红外光谱原理及解析

合集下载

ir(红外光谱)的原理

ir(红外光谱)的原理

ir(红外光谱)的原理
红外光谱法(IR)的原理是:分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。

在红外线照射下,当辐射能量与分子振动、转动频率相一致时,被测物质分子会产生其特定的红外光谱,据此可鉴定出化合物中各种原子团。

IR具有测定快速、特征性强、试样用量少、操作简便等优点。

但是,红外光谱一般只提供物质分子中官能团的相关信息,而对于一些复杂化合物,特别是新化合物,单靠IR 检测技术并不能解决问题,需要与其他分析手段互相配合,才能确定分子结构。

如需了解更多关于IR的原理,建议查阅相关文献或咨询专业化学家。

红外光谱(最全-最详细明了)

红外光谱(最全-最详细明了)

1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。

红外光谱产生的原理及应用

红外光谱产生的原理及应用

红外光谱产生的原理及应用红外光谱产生的原理红外光谱是一种用于研究物质结构和性质的分析技术。

它基于红外辐射与物质相互作用产生的光谱现象。

红外辐射是电磁辐射的一部分,具有较长的波长。

在分析对象(样品)吸收红外光时,分子会发生振动或转动,并产生特征性的振动光谱。

这些振动光谱通过红外光谱仪来检测和记录。

红外光谱仪由光源、样品和探测器组成。

光源产生红外辐射,样品与红外辐射相互作用并发生光谱响应,而探测器则记录并分析这些响应。

红外光谱产生的原理可以简单概括为以下几个步骤:1.光源产生红外辐射:红外光谱仪中的光源产生红外辐射。

常见的光源包括硅灯(固体光源)和氨化镉灯(气体光源)。

2.红外辐射通过样品:红外辐射穿过待测样品,与样品内的化学键相互作用。

不同化学键对红外辐射的吸收、反射和透射表现出不同的光谱特征。

3.探测器接收光谱信号:红外辐射穿过样品后,到达探测器。

探测器会转换光信号为电信号,并对信号进行放大和处理。

4.记录和分析光谱数据:探测器输出的电信号会被记录下来,并通过计算机进行数据分析和处理。

常见的分析方法包括傅立叶变换红外光谱(Fourier Transform Infrared Spectroscopy,简称FTIR)和散射红外光谱。

红外光谱的应用红外光谱在多个领域有着广泛的应用。

下面列举了一些主要的应用领域和相关的应用案例。

1. 化学分析•有机物质鉴定:通过对有机物质的红外吸收谱进行分析,可以确定其分子结构和化学组成。

•无机物质分析:红外光谱还可以用于无机物质的成分分析,如金属离子、矿石和无机固体材料等。

2. 环境监测•大气污染监测:红外光谱可以用于监测大气中的污染物,例如CO、CO₂、SO₂和NO₂等。

•水质检测:红外光谱技术可以用于监测水中的有机化合物、金属离子和污染物等。

3. 医药和生物科学•药物分析:红外光谱可以用于药物的质量控制和成分分析。

•蛋白质和核酸研究:红外光谱可以用于研究蛋白质和核酸的结构和构象变化。

红外光谱分析原理

红外光谱分析原理

红外光谱分析原理红外光谱分析是一种常用的化学分析方法,它利用物质对红外光的吸收特性来确定物质的结构和成分。

红外光谱分析原理是基于物质分子的振动和转动引起的特定频率的吸收现象。

下面将详细介绍红外光谱分析的原理及其应用。

首先,红外光谱分析原理是建立在分子的振动和转动运动上的。

分子内部的原子以不同的方式振动和转动,产生了不同的红外光谱。

当分子受到红外光的照射时,部分红外光被吸收,而其余的红外光则被散射或透射。

通过测量被吸收的红外光的强度和频率,就可以得到物质的红外光谱图谱。

其次,红外光谱分析原理是基于物质的分子结构和成分来确定的。

不同的分子结构和成分会导致不同的红外光谱特征。

因此,通过对比待测物质的红外光谱和已知物质的红外光谱,就可以确定待测物质的结构和成分。

此外,红外光谱分析原理还可以用于定量分析。

通过测量红外光谱的吸收峰的强度和频率,可以确定物质的含量。

这种定量分析方法被广泛应用于化学、生物、医药等领域。

总的来说,红外光谱分析原理是一种非常重要的化学分析方法,它可以用于确定物质的结构和成分,进行定量分析,以及研究物质的性质和反应。

在实际应用中,红外光谱分析已经成为化学、生物、医药等领域的重要工具,为科学研究和工程应用提供了重要的支持。

综上所述,红外光谱分析原理是基于物质分子的振动和转动引起的特定频率的吸收现象,通过测量红外光谱的吸收强度和频率,可以确定物质的结构和成分,进行定量分析,以及研究物质的性质和反应。

红外光谱分析在化学、生物、医药等领域具有重要的应用价值,为科学研究和工程应用提供了重要的支持。

红外光谱分析

红外光谱分析

红外光谱分析序言二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。

到四十年代红外光谱技术得到了广泛的研究和应用。

当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。

红外光谱提供的*些信息简捷可靠,检测样品中有无羰基及属于哪一类〔酸酐、酯、酮或醛〕是其他光谱技术难以替代的。

因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。

一、根本原理1、根本知识光是一种电磁波。

可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。

表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。

红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。

通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1μ)或4000-400cm-1。

这段波长范围反映出分子中原子间的振动和变角振动,分子在振动运动的同时还存在转动运动。

在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。

每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。

红外光谱所用的单位波长μ,波数cm-1。

光学中的一个根本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。

设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。

目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。

红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。

2、红外光谱的几种振动形式主要的根本可以分为两大类:伸缩振动和弯曲振动。

(1)伸缩振动(υ)沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外光谱技术的原理与应用

红外光谱技术的原理与应用

红外光谱技术的原理与应用近年来,红外光谱技术因其在分析领域中的广泛应用而备受瞩目。

它是一种非破坏性的分析技术,能够准确地确定目标物质的分子结构和功能组成。

本文将介绍红外光谱技术的原理、基础知识和应用。

一、红外光谱技术的原理红外光谱技术是一种利用物质对红外辐射的吸收和发射谱线进行分析的技术。

红外辐射可以被物质中的化学键吸收或发射,这些化学键的振动和转动运动产生了特定的谱线,对应于物质的分子结构。

红外光谱图展示了分子内各个化学键的谱线,可用于确定样品中不同分子的存在和浓度。

二、基础知识:红外光谱图的读取红外光谱图由x轴和y轴组成。

x轴表示波数(单位为cm-1),而y轴则表示对应波数下吸收带的相对强度。

红外光谱图的预处理非常重要。

为了获得最佳效果,我们需要对光谱图进行基线校正、去除噪声、调整基于吸收线强度等组合过程的光谱数据。

在光谱图上,各吸收带也需要进行标记和解释。

三、红外光谱技术的应用1. 化学分析红外光谱技术可以用于分析有机化合物的结构和组成。

化学家们可以用红外光谱图来检测样品中特定的化学键,以及确定这些化学键的类型和位置。

这项技术对于药物合成、有机化学和聚合物工程等领域的研究非常重要。

2. 食品安全红外光谱技术可以用于检测食品中的有害物质和营养成分。

例如,它可以用于测量食品中各种脂肪、糖类和蛋白质的含量。

此外,红外光谱技术还可以分析食品中的添加剂和农药残留情况。

3. 医学诊断红外光谱技术对于疾病的早期诊断和治疗也具有很大的帮助作用。

例如,红外光谱技术可以用于分析血液样品中患者的代谢物质,以及检测特定疾病标志物的存在。

此外,它还可以用于研究不同组织和器官的结构和组成。

4. 环境监测红外光谱技术可以用于分析环境样品中的有害物质和化学物质。

例如,可以通过分析水体中的化学物质来确保其安全饮用。

它还可以测定大气中的污染物质和土壤中的重金属含量。

四、未来发展随着科技的进步和新技术的出现,红外光谱技术也在不断发展。

如何进行红外光谱解析

如何进行红外光谱解析

如何进行红外光谱解析红外光谱解析是一种广泛应用于化学、生物、材料科学等领域的测试技术,通过分析物质在红外光波段的吸收和散射特性,可以获得物质的结构信息、成分组成以及其他相关性质。

本文将介绍红外光谱解析的基本原理、实验操作步骤以及数据分析方法,帮助读者了解如何进行红外光谱解析。

一、基本原理红外光谱解析的基本原理是物质分子在吸收红外光时,会发生振动和转动,并发生状态之间的转变。

这些振动和转动产生的谐振频率,与分子内部的键长、键角等结构参数有关,因此可以通过测量红外光谱图谱来了解物质的结构特征。

二、实验操作步骤1. 仪器准备:将红外光谱仪连接电源并打开。

根据待测物的性质,选择适当的样品盒(液态或固态)和检测模式(透射或反射)。

2. 样品处理:对于液态样品,取少量样品加入透射池中,移除气泡并将其密封;对于固态样品,将样品压制成片或粉碎并放置在反射盒中。

3. 启动仪器:根据仪器操作手册,进行光谱仪的启动和样品检测参数的设置。

4. 开始检测:点击仪器软件上的“开始”按钮,红外光谱仪开始发送红外光,并通过探测器接收返回的信号。

5. 数据采集:红外光谱仪会将接收到的信号转化为电信号,并通过数据采集软件记录下来。

采集过程通常需要数秒至数分钟。

6. 数据处理:获取红外光谱图谱后,使用特定的数据处理软件进行谱图展示和数据分析。

三、数据分析方法1. 谱图展示:使用数据处理软件将红外光谱图谱进行展示,在横轴上表示波数,纵轴表示吸收强度。

确保谱图的分辨率和信噪比足够高,以保证后续的数据分析准确性。

2. 峰值鉴定:根据谱图上的吸收峰,确定物质的各种官能团或键的存在。

通过比对已知物质的红外光谱数据库,寻找吸收峰的对应官能团或键。

3. 定量分析:利用谱图上的吸收峰的强度,可以进行物质的定量分析。

通过校正曲线或比色法等方法,计算物质的浓度或含量。

4. 结构确定:根据红外吸收峰的波数和强度,可以获得物质的结构信息。

通过对比不同官能团或键的红外吸收谱图,推测和确认物质的结构特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低频区
9
2.4.振动自由度
多原子基团有更多的振动形式,可以出现一个以上基频振 动吸收带,吸收带的数目与分子的自由度有关。
自由度的数目等于分子中所有原子在空间的位置所需要坐 标的总数。
3N = 平动 + 转动 + 振动
振动自由度 = 3N – 6 - 非线性分子 振动自由度 = 3N – 5 -- 线性分子
双原子分子 N = 2,振动自由度 = 3×2-5 = 1 三原子分子 N = 3,振动自由度 = 3×3-6 = 3 -非线性
N = 3,振动自由度 = 3×3-5 = 4 -线性
分子振动自由度数目越大,红外光谱中峰的数目越多。
2021/3/1
有机波谱解析2015-1
10
2021/3/1
有机波谱解析2015-1
因此在查阅标准红外图谱时,注意试样状态和制样方法。
(2)晶体状态的影响
固态光谱的吸收带比液态时尖锐而且多。
固体样品在由石蜡油糊状法或压片法测定时,如果晶形不同或粒子
2021/3/1
c2 c 2 有c 机波谱解m 析1 2015m -12
m 1 m 2 30
2 .外部因素对吸收峰的影响.
(1)物态效应
同一个化合物在不同聚集状态下红外光谱之间有较大的差异。通常,
物质由固态向气态变化,其波数将增加,且强度也有变化。
丙酮
液态时,C=O=1718cm-1;
气态时,C=O=1742cm-1,
键角不变, 键长改变
振动类型
伸缩振动
弯曲振动
键长不变, 键角改变
反对称 伸缩振动
(νas)
对称 伸缩振动
(νs)
H HH H
C
C
面内弯曲(δ面内)
面外弯曲(δ面外)
剪式振动 平面摇摆 非平面摇摆 扭曲振动
+ ++ H H H H H HH H
C
C
C
C
高频区
2021/3/1
亚甲基的振动形式
有机波谱解析2015-1
µ:化学键的折合质量, kg
m1、m2: 化学键连结的两个原子核的质量,kg
2021/3/1
有机波谱解析2015-1
13
吸收频率用波数(ν)表示
1
c
21c
k
1307k( 1 1 ) M1 M2
c: 光速, 3×1010cm/s K: N·m-1 µ:原子折合质量 kg
发生振动能级跃迁需要能量的大小取决于键两端
C-H弯曲振动
(力常数较小) ~1340
c: 杂化状态的影响
键类型
CH
杂化状态
ν/cm-1
sp 3300
CH
sp2 3100
CH
sp3 2900
2021/3/1
有机波谱解析2015-1
27
d: 诱导效应的影响(I效应) 电负性原子或基团通过静电诱导作用, 引起分子中化
学键的电子云分布变化, 而改变力常数
2021/3/1
有机波谱解析2015-1
2
1.3. 红外光区划分
红外光谱 (0.75~1000m)
2021/3/1
近红外(泛频) (0.75~2.5 m)
中红外(振动区) (2.5~25 m)
用于研究单键的倍频、组频 吸收,(如0-H,N-H,C-H键。 )这个区域的吸收很弱
绝大多数基团的基频振动吸收 分子振动转动
转动能Er: 能级差(3.5×10-3~ 5×10-2eV)
振动能Eν: 能级差(5×10-2~ 1eV)
电子能Ee: 能级差(1~ 20eV)
2021/3/1
有机波谱解析2015-1
能量变化 量子化
4
2. 吸收光谱
强相 用频率连续变化的单色光度 对
照射
光谱
ν1
ν
仪器记录
吸收 有机物分子
透过
2021/3/1
2021/3/1
有机波谱解析2015-1
16
3. IR光谱表示方法
红外光谱表示方法:常用坐标曲线表示法.
横坐标:表示吸收峰的位置, 用波数ν(cm-1, 4000~400cm-1)或波 长λ(m, 2.5~ 25m)作量度.
纵坐标: 表示吸收峰的强弱, 用百分透过率(T%) 或吸光度(A)作量 度单位.
2021/3/1
有机波谱解析2015-1
22
3.1.3) 峰形
• 吸收峰的形状决定于官能团的种类,可以 辅助判断官能团
• 例如:缔合羟基,和炔氢,它们的吸收峰 位置只略有差别,但主要差别在于峰形:
• --缔合羟基峰宽,圆滑 • --炔氢则显示尖锐的峰形
宽峰
2021/3/1
尖峰
肩峰
有机波谱解析2015-1
2021/3/1
有机波谱解析2015-1
6
条件二:辐射与物质之间必须有耦合作用
=q×r
正、负电荷中心间的距离r和电荷中心所带电量q的乘积,叫做偶极矩 μ=r×q。它是一个矢量,方向规定为从负电荷中心指向正电荷中心 。偶极矩的单位是D(德拜)。
红外活性振动:当分子振动时,只有偶极矩发生变化的振 动才产生红外吸收,这种振动称为红外活性振动。
第三章 红外吸收光谱
【基本内容】 红外光谱的基本知识、重要吸收区段以及在结构研 究中的应用。
【基本要求】 掌握:红外光谱提供的信息与化合物结构间的相
互关系以及重要吸收区段。 熟悉:红外光谱在化合物结构解析中的应用。
2021/3/1
有机波谱解析2015-1
1
一、概述
1.1.红外光谱的发展
1) 1947年,第一代双光束红外光谱,棱镜 2) 20世纪60年代,第二代,光栅 3) 70年代后期,第三代,干涉型傅里叶变换红外光谱仪 4) 近年来,第四代激光红外分光光度计。
• 吸收强度太弱,无法显示出吸收峰
2021/3/1
有机波谱解析2015-1
20
(3.1.2)峰强
(一) 峰强的表示方法 红外光谱中用透光百分率(T)表示吸收峰强度
T%=(I/I0)×100% I0:入射光强度 I:透射光强度 T%越小,吸收峰越强
红外光谱中吸收峰的绝对强度可用摩尔吸光系数表示:
2021/3/1
键类型: 力常数: 峰位:
2021/3/1
—CC — > —C =C — > —C — C —
15 17 9.5 9.9
4.5 5.6
4.5m
6.0 m
7.0 m
有机波谱解析2015-1
15
影响基本振动跃迁的波数或频率的直接因素为化学键力 常数k 和原子质量。
k大,化学键的振动波数高,如 kCC(2222cm-1) > kC=C(1667cm-1) > kC-C(1429cm-1)(质量相
正己烷的红外光谱
2021/3/1
有机波谱解析2015-1
17
3.1. 峰位、峰数、峰强度、峰的形状 •观察谱图:
• a) 峰数:吸收峰的数目 b) 峰强:峰的强度(强 中 弱峰) c) 峰形:吸收峰的形状 d) 峰位:吸收峰的位置
2021/3/1
有机波谱解析2015-1
18
(3.1.1)峰数
峰数与分子自由度有关。无瞬间偶极矩变化时,无 红外吸收。
µ:原子折合质量
影响吸收频率的因素
(1). 键的力常数K的影响. 化学键键能越大↑ 力常数越大↑ 振动频率↑
a: 成键方式的影响
键类型
CC
CC
力常数
2021/3/1ν/cm-1
2150有机波谱解析201156-150
CC
1200
26
b: 振动类型的影响
振动类型
ν/cm-1
C-H伸缩振动
(力常数较大) ~3000
原子的折合质量和键的力常数,即取决于分子的结构特征
2021/3/1
有机波谱解析2015-1
14
查表知C=C键 9.6, 计算波数值
v
1
1
2c
k
1307
k
1307 9.6 1650cm-1 12 / 2
正己烯vC=C =1652 cm-1
已知C=O键 k=12,
v 求 C=O
12+16 v 1307 12×16 1725 cm-1
选择性吸收与能级 跃迁相对应的 特定频率的光
有机波谱解析2015-1
5
2.2.振动能级跃迁 ——红外光谱产生的条件
条件一:辐射光子的能量应与振动跃迁所需能量相等。 根据量子力学原理,分子振动能量Ev 是量子化的, 即
E V =(V+1/2)h
-分子振动频率,
V-振动量子数,值取 0,1,2,…
只有当 Ea= EV 时,才可能发生振转跃迁。
远红外(转动区) (25-1000 m)
分区及波长范围
分子转动
价键转动、晶格转动
跃迁类型
有机波谱解析2015-1
3
二.化学键的振动
2.1.化学建的振动 分子中基团的振动和转动能级跃迁产生:振-转光谱
电子激发态
4
转动跃迁
3
2 振动跃迁
1
电 子 跃 迁
电子基态
平动能Et: 能级差小, 近似地看成能量变化是连续的
电负性:化学键两端连接的原子,若它们的电负性相差 越大(极性越大),瞬间偶极矩的变化也越大,在伸缩 振动时,引起的红外吸收峰也越强
振动形式:振动形式不同对分子的电荷分布影响不同, 故吸收峰强度也不同。通常不对称伸缩振动比对称伸缩 振动的影响大,而伸缩振动又比弯曲振动影响大。
结构对称性:对称分子偶极矩为零;
近) 质量m大,化学键的振动波数低,如 mC-C(1430cm-1) < mC-N(1330cm-1) < mC-O(1280cm-1) (力常
相关文档
最新文档