外),样本是按照一定的概率从总体中抽取并作为总体代表的集合体,而随机抽样是有成本的,如时间成本、资金成本、社会关系等。
在样本规模增加有限的情况下,总体数量越大样本估计的误差就越大,这是样本统计不可避免的缺陷。
第二,预测分析和非预测分析的差别。
统计学旨在分析变量之间的相关关系,即两个或两个以上变量之间存在的某种规律性,故数据搜集是发生在变量确定之后,数据的分析价值是可预测的。
如若要研究利率对消费行为的影响,则利率大小和消费支出的数据会有目的地被搜集和分析。
一旦分析目的完成,为该目的而搜集的数据的价值也就完全实现。
二、大数据对统计学的挑战大数据与统计学的关系及其本身的优势,意味着未来统计学的大数据化是不可避免的趋势,现有的统计学与大数据之间还存在着一些不相容的地方,为积极应对这一趋势,就必须对现有的统计学理论和方法作出相应的调整甚至是某些方面的完全革新。
统计学依赖于样本统计,主要研究客观事物数量关系和数量特征。
浅谈大数据时代统计学的挑战与机遇

浅谈大数据时代统计学的挑战与机遇大数据时代的到来给传统的统计学带来了前所未有的挑战和机遇。
随着数据量的爆炸性增长和计算能力的提高,统计学在从过去的小样本假设检验模型转变为基于大样本的机器学习和数据挖掘模型的过程中面临着诸多的挑战和机遇。
大数据的到来对统计学的挑战主要体现在如何处理高维数据和多源异构数据的问题上。
传统的统计学方法往往针对的是低维小样本的数据,而在大数据时代,我们面对的是维度高且包含大量特征的数据。
这就要求统计学家开发新的方法来处理高维数据,包括特征选择、降维和选择合适的模型等。
大数据时代的数据往往来自不同的数据源,比如社交媒体数据、传感器数据等,这些数据往往具有不同的特点和不同的数据结构,如何将这些多源异构数据整合起来进行分析也是一个重要的挑战。
大数据时代给传统的统计学带来了机遇。
大数据的出现不仅意味着更多的数据可以用于分析,还意味着我们可以使用更多的数据来构建更准确的模型。
在传统的统计学中,小样本数据可能存在着采样误差和模型拟合误差,而大数据可以帮助我们更好地解决这些问题。
大数据时代也给传统的统计学带来了更多的数据分析工具和算法。
在大数据时代,我们可以使用更复杂的机器学习算法来挖掘数据中的关联规则和模式,从而发现隐藏在数据背后的潜在规律。
这些新的工具和算法使得我们可以更好地理解数据,做出更准确的预测和决策。
除了以上的挑战和机遇,大数据时代还给统计学带来了许多其他方面的变革。
大数据的分析往往需要更强大的计算能力和存储能力。
传统的统计学通常使用统计软件来进行数据分析,而在大数据时代,我们需要使用分布式计算和云计算等技术来处理海量的数据。
存储和管理大数据也是一个挑战,需要使用各种数据库和分布式文件系统等技术来进行存储和管理。
大数据时代还涌现出了一批新的统计学家,他们熟悉数据科学和计算机科学等领域的知识,能够利用大数据的优势进行数据分析和模型构建。
这些新的统计学家往往具有跨学科的背景,能够更好地理解和解决大数据时代的挑战。
浅谈大数据时代统计学的挑战与机遇

浅谈大数据时代统计学的挑战与机遇在当今信息爆炸的时代,大数据已经成为了不可忽视的一部分。
大数据的涌现为统计学带来了新的机遇和挑战。
统计学在大数据时代更加重要,因为它能够帮助人们理解和分析海量的数据,发现数据背后的规律和趋势。
但与此大数据时代也给统计学提出了更高的要求,需要不断地适应新的技术和方法,以更好地应对大数据时代带来的挑战。
本文将就大数据时代对统计学的挑战与机遇进行浅谈。
一、挑战1. 海量数据的分析能力在大数据时代,我们需要处理的数据量越来越大,传统的统计方法在处理海量数据时面临很大的挑战。
传统的统计方法可能需要耗费大量的时间和资源来处理海量数据,因此需要发展新的统计技术和算法来应对这一挑战。
2. 数据的质量和可信度大数据时代所涉及的数据种类繁多,而且数据的质量和可信度也是一个重要的问题。
在海量数据中,可能存在大量的噪音数据和不准确的数据,如何从海量数据中筛选出高质量的数据,成为了一个亟待解决的问题。
3. 隐私和安全问题大数据时代的数据往往涉及到个人隐私信息和商业机密等重要数据,如何在保护隐私和信息安全的前提下进行数据分析,是一个重要挑战。
统计学需要在保护数据隐私和保证数据安全的前提下进行数据分析,这对统计学提出了更高的要求。
4. 多源数据的整合和分析在大数据时代,数据往往来自不同的来源,不同的数据集之间存在着较大的差异和不一致性。
如何进行多源数据的整合和分析,使得数据之间具有一致性和可比性,是一个重要挑战。
5. 新兴技术的运用大数据时代的到来,带来了诸多新兴技术,如人工智能、机器学习等,这些新兴技术为统计学提出了新的挑战。
统计学需要与这些新兴技术结合,不断地创新和发展,才能更好地应对大数据时代的挑战。
二、机遇1. 数据科学的发展在大数据时代,数据可视化成为了一种重要的方式。
通过数据可视化,人们可以更直观地理解数据的规律和趋势,发现数据之间的联系和规律。
统计学在数据可视化方面发挥着重要作用,通过统计学的方法和技术,可以更好地进行数据可视化分析。
浅谈大数据时代统计学的挑战与机遇

浅谈大数据时代统计学的挑战与机遇大数据时代的到来带来了数据的大规模产生和高速传输,推动了统计学的快速发展。
大数据时代也对统计学提出了新的挑战,同时也带来了许多机遇。
大数据时代给统计学带来的挑战之一是数据质量的问题。
在大数据时代,数据量的增加可能会导致更多的噪声和异常值,使得数据的质量下降。
统计学需要应对这些问题,开发出新的方法和技术,提高数据的准确性和可靠性。
大数据时代给统计学带来的挑战之二是数据的处理和分析的问题。
大数据的规模大大超过了传统的数据处理和分析方法的处理能力。
统计学需要发展出新的算法和技术,以应对大规模数据的处理和分析需求。
大数据时代还给统计学带来了数据隐私和安全的挑战。
大数据中可能包含有个人的敏感信息,如何在保护个人隐私的同时进行数据的分析和挖掘成为了一个挑战。
统计学需要充分考虑到数据隐私和安全的问题,研发出新的方法和技术来解决这些挑战。
大数据时代也给统计学带来了许多机遇。
大数据时代极大地推动了统计学的发展和应用。
大规模的数据收集和分析需要统计学的方法和理论来指导和支持。
统计学的理论和方法在数据挖掘、机器学习和人工智能等领域发挥着重要的作用。
大数据时代提供了更多的数据资源供统计学进行研究和实践,拓宽了研究领域和应用领域。
通过对大数据的分析和挖掘,统计学可以揭示数据中的隐藏规律和模式,为决策提供更加准确和可靠的依据。
大数据时代也给统计学带来了与其他学科的融合的机遇。
在大数据时代,统计学需要与计算机科学、人工智能等学科进行紧密合作,借助计算力和算法的发展,共同解决大数据分析和挖掘的问题。
通过与其他学科的融合,统计学可以不断吸纳其他学科的方法和理论,推动统计学的发展。
浅谈大数据时代统计学的挑战与机遇

浅谈大数据时代统计学的挑战与机遇随着互联网技术的迅猛发展,大数据时代已经来临。
大数据不仅仅是指数量庞大的数据集合,更重要的是通过对这些数据的收集、存储和分析,可以帮助人们深入了解客观事物的真实状态、规律和趋势。
在大数据时代,统计学发挥着重要的作用,帮助人们从海量的数据中提取有用的信息,为决策提供依据。
大数据时代也给统计学带来了一些挑战和机遇。
大数据时代给统计学带来的挑战之一是数据的量级和速度增加。
随着互联网和物联网的普及,人们不仅可以通过电脑、手机等设备进行网上购物和生活,各种传感器也可以收集到大量与人类活动相关的数据。
这些数据量大、速度快、多样性强,远远超过了人们传统的数据处理能力。
统计学需要面对这一挑战,提供高效的数据处理和分析方法,以便从大数据中发现有价值的信息。
大数据时代给统计学带来的挑战之二是数据的质量问题。
大数据中常常存在着数据质量低下、数据误差较大的问题。
互联网上的评论和评分往往存在虚假的情况;传感器收集的数据也可能受到环境和技术因素的干扰。
统计学需要解决这些问题,提出有效的数据过滤和纠错方法,确保数据的质量,从而得到准确可靠的分析结果。
大数据时代给统计学带来的挑战之三是隐私保护和数据安全问题。
在大数据时代,人们的个人信息往往被大量收集和使用,个人隐私面临泄露和滥用的风险。
大数据的存储和传输也存在着数据安全的问题,一旦数据遭到恶意攻击,将会造成严重的损失。
统计学需要关注这些问题,提出合理的隐私保护策略和数据安全措施,保障个人隐私和数据的安全性。
大数据时代中也存在着统计学的机遇。
大数据时代给统计学提供了更多的数据资源。
相比过去,统计学家可以更方便地获取到海量的数据,从而有机会挖掘出更多潜在的规律和趋势。
这将为统计学的发展提供更多的材料和基础。
大数据时代给统计学带来了分析方法的革新。
传统的统计学方法往往面临着数据量过大、速度过快、多样性强的问题,难以适应大数据时代的需求。
统计学家们需要创新性地提出新的数据分析方法,以适应大数据时代的需求。
大数据时代统计学面临的机遇与挑战

大数据时代统计学面临的机遇与挑战一、本文概述随着信息技术的飞速发展,大数据时代已经悄然来临,数据量的爆炸式增长和类型的多样化给统计学带来了新的机遇和挑战。
本文旨在探讨大数据时代下统计学所面临的机遇与挑战,分析统计学的变革趋势,并展望未来的发展方向。
我们将从数据获取与处理的挑战、统计分析方法的创新、以及大数据在各个领域的应用等方面展开论述,以期为统计学的未来发展提供有益的参考和启示。
在大数据时代,统计学的应用领域得到了极大的拓展,不仅在经济、金融、社会科学等传统领域发挥着重要作用,还在生物信息、医疗健康、环境科学等新兴领域展现出强大的生命力。
然而,大数据的复杂性和不确定性也给统计学的理论研究和应用实践带来了新的挑战。
因此,如何适应和利用大数据时代的机遇,克服其中的挑战,成为统计学面临的重要课题。
本文将从多个角度对大数据时代统计学的机遇与挑战进行深入剖析,以期为统计学的未来发展提供有益的借鉴和指导。
二、大数据时代统计学的机遇在大数据时代,统计学面临着前所未有的机遇。
这一变革为统计学的发展和应用提供了广阔的空间和无限的可能性。
大数据的丰富性为统计学提供了更为充足的数据资源。
传统的统计学往往受限于数据样本的大小和代表性,难以进行全面的分析和预测。
然而,在大数据时代,海量的数据资源使得统计学家能够获取更为全面、细致的信息,从而进行更为准确和深入的统计分析。
大数据的多样性为统计学提供了更为丰富的分析维度。
在大数据的支持下,统计学家可以从多个角度和层面进行数据的分析和解读,挖掘出更多的信息和价值。
这种多维度的分析方式不仅有助于揭示数据背后的规律和趋势,还可以为决策提供更为全面和科学的依据。
大数据的实时性为统计学提供了更为及时的信息反馈。
在传统的统计学中,数据的收集和处理往往需要耗费大量的时间和精力,导致分析结果具有一定的滞后性。
然而,在大数据时代,数据的实时更新和处理使得统计学家能够及时地获取和分析数据,从而对市场变化、社会动态等进行实时的监测和预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈大数据对统计学的挑战和机遇
引言
国际数据公司的相关研究指出,2016年全球数据生产量达,且全球信息总量每隔两年增长一倍[1]。
在大数据时代下,对于统计学发展而言,挑战与机遇并存,挑战指的是现阶段传统统计学相关方法难以适用大数据,机遇指的是基于统计学,大数据展开数据处理、分析,促使大数据具备可视化特性。
由此可见,研究大数据对统计学的挑战和机遇有着十分重要的现实意义。
1.大数据及其目的
现阶段,关于大数据仍旧没有一个十分明确的界定,大数据起初是源自于技术领域。
在信息量不断扩大的情况下,使得常规电脑原有存储空间已不能对新处理数据进行承载,新兴数据处理技术得以产生,好比雅虎的Hadoop平台、谷歌的MapReduce等。
此类技术能够对僵化层次结构、一致性予以消除,促进数据无需通过常规数据库表格进行排列,极大程度地提升了人们可处理的数据量[1]。
2.大数据与统计学的对比
样本统计与全样本统计的区别
样本统计属于统计学不可或缺的依赖,样本指的是结合相应的概率自总体中随机筛选并视作总体代表的集合内容,
值得一提的是随机抽样是需要成本的,包括社会关系、资金成本或者时间成本等。
基于样本数量提升有限前提下,样本估计误差会随着总体数量增多而增大,这亦是样本统计无法避免的不足。
大数据时代下,联盟庞大的数据信息应运而生,数据信息发展表现出总体即是样本的态势,该属性很好的消除了样本统计这一不足。
大数据时代下的全样本统计,通常情况下可对完全总体进行覆盖,然而受大部分数据属于半结构、半结构数据影响,使得概率论应用遭受一定的制约[2]。
鉴于此,将全样本统计应用到统计学中,应当就总体数据展开相应的归纳、筛选,即好比在样本统计中展开数据预处理。
预测分析与非预测分析的区别
统计学的创立,是为了对变量相互相关关系展开分析,因此获取数据是发生于变量确定之后的,数据分析价值是能够被预测的。
相较于统计学的预测分析,庞大数据将互联网、传感器作为载体,存在于分析需求之前,因此构建于大数据上的分析多为非预测性分析。
在统计学中,出现大数据无法有效应用局面,这是由于不具备非预测分析所需的庞大数据,庞大数据产生与数据中心、存储系统存在紧密的联系,并非短期产生。
也就是说,统计学中大数据的应用发展,说明了非预测分析正逐步取代传统统计学预测分析,数据多次利用正逐步取代传统数据一次性利用的。
3.大数据对统计学的挑战与机遇
数据生产、处理与应用的转变
相关统计部门经开展严格的统计设计工作,获得相关的统计数据,数据的预处理分别有数据清洗、非全面数据填补以及数据矫正等。
大数据时代下的统计手段尚不十分明确,自大数据流环境而言,要不断探索新型抽样方法,并确保抽样方法的实时、连贯及可行性。
除去传统的统计分析方法,还应当开发大数据动态分析、数据流算法等[3]。
大数据时代对市场营销的机遇
大数据营销的特点与价值
大数据营销的特点:I.数据采集多平台化特点,即大数据时代下,大数据的数据大多来源于不同的领域、不同的渠道。
II.时效性特点,随着信息技术的急速发展,互联网用户消费、购物行为方式往往会瞬间出现转变。
国际先进大数据营销企业AdTime基于此大数据营销特点,采取了时间营销措施,即采取相应的技术方式全面获悉用户所需,于第一时间对用户当下的需求进行回应,以使用户在下决心购买的最佳时间及时看到对应的产品广告。
III.个性化特点,在大数据时代下,广告商传统媒体导向的营销理念逐步由受众导向取代,现如今,广告商可应用大数据了解用户的地理方位,需求内容等信息,达到对用户个性化营销的目的。
大数据营销的价值:I.升级营销与用户的匹配度,大数据营销不仅可提供给企业了解用户有效的途径,还能够于网
络环境下,选取相关技术方法达到对用户精确定位的目的,从而开展好营销工作,升级营销与用户的匹配度。
II.改善用户体验,大数据营销促使企业真正意义上认识到用户及其所使用企业产品情况,以给予用户最人性化的提醒。
大数据营销的应用
与消费者建立紧密关系
现如今,我国一些企业营销行为仍旧处于个性化定位信息、创意设计阶段,而无法对不同消费者展开个性化的营销活动。
大数据时代下,经采用相关数据分析技术方法,基于对消费群体喜好、传媒接触习惯等展开有效的分析,达到特定营销活动明确开展的目的,实现企业精心开展的营销活动精准的辐射至目标消费群体处,与消费者建立紧密关系,极大的改善营销效率、质量[4]。
掌握竞争对手数据
企业通过对竞争对手数据的有效掌握,获悉竞争对手发展状况,基于此帮助企业制定科学合理的产品价格,提升企业产品市场竞争优势。
与此同时,企业务必要全面实施以事实为前提的决策手段,广泛地应用数据分析方式对企业每一个发展运营步骤进行优化,经对企业一系列数据的充分优化、对接,促使业务环节中潜在的价值得以被有效挖掘,降低生产成本,知己知彼,促使企业在日趋白热化的市场竞争中占据有利位置。
挖掘企业内部数据
“市场未动,数据先行”俨然转变为国际上企业有效运营发展的一致认识,为了提升企业管理效率,要求企业要充分挖掘企业内部数据,并展开有效的整合、分析,以为企业相关人员做决策提供有利的参考依据,提升决策准确性,促进企业可持续发展。
企业的应用案例——以亚马逊为例
在应用大数据开展市场营销方面,美国亚马逊公司一直处于领先地位。
亚马逊研发出“用户未下单,先发货”功能,即结合用户的购物需求数据信息,分析用户想要购买的产品,达到用户未下单,提前发货的目的。
此外,亚马逊通过对用户检索信息的分析,评估流感的传播,但这仅仅为海量检索数据中的一项用途,相同的数据能够应用于预测大选结果、预测某类产品市场行情等等,极大地降低了统计成本[5]。
大数据时代对市场营销的挑战
信息收集
大数据并非就是对数据信息展开盲目的收集,即便收集了再多的数据,倘若这些数据并非是市场营销所需要的,如此便会导致前期收集来的数据信息,变成一堆“数据垃圾”。
鉴于此,为了避免这一情况发生,务必要充分分析业务需求,再对自身存在价值的数据展开收集、归纳,如此方可实现大数据的有效收集应用。
经验与数据
数据采集完毕后,面对参差不齐的数据,还应当做好数据评估工作,评估对何种目标受众开展市场营销工作。
鉴于此,要求采取科学合理的手段,将这些参差不齐的数据整合成可被市场营销实践应用的,经结合过去的经验,与采集数据进行有机融合,实现对目标受众的有效分析确定。
分析与优化
数据分析,一方面是实现数据优化,一方面是进行决策层面上的调整、转变。
此环节对于专业人才的需求提出了严苛的挑战。
数据分析、数据优化对于专业人才的知识框架要求大不相同,这要求相关企业不仅要培养专业的数据分析人才,还要打造数据优化人才队伍。
大数据营销的未来发展趋势
信息技术不断发展,单一媒体导向的“消费者碎片化”俨然无法达到企业对于数据多样性的需求。
大数据时代下,媒体的跨界融合实现对“碎片化”受众的充分聚合。
在科学技术技术不断进步的背景下,跨媒介、跨平台、跨终端的多途径将不断被开拓,将使庞大的数据信息获取多维度的整合,并且在多样化网络环境下,消费者主观信息与客观数据有机融合,构筑全面用户数据库环节,将成为未来大数据营销发展的必然趋势[6]。
4.结束语
总而言之,大数据为传统统计学带来了严峻的考验,也为传统统计学有效发展创造了良好的契机。
在大数据时代发展潮流中,我们应当充分的认识到大数据对于传统统计学而言,是补充而不是更替,构建于样本统计、预测分析内容上的传统统计学,仍旧于社会统计、经济分析中占据着主导位置。
大数据时代下,为了实现企业市场营销的有效开展,相关人员务必要不断专研研究、总结经验,全面分析大数据与统计学的对比,充分认识大数据对统计学的挑战和机遇,“与消费者建立紧密关系”、“掌握竞争对手数据”、“挖掘企业内部数据”等,积极促进企业市场营销的科学合理化。