理想反应器.ppt-化学反应工程

合集下载

化学反应工程 第三章 理想反应器(1)

化学反应工程 第三章 理想反应器(1)
–当反应为强放热反应,即(-ΔHr)很大时,可通 过控制A的滴加速率vCA0来控制放热量,从而控 制反应温度。
反应器型式与操作方法的评选
反应器开发的任务
根据化学反应的动力学特性来选择合适 的反应器型式
结合动力学和反应器两方面特性来确定 操作方式和优化操作设计
根据给定的产量对反应器装置进行设计 计算,确定反应器的几何尺寸并进行某 些经济评价
反应器特性
反应流体的流动状态、混合状态以及器内的传热性 能等
dt
–若反应体积恒定,则:
dT (H r )(rA )
dt
Cv
dT dx A
dt
dt
–结合初始条件:
t 0,T T0 , C A C A0 , xA xA0
–积分得: T T0 ( xA xA0 )
3.2 半分批式操作的釜式(完全混 合)反应器
反应器特征 操作目的 反应器分析
V V0 vt
初始条件: t 0, CA 0 求解微分方程得到:
VC A
e
k 1
dt
(
vC
A0
1
e
k 1
dt
dt
C)
Cekt vC A0 k
代入初始条件,得: C vC A0
k
VC A0
vC A0 k
(1
ekt )
C A v(1 ekt ) v(1 ekt ) 1 ekt
CvV
dT dt
dx A dt
UA
Cv V
(Tm
T)
(H r )C A0 Cv
以上为变温操作的热量衡算式。
–将物料衡算式和热量衡算式结合,可联立求解反应器的温 度、组成随时间变化规律。
绝热操作

反应工程ppt课件

反应工程ppt课件

h)
试求乙酸转化率xA分别为0.5、0.9、0.99所需的反应时间。 已知乙酸与正丁醇的密度分别为960kg/m3和740kg/m3
解: CH 3COOH C4H9OH CH 3COOC 4H9 H2O
对1kmol A而言,投料情况是:
乙酸(A) 1kmol
60kg
60/960=0.0625m3
化学反应工程
1
第3章 理想反应器
反应工程研究的内容:
反应
反应器:反应器的设计和开发
反应器开发的任务:
(1)根据化学反应的动力学特征来选择合适的反应器型式
(2)结合动力学和反应器两方面特性来确定操作方式和优 化设计
反应器的结构和尺寸有关
反应器内的传热性能
(3)根据给定的产量对反应器进行设计计算,确定反应器 的几何尺寸
零级反应:残余浓度随t直线下降 一级反应:残余浓度随t逐渐下降 二级反应:残余浓度随t慢慢下降
10
【例3-1】以乙酸(A)和正丁醇(B)为原料在间歇反应器 中生产乙酸丁酯,操作温度为100℃,每批进料1kmol 的A和4.96kmol的B,已知反应速率
(rA )V
1.045
c
2 A
k
mol
/(m3
1 kc
1 ln
1 xAf
k 9.52109 exp( 7448.4 ) 0.92(h1) 273 50
t 1 ln 1 1.31h 0.92 1 0.7
则每批操作实际所需要的操作时间为:
t t 0 1.31 0.75 2.06h
反应终了时R的浓度为: CR 2C A0 xA 3.22kmol / m3
t cA0
xAf 0
dxA (rA )V

化学反应工程第三章

化学反应工程第三章

m 1c A0 c A 1 ln m x A 1 ln m 1 mc A m 1 m1 x A
m m xA ln m 1 m1 x A
cB 0 k t
3.3 反应温度
3.2 理想连续流动反应器(1)
一 平推流反应器
1.1. 平推流反应器的特点 流体在管内作平推流流动具有如下特征: (1) 在与流动方向呈垂直的截面上没有流速分布; (2) 而在流体流动的方向不存流体质点间的混合,即无返混现象; (3) 离开平推流反应器的所有流体质点均具有相同的平均停留时间, 而这个停留时间就等于反应时间。
k1 cQ k 2
cp
3.1.2 间歇反应器内复合反应的计算(4)
二 连串反应 等温间歇反应器进行一级不可逆连串反应
K1 K2 A P Q

dcA k1c A dt dc p k1c A k 2 cP dt
t 0, c A c A0 , cP 0, cQ 0, 积分第一式: c A c A0 e k1t 或 t 1 c A0 1 1 ln ln k1 c A k1 1 x A
B
A
O
D
E
t
间歇反应器最优化反应时间
3.1.3 间歇反应器优化操作(3)
(2) 以生产费用为目标
AT
at a0t0 a f VR cR
dcR ac at a t a 0 0 f R dt dA dcR cR 当 T =0, dt dt t a0t0 a f / a dAT 2 dt VR cR
产物P的浓度先增大,在降低,存在极大值。可对cp对时间求导, 得最优化时间
topt ln k1 / k 2 k1 k 2

《化学反应工程》课件

《化学反应工程》课件

部分模化法
将反应器的一部分进行放大或缩小, 以研究其放大效应或缩小效应。
相似放大法
通过相似理论来预测大试实验结果, 需要保证相似条件得到满足。
04
流动与混合
流动模型与流型
1 2
层流模型
适用于低雷诺数的流体,流速较低,流体呈层状 流动。
湍流模型
适用于高雷诺数的流体,流速较高,流体呈湍流 状态。
3
过渡流模型
化学反应影响流动特性
化学反应释放的热量和产生的压力变化会影响流体的流动状 态。
流动与混合实验技术
实验设备
包括管式反应器、搅拌釜式反应器、喷射式反应器等。
实验方法
通过测量流体的流速、压力、温度等参数,分析流动与混合对化学反应的影响 。
05
传递过程与反应器的热力学基础
传递过程基础
传递过程定义
物质和能量的传递是自然界和工程领域中普遍存在的现象,传递 过程是研究物质和能量传递规律的科学。
通过调节进料浓度来控制反应物浓度,保证反应的稳定性和效率。
催化剂选择与优化
选择合适的催化剂并优化其用量,提高反应效率和选择性。
反应器放大与缩小
经验放大法
根据小试实验数据和经验公式,通过 比例放大来预测大试实验结果。
数学模拟放大法
通过建立数学模型来模拟反应过程, 并利用计算机技术进行放大和缩小实 验。
管式反应器
适用于连续操作和大量生产,传热效果好, 适用于高粘度液体和悬浮液。
流化床反应器
适用于固体颗粒的反应,传热效果好,适用 于大规模生产。
反应器设计基础
反应动力学
研究反应速率和反应机理,为反应器设计提 供基础数据。
热力学
研究反应过程中的能量变化和物质平衡,为 反应器设计提供热力学依据。

化学反应工程课件-PPT

化学反应工程课件-PPT

k/
k
K
1/ p
E
E
1
H
r
ln
k
ln
k
1
ln
K
p
d ln k dT
d ln k dT
1
d ln K p dT
1
H r 1R4T 2
E
E
1
H r
对于吸热反应,ΔHr>0 对于放热反应,ΔHr<0
EE
EE
●反应 速率与 温度的 关系
r k f (X A) k g(X A)
r
dk
dk
( T ) xA f ( X A ) dT g( X A ) dT
kcA0 (1 X A ) (cB0
B A
cA0 X A )
(2.48)
XA——t
● 变
AA BB PP
ci
ni V
XA

过 程
* rA kcAcB
1 V
dnA dt
kcA cB
30
AA BB PP
组分
A B
反应前(XA=0)
nA0
1 j A1 2 j A2 ij Ai 0 rj
1M A1 2M A2 iM Ai 0 rM
M
i ij r j (*) j 1
rj

i
●忽略次要反应,确定独立反应数M;
●测M个组分的 i
●对每个组分按(*)式,建立M个线 性方程;
●求解代数方程组,得 rj.
22
例:乙苯催化脱氢反应可以用下列方程式表示
不受其他反应的反应组分浓度的影响。
特殊 情况
●多相催化反应; ●变容气相反应.

化学反应工程全套课件完整版ppt全册电子教案

化学反应工程全套课件完整版ppt全册电子教案

04
动力学方程式
定量描述反应速
率与影响因素之
间的关系式。
反应速率与影响反应
速率的影响因素之
间的函数表达式
r f (T、c)
均相反应:本征动力学方程
非均相反应:宏观动力学方程
反应速率
定义:在反应系统中,某一物质在单位时间,单位反 应体系内的变化量。
变化量
反应速率
反应时间 (反应体系)
注意:
1、上述定义无论对反应物和产物均成立。
若为反应物则为消失速度 .
若为产物则为生成速度.
1 dnA
V dt
1 dni
ri
V dt
(rA )
反应速率
2、反应速率恒为正值
1 dni
ri
V dt
3、速度的表示形式和化学计量系数有关
对于 A A B B P P S S
05
工业指标
反 应 程 度
对于下列化学反应:
AA BB RR S S
初始:
某一时刻:
nA0
nA
nB0
nB
nR0
nR
ns0
ns
反应的量 nA- nA0 <0 nB- nB0 <0 nR- nR0>0 nS- nS0>0
其中 为化学计量系数。对反应物而言为“-”,对生成物而
I
言为“+”。
3. 示踪剂必须是能用简便而又精
确的方法加以确定的物质
4.示踪剂尽量选用无毒、不燃、无
腐蚀、价格便宜的物质






03
反应器流体流动
脉冲法
过 程:
在反应器中流体达到定态流动后,在极短的时间内将示踪物注入进料中,然后立刻

化学反应工程__第2章_理想反应器PPT课件

化学反应工程__第2章_理想反应器PPT课件

单位时间内
单位时间内
单位时间内
环境传给反 反应所放出 反应器内热
应器的热量
的热量
量的累积量
UA(Tm-T) (-△Hr)(-rA)V
d (Cv TV )
dt
UA(Tm-T) + (-△Hr)(-rA)V =
d (Cv TV )
dt
符号说明:
U----总括传热系数(KJ/m2.h.℃);
1 物料衡算 2 热量衡算 3 反应容积的计算 4 间歇反应器的最优操作时间
2021年3月18日星期四
间歇式完全混合反应器
2021年3月18日星期四
特点: 反应器内各处温度始终相等,无需考虑反应器内的热
量传递问题 所有物料具有相同的反应时间
优点: 操作灵活,易于适应不同操作条件与不同产品品种,
适用于小批量, 多品种,反应时间较长的产品生产 缺点:
2021年3月18日星期四
பைடு நூலகம்A VR
d VRcA
dt
VRcA nA nA0 1 xA
d VRcA
dt
nA0
dxA dt
rAVR
rA
nA0 VR
dxA dt
积分得:
t nA0
xA dxA 0 VR rA
cA0
xA 0
dxA rA
cA dcA
r cA0
A
——间歇完全混合反应器的设计方程
料,卸料及清洗等辅助操作时间为1h,反应在100℃
下等温操作,其反应速率方程如下:
2021年3月18日星期四
rA k1 cAcB cRcS K
100℃时:
k1 4.76104 l /mol min

化学反应工程 课件 619页PPT

化学反应工程 课件 619页PPT
34
• 化学反应动力学方程有多种形式,对于 均相反应,方程多数可以写为(或可以 近似写为,至少在一定浓度范围之内可 以写为)幂函数形式,反应速率与反应 物浓度的某一方次呈正比。
35
• 对于体系中只进行一个不可逆反应的过 程, a A b B rR sS
rA k cc A m c B n mm o 3 s l1
交换,全部反应热效应使物料升温或降 温。 • 3. 非等温、非绝热反应器,与外界有热 量交换,但不等温。
10
重 油 的 催 化 裂 化 流 化 床 反 应 器
11
搅拌釜式反应器
12
邻二甲苯氧化制苯酐多管式固定床反应器
13
乙 苯 加 氢 气 液 塔 式 反 应 器
14
轻油裂解制乙烯管式非催化反应器
对于非基元反应,m,n多数为实验测得
的经验值,可以是整数,小数,甚至是
负数。
38
• 把化学反应定义式和化学反应动力学方 程相结合,可以得到:
rAV 1ddntAkA cmcB n
• 直接积分,可获得化学反应动力学方程 的积分形式。
39
• 对一级不可逆反应,恒容过程,有:
rAdd ctAkA c
• 式中: cA,cB:A,B组分的浓度 mol.m-
3
• kc为以浓度表示的反应速率常数,随反应 级数的不同有不同的因次。kc是温度的函 数,在一般工业精度上,符合阿累尼乌 斯关系。
36
阿累尼乌斯关系
E
kc kc0e RT
• kc0 :指前因子,又称频率因子,与温度 无关,具有和反应速率常数相同的因次。
ktlncA0 ln 1 cA 1xA
• 由上式可以看出,对于一级不可逆反应, 达到一定转化率所需要的时间与反应物 的初始浓度cA0无关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.5.1 设计方程
11/28/2019
18
对器内微元容积dV进行物料衡算, 列出组份A的物料衡算式。 根据衡算的一般形式:
累积量 = 输入量 - 输出量
11/28/2019
19
单dV位的时A的间摩进尔入数的 单流位出时A的间摩从尔dV数 单微位元时A的间反在应dV量的
11/28/2019
9
11/28/2019
10
11/28/2019
11
流体在管内作平推流流动具有如 下两特征:
1)在与流动方向呈垂直的截面上 没有流速分布;
2)在流体流动的方向不存在流 体质点间的混和,即无返混现 象。
11/28/2019
12
因此,各质点具有相同的停留时
间 (t ) ,等于反应时间t。
对于非等分子反应,需要按变容过程 来考虑。
11/28/2019
14
膨胀因子:每反应掉一个摩尔的组分
A所引起反应物系总摩尔数的变化量。
即:
A

(n n0 )
n0 y A0 A
所以 n n0 (1 A y A0 A )
F F0 (1 A y A0 A ) F0 A FA0 A
11/28/2019
15
F,F0分别为物系反应后的摩尔流 率和起始摩尔流率, yA0为着眼组
分A的起始摩尔分率。
PV nRT
Pv0 FRT
导出v0 RT (F0 A FA0 A ) / P
t t 1 V
PdV
R 0 T (F0 A FA0 A )
11/28/2019
3
磺化反应工艺流程
11/28/2019
4
11/28/2019
5
重油催化裂化(FCC)装置总图
11/28/2019
6
在催化裂化装置中反—再系统地反 应器为提升管反应器,它是基于平 推流的基础上建立起来的。自60年 代以来,提升管反应器由于其气固通 量大、气固接触效率高以及操作范 围宽等特点,在催化裂化工业中得到 了广泛的应用。然而,随着人们的研 究深入,其径向流动结构的严重非均 匀性和较大的气固返混也逐渐为人 们所认识。
16
上式若对于恒温、恒压过程,则有
PV
dV
t t
RT0 0 F0 AFA0 A
P V
dV
V

dV
RT0 0 F0 (1 A yA0 A ) 0 1 yA0 A A
在这些场合,空时和停留时间是不相 等的,使用时应加以区别。
11/28/2019
17
11/28/2019
7
11/28/2019
8
在80年代中期,国内外的一些著名的 石油公司如Stone&Webster和Mobil 等分别提出了超短接触下行床反应 器的概念。对于催化裂化等以中间 产物为目的产品的过程,由于下行床 能够实现气固超短接触并具有接近 平推流的流型,将可以获得比提升管 更高的产品收率,因而受到人们的普 遍关注,被誉为“21世纪取代提升管 的换代新技术”。
11/28/2019
25
但如果速率方程过于复杂,则往往
需要用数值积分或下图的图解法求 解方程。
11/28/2019
26
11/28/2019
27
例3-5-1 应用管径为D=12.6cm的管式反 应器来进行一级不可逆的气体A的热分 解反应,其计量方程为A=R+S;速率方 程为 -rA=kCA;而k=7.8 × 109 exp [ -19220/T ](s-1),原料为纯气体A, 反应压力P = 5 atm(5×0.101325MPa) 下恒压,T = 500 0C 恒温反应。 反 应过程中压力恒定,要求A的分解率达 到 0.9,原料气体的处理速率为FAO = 1.55 kmol / h,求所需反应器的管长 L、停留时间t、空时τ (理想气体)。
第三章 理想反应器
Ideal Reactor
3.5 平推流反应器
Piston Flowing Reactor
11/28/2019
1
SO3 Production Plant and Gas Treatment (Ballestra)
11/28/2019
2
11/28/2019
{磺化反应器}本 装置是以连续多 管膜式反应器为 基础的磺化(硫 酸化)装置,此 装置以洗涤剂工 业中使用的所有 主要原材料生产 磺酸和活性物, 如:十二烷基苯、 直链烷基苯、醇 类、月桂醚、α烯烃等。
C A0 r CA0A Nhomakorabea t

CA0
xA dx A 0 rA

CA C A0
dC A rA
11/28/2019
23
恒容过程平推流与分批式完全混合 反应器设计方程完全一致,因此只 要反应是在等温下进行,第二章的 速率式都适用于平推流。
11/28/2019
24
对于变容过程,其反应速率方程中的 各个浓度需同时考虑因化学反应和容 积而改变造成的浓度变化。
0 FA0 0 rA
V V A d A
FA0 C A0v0 0 rA

CA0
xA dx A 0 rA
11/28/2019
22
恒容过程
xA
1
CA CA0
dxA


dC A CA0
V xA dxA 1 CA dCA
FA0 C A0 0 rA
u表示流体器内流速,L表示轴内距离
t t L dl V dV 0u 0 v
u u0
t t V
v0
11/28/2019
13
在整个过程中:
对于恒容反应过程平均停留时间,反 应时间和空时一致。 对于液相反应,均可视为恒容过程。
对气相反应,恒温,恒压等分子反 应上式也适用。
11/28/2019
28
解:反应气体的进料体积流速为:
v0

FA0 RT P
1.55 0.082 773 19.66(m3 / h) 5
反应流体在管内的体积流速为:
11/28/2019
20
FA (FA dFA ) (rA )dV dFA (rA )dV
dFA d FA0 (1 xA) FA0d A
FA0d A (rA )dV
平推流管式反应器的基础设计方程
11/28/2019
21
V dV A d A
相关文档
最新文档