5.聚合物基复合材料的制备工艺

合集下载

聚合物纳米复合材料制备及其特性

聚合物纳米复合材料制备及其特性

聚合物纳米复合材料制备及其特性简介:随着科技的不断发展,纳米材料作为一种新型的材料受到了广泛的关注。

聚合物纳米复合材料是由聚合物基体和纳米填料相互作用形成的一种材料。

本文将介绍聚合物纳米复合材料的制备方法以及其特性。

一、制备方法:1. 溶液混合法:溶液混合法是制备聚合物纳米复合材料最常用的方法之一。

通常,将聚合物溶解于溶剂中,然后将纳米填料悬浮于溶液中,通过搅拌、超声波处理等方法使溶液中的纳米填料均匀分散。

最后,将混合溶液通过挥发溶剂或冷却固化等方法使聚合物凝胶化,形成聚合物纳米复合材料。

2. 堆积层析法:堆积层析法是一种将纳米填料层与聚合物基体交替堆积形成的方法。

首先,将纳米填料和聚合物溶液交替涂覆在基体上,然后通过热处理或固化来形成聚合物纳米复合材料的层积结构。

3. 原位聚合法:原位聚合法是在纳米填料表面进行聚合反应,将聚合物直接合成于纳米填料上。

通过原位聚合法可以实现纳米填料与聚合物基体的良好粘接,提高复合材料的结合强度和界面性能。

二、特性:1. 机械性能:聚合物纳米复合材料具有优异的机械性能。

纳米填料的加入可以有效阻止聚合物的微观流动,增加聚合物的刚度和强度。

同时,纳米填料的界面效应还可以增强聚合物与填料之间的相互作用,提高复合材料的界面粘结强度。

2. 热稳定性:聚合物纳米复合材料具有较好的热稳定性。

纳米填料的高比表面积和特殊的晶体结构可以吸附和分散聚合物分子,形成热稳定的屏障,增强材料的耐高温性能。

3. 导电性能:聚合物纳米复合材料还具有良好的导电性能。

添加导电性的纳米填料,如碳纳米管、金属纳米颗粒等,可以使聚合物纳米复合材料具有导电功能。

这种导电性能广泛应用于柔性电子器件、传感器等领域。

4. 光学性能:纳米填料的尺寸效应和光学效应使聚合物纳米复合材料具有特殊的光学性能。

例如,在可见光波长范围内,利用纳米填料的光学散射和吸收特性,可以实现材料的抗紫外光、抗反射和光波长度调制等功能。

5. 阻燃性能:聚合物纳米复合材料还具有较好的阻燃性能。

聚合物基复合材料的设计制备

聚合物基复合材料的设计制备

聚合物基复合材料的设计制备聚合物基复合材料是一种由聚合物基质和添加剂、填充物等组成的多相材料,其在过去几十年中得到了广泛的应用。

这种材料可以通过调整其配方及制备工艺来获得不同的性能,因此被广泛应用于领域包括汽车、航空航天、建筑等。

聚合物基复合材料的设计制备包括原材料选择、预处理方法及工艺控制等过程。

其中,原材料选择是制备过程的关键,主要有两个方面考虑:一是根据要求的性能选择不同类型的聚合物基质和添加剂;二是根据需要的材料结构和形态选择合适的填充物。

在原材料选择方面,不同的聚合物基材料具有不同的性质,在实际应用中可以选用树脂、热塑性弹性体等材料。

同时,由于复合材料体系中添加剂/填充物的种类和分散度等因素会对材料综合性能产生影响,应根据应用环境、功能和性能要求选择符合要求的添加剂/填充物。

预处理方法方面,它是制备复合材料的重要工艺环节。

针对不同的填充物形态及表面性质的不同,需要采取一系列处理措施使其与聚合物相互结合。

例如,对于填充物比较粗大且表面粗糙或表面有氧化处理的的玻璃纤维等,可以采用多层镀浆或表面处理的方法使其表面变得光滑均匀;对于比较细小的填充物,可以采用表面改性的方法增强其与聚合物的相互作用力。

工艺控制方面,它是制备复合材料的关键步骤之一。

在工艺流程中,需要对各个阶段进行合理地控制。

例如,在混合阶段中,需要控制混合时间和加热温度等参数,以保证各种原材料充分混合,并且获得合适的表面质量;在成型阶段中,需要控制成型温度、成型压力及工艺时间等参数,以获得合适的硬度、强度、韧性值和表面质量等等。

总之,通过优化材料配置方案、预处理方法及工艺控制等环节,可以获得结构完整、性能优良的聚合物基复合材料。

而且,这种材料可以根据不同的应用环境和需求进行调整,因此具有良好的可塑性和适应性。

在实际应用中,聚合物基复合材料的应用前景非常广阔,预计未来会有更多的领域会应用这种材料。

聚合物基复合材料知识点

聚合物基复合材料知识点

聚合物基复合材料知识点概述:聚合物基复合材料是由聚合物基质和填料或增强材料(如纤维)组成的材料。

由于其独特的性能和广泛的应用领域,聚合物基复合材料成为现代工程领域中的重要材料之一。

本文将介绍聚合物基复合材料的相关知识点。

1. 聚合物基质的选择:聚合物基复合材料的性能主要取决于聚合物基质的选择。

常见的聚合物基质包括聚烯烃、聚酰胺、环氧树脂等。

不同的聚合物基质具有不同的化学性质和力学性能,因此在选择聚合物基质时需要考虑材料的具体应用需求。

2. 填料的选择:填料在聚合物基质中起到增强材料性能的作用。

常见的填料包括纤维、颗粒和珠状材料等。

填料的选择影响着复合材料的力学性能、耐热性和阻燃性等方面。

纤维增强材料可提供更高的强度和刚度,而颗粒和珠状填料则可改善材料的摩擦特性和耐磨性。

3. 增强材料的选择:增强材料在聚合物基质中起到增强材料性能的作用。

常见的增强材料包括玻璃纤维、碳纤维和芳纶纤维等。

不同的增强材料具有不同的强度和刚度特性,在选择增强材料时需要考虑材料的具体应用环境和要求。

4. 复合界面的设计:复合材料中的界面是指填料和基质之间的相互作用界面。

复合界面的设计可以影响材料的耐热性、粘合强度和耐化学腐蚀性等方面的性能。

在复合材料的制备过程中,通常会采用表面粗糙化、化学处理和界面改性等方法来改善复合界面的性能。

5. 制备工艺:制备工艺对于聚合物基复合材料的性能和结构有着重要影响。

常见的制备工艺包括手工层叠法、注塑成型、挤出成型、压制成型等。

不同的制备工艺决定了材料的成型精度、力学性能和表面质量等方面的特性。

6. 应用领域:聚合物基复合材料广泛应用于航空航天、汽车制造、建筑材料、电子电气等领域。

其具有轻质高强度、耐腐蚀、隔热隔音等优势,在这些领域中发挥着重要作用。

例如,碳纤维增强复合材料在航空航天领域中被广泛应用于飞机结构件和卫星结构件等。

7. 未来发展趋势:随着科学技术的不断进步,聚合物基复合材料将继续得到发展和应用。

聚合物复合材料工艺

聚合物复合材料工艺

聚合物复合材料工艺1.原料准备:聚合物基体的选择十分重要,常用的聚合物有环氧树脂、聚酰胺、聚丙烯等。

增强材料可以选择纤维、颗粒等材料。

在工艺前需要对原料进行检测和处理,确保原料质量。

2.预浸料制备:将聚合物基体与增强材料预先混合制备成预浸料。

预浸料的制备通常采用浸渍、浸涂或喷涂等方法。

制备预浸料时需要控制好混合比例和搅拌时间,确保增强材料均匀分布于聚合物基体中。

3.模具制备:根据产品形状和尺寸制备模具。

模具可以是金属模具、硅胶模具或塑料模具等。

模具制备需要考虑产品的成型方式和形状,确保成型的准确性和表面质量。

4.预热处理:将模具和预浸料加热至一定温度,以保证树脂固化反应的进行。

预热处理可以采用热风循环或真空吸附等方式,提高材料的固化效果。

5.成型:将预热后的模具和预浸料放置在压力机或真空室中,施加一定的压力和温度。

通过压力和温度促进预浸料的固化。

成型可以根据工艺要求进行单层堆叠或多层堆叠。

6.热固化:在一定的温度和时间下,使预浸料中的聚合物基体与增强材料进行化学反应,形成一个整体。

热固化一般采用热压或自由固化两种方式。

7.后处理:成型后的产品需要经过修整、清洁等后处理步骤,以保证产品的尺寸精度和外观质量。

以上是聚合物复合材料的一般工艺过程,其中的具体细节和操作可以根据不同的材料和产品要求进行调整。

同时,需要注意材料的储存和运输条件,以免材料受潮、酸碱等外界因素的影响。

对于大型复合材料制品,还需要进一步进行表面处理、验收等步骤,确保产品质量符合要求。

纤维增强聚合物基复合材料

纤维增强聚合物基复合材料

纤维增强聚合物基复合材料
纤维增强聚合物基复合材料是将纤维材料(如玻璃纤维、碳纤维等)与聚合物基体材料进行复合的一种材料。

纤维材料的加入可以提高聚合物基体的力学性能、耐磨性和耐腐蚀性能。

纤维增强聚合物基复合材料广泛应用于航空航天、汽车制造、建筑结构、运动器材等领域。

纤维增强聚合物基复合材料的制备通常包括以下步骤:首先将纤维材料进行预处理,如剪断、清洗和表面处理等,以提高纤维与基体材料的黏附性;然后将纤维与聚合物基体材料进行混合,并通过注塑、浸渍等方法将基体材料渗透到纤维间隙中,形成复合材料;最后经过成型、固化和热处理等工艺步骤,使复合材料具有所需的形状和性能。

纤维增强聚合物基复合材料具有重量轻、强度高、刚性好、耐热性好等特点,能够满足复杂工程结构对材料性能的要求。

此外,纤维增强聚合物基复合材料还具有良好的耐化学腐蚀性能和电绝缘性能,能够在恶劣环境下长期稳定使用。

因此,纤维增强聚合物基复材料被广泛应用于航空、航天、汽车、建筑和电子等领域。

复合材料第五章复合材料的成型工艺

复合材料第五章复合材料的成型工艺
44
6. 拉挤成型工艺
拉挤成型工艺中,首先将浸渍过树脂 胶液的连续纤维束或带状织物在牵引装置 作用下通过成型模而定型;
45
其次,在模中或固化炉中固化,制成具有 特定横截面形状和长度不受限制的复合材料, 如管材、棒材、槽型材、工字型材、方型材 等。
46
一般情况下,只将预制品在成型模中加热到 预固化的程度,最后固化是在加热箱中完成的。
60
注射成型工艺过程包括加料、熔化、混合、 注射、冷却硬化和脱模等步骤。
加工热固性树脂时,一般是将温度较低的树 脂体系(防止物料在进入模具之前发生固化)与短 纤维混合均匀后注射到模具,然后再加热模具使 其固化成型。
61
在加工过程中,由于熔体混合物的流动 会使纤维在树脂基体中的分布有一定的各向 异性。
层压成型工艺的缺点是只能生产板材, 且产品的尺寸大小受设备的限制。
24
4.喷射成型工艺
将分别混有促进剂和引发剂的不饱和聚 酯树脂从喷枪两侧(或在喷枪内混合)喷 出,同时将玻璃纤维无捻粗纱用切割机切 断并由喷枪中心喷出,与树脂一起均匀沉 积到模具上。
25
当不饱和聚酯树脂与玻璃纤维无捻粗纱 混合沉积到一定厚度时,用手辊滚压,使纤 维浸透树脂、压实并除去气泡,最后固化成 制品。
35
纤维缠绕方式和角度可以通过机械传动或计 算机控制。
缠绕达到要求厚度后,根据所选用的树脂类 型,在室温或加热箱内固化、脱模便得到复合材 料制品。
36
利用纤维缠绕工艺制造压力容器时, 一般要求纤维具有较高的强度和模量, 容易被树脂浸润,纤维纱的张力均匀以 及缠绕时不起毛、不断头等。
37
另外,在缠绕的时候,所使用的芯模应 有足够的强度和刚度,能够承受成型加工过 程中各种载荷(缠绕张力、固化时的热应力、 自重等),满足制品形状尺寸和精度要求以 及容易与固化制品分离等。

聚合物基复合材料的设计和制备

聚合物基复合材料的设计和制备一、引言聚合物基复合材料是一种新型的材料,具有优异的性能,被广泛应用于诸多领域,如航空航天、汽车、电子、建筑等。

本文主要讨论聚合物基复合材料的设计和制备。

二、材料选择和设计1.材料选择聚合物基复合材料是由基础聚合物和强化材料组成的,其中强化材料包括碳纤维、玻璃纤维、芳纶纤维等。

在选择强化材料时,需要充分考虑其力学性能、化学稳定性、热稳定性等因素。

2.设计原则在设计聚合物基复合材料时,应考虑材料的应用环境以及需要达到的性能要求。

例如,在航空领域中,聚合物基复合材料需要具有轻量化、高强度、高刚度、高耐腐蚀等性能,而在汽车领域中,应更加注重材料的磨损性能和抗冲击性能。

三、制备方法1.手工层叠法手工层叠法是一种较为原始的制备方法,在这种方法中,强化材料和基础聚合物交替地叠放,并经过压制、固化等工艺处理。

由于该方法制备的复合材料性能较低,制备周期长,已逐渐被其他方法所替代。

2.预浸料法预浸料法是将强化材料浸渍在树脂中,制成预浸料,再进行热固化制备。

该方法制备的复合材料具有较高的性能,但需要较长的制备时间和高昂的成本。

3.注塑成型法注塑成型法是将预先制备好的树脂/强化材料复合料放入注塑机内,通过热塑性变形使其成型。

该方法可制备出大量复杂形状的零件,并具有高效、低成本等优势。

4.自动化层叠法自动化层叠法是一种高效、自动化程度较高的制备方法,可制备出性能稳定、精度高的复合材料。

该方法常用于航空航天等领域。

四、应用前景聚合物基复合材料具有轻量化、高强度、高耐腐蚀、高温稳定性等优异性能,被广泛应用于航空、航天、汽车、电子、建筑等领域。

未来,随着新材料技术的推进和应用领域的不断扩展,聚合物基复合材料的应用前景将更加广阔。

五、结论聚合物基复合材料是一种优异的新型材料,在材料选择和设计、制备方法以及应用前景等方面都具有广泛的研究价值和实际应用意义。

未来,应加强研究并不断优化性能和制备工艺,使其在更多领域得到应用。

聚合物基复合材料

表面修饰
PLS
PLS
插层聚合
缩聚
加聚
聚合物 溶液分散
聚合物 熔融分散
聚合物/层状硅酸盐纳米复合物的结构和分类
从材料微观形态的角度,可以分成三种类型:
材料中粘土片层紧密堆积,分散相为大尺寸的颗粒状,粘土片层之间并无聚合物插入。
聚合物基体的分子链插层进入层状硅酸盐层间,层间距扩大,介于1-4nm,粘土颗粒在聚合物基体中保持“近程有序,远程无序”的层状堆积结构。可作为各向异性的功能材料
对相同尺寸和形状的梁进行振动试验的结果表明,对同一振动,轻合金梁需要9秒钟才能停止,而碳纤维复合材料梁只需2~3秒。
过载安全性
聚合物基复合材料的特性
在纤维复合材料中,由于有大量独立的纤维,在每平方厘米面积上的纤维数少至几千根,多达数万根。当过载时复合材料中即使有少量纤维断裂时,载荷就会迅速重新分配到未被破坏的纤维上,不至于造成构件在瞬间完全丧失承载能力而断裂,仍能安全使用一段时间。
.酚醛玻璃钢 耐热性最好, <350℃长期使用,短期可达1000℃;电学性能好,耐烧蚀材料,耐电弧。性脆,尺寸不稳定,收缩率大,对皮肤有刺激作用。
玻璃钢采光板
玻璃钢汽车保险杠
玻璃钢型材
透光型玻璃钢
体育馆采光
赛艇、帆船壳体
2、GF增强热塑性塑料 (FR-TP) 特点:
车用立体声音响喇叭
纳米材料是指含有纳米结构的材料。尺度为1nm-100nm范围内的物质即为纳米物质。
Why nano? Why nanocomposite?
01
从界面角度:
是两相在纳米尺寸范围内复合而成,界面间具有很强的相互作用,产生理想的粘接性能.
从增强体角度:强度大,模量高

聚合物基复合材料制备

聚合物基复合材料制备制备聚合物基复合材料的关键步骤包括材料选择、增强材料表面处理、复合材料制备和后处理。

首先,选择合适的聚合物基体和增强材料非常重要。

聚合物基体的选择应基于所需的力学性能、热稳定性和化学稳定性等要求。

常见的聚合物基体包括聚丙烯(PP)、聚乙烯(PE)、聚酰亚胺(PI)等。

增强材料可以是颗粒状的纳米材料,如纳米氧化硅、纳米氧化铝等;也可以是纤维状的玻璃纤维、碳纤维、天然纤维等;还可以是片状的石墨烯、石墨等。

其次,增强材料表面处理是增强材料与聚合物基体之间相容性的关键。

表面处理可以通过引入活性基团或进行氧化、酯化等化学修饰来改变增强材料的表面性质。

这样能够增加增强材料与聚合物基体之间的黏附力和相容性,从而提高复合材料的力学性能。

接下来,复合材料的制备是将增强材料均匀地分散在聚合物基体中的过程。

常见的制备方法包括熔融法、溶液法和乳液法。

熔融法是将聚合物基体和增强材料一同加热熔融,然后通过挤出或注塑等工艺形成复合材料;溶液法是将增强材料分散在聚合物溶液中,然后通过旋涂、浸渍等方法制备复合材料;乳液法是将增强材料分散在聚合物乳液中,然后通过自由基聚合或电化学聚合形成复合材料。

最后,制备完成的复合材料还需要进行后处理。

后处理包括热固化、冷却、修饰等工艺。

热固化是将复合材料加热至聚合物基体的玻璃转化温度以上,使聚合物基体发生交联反应,以提高复合材料的力学性能;冷却是通过将复合材料快速冷却到室温来获得所需的结构和性能;修饰是为了改善复合材料的表面性质,如增加润湿性、耐磨性等。

总之,聚合物基复合材料的制备是一个多步骤的过程,需要选取合适的材料、进行表面处理、制备复合材料和进行后处理。

通过精细控制这些步骤,可以得到具有优异力学性能、热稳定性和化学稳定性的聚合物基复合材料。

5.聚合物基复合材料的制备工艺汇总

工艺流程: 原料准备 原料准备
包括过滤、吸磁、干燥、研磨、称量、预热等
初混合
塑炼
造粒
粒料
初混合
在聚合物熔融温度以下、较缓和的剪切力作用,用捏合机、高 速混合机等设备将物料按顺序加入、混合均匀。
塑炼
在高于树脂熔融温度和较大的剪切力作用下 ,在双滚筒炼胶 机、密炼机、单螺杆挤出机等设备使物料热熔、剪切混合达到适当 的柔软度和可塑性,同时除去挥发物。
5.2 复合材料制品成型工艺
5.2.1 手糊工艺
5.2.2 模压成型工艺
5.2.3 RTM成型工艺 5.2.4 喷射成型工艺 5.2.5 连续缠绕成型工艺 5.2.6 拉挤成型工艺
5.2.7 挤出成型工艺
5.2.8 RRIM成型工艺
手糊成型工艺—流程
模具 准备
涂脱膜剂 手糊成型
连续纤维预浸料的制造
5.1 复合材料半成品制造工艺
5.1.1 热塑性塑料粒料
5.1.2 热固性模塑料 5.1.3 连续纤维预浸料
模塑粉 短纤维增强热固性模塑料 片状模塑料(SMC)
5.1.4 增强热塑性塑料片材
增强热塑性塑料片材(RTPS)
与热固性复合材料相比,热塑性复合材料以其良好韧性、 快速成型和可回收利用的优势倍受重视。将增强材料和热塑 性树脂预先制成半成品板材,再将它剪裁成坯料,模压或冲 压成各种制品。这种半成品称为增强热塑性塑料片材
4
树脂糊
6
9
顶部PE薄膜
割刀
中空钢鼓轮
7
粗纱切割器 5
割刀
3
粗纱
10
树脂糊 2
1
低部PE薄膜
8
11
压紧辊
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 复合材料制品成型工艺
5.2.1 手糊工艺
5.2.2 模压成型工艺
5.2.3 RTM成型工艺 5.2.4 喷射成型工艺 5.2.5 连续缠绕成型工艺 5.2.6 拉挤成型工艺
5.2.7 挤出成型工艺
5.2.8 RRIM成型工艺
手糊成型工艺—流程
模具 准备
涂脱膜剂 手糊成型
5 聚合物基复合材料工艺
半 成 品 的 制 备 复 合 材 料 成 型 工 艺
热塑性塑料粒料
热固性模塑料 连续纤维预浸料
模塑粉 短纤维增强热固性模塑料 片状模塑料(SMC)
增强热塑性塑料片材
手糊工艺 模压成型工艺 复 合制 材品 料成 夹型 层工 结艺 构 蜂窝夹层结构 制品成型工艺 泡沫塑料夹层结 构制品成型工艺
连续法:
将SMC配方中的树脂糊分为两分,即增稠剂、脱模剂、部分填料和 苯乙烯为一份,其余组分为另一份,分别计量,混匀后送入SMC机 组上的相应贮料容器内,由管路计量泵进入静态混合器,混匀后输 送到SMC机组的上糊区,再涂布到聚乙烯薄膜上。
片状模塑料(SMC)的制造工艺
浸渍和压实 已涂布树脂糊的下承载薄膜在机组牵引下进入短切玻璃 纤 维沉降室,短切玻璃纤维均匀沉降在树脂糊上,达到要求的
RTPS的制造方法
悬浮沉积工艺
将玻璃纤维、热塑性树脂粉末、悬浮助剂和水一起搅拌形成均匀 悬浮液,通过流浆箱、成形网,滤出水后形成湿片,再经干燥、粘结、 压轧成为增强热塑片材。
流态化床法
先将粉末树脂放入孔床中,再通入空气使粉末树脂流态化。然后
使分散的纤维从容器中通过,于是玻纤周围附着粉末树脂。附着树脂 的玻纤通过切断器被切成定长,降落在输送网带上,通过热轧区和冷 却区后制成增强热塑性片材。
的一种高强、质轻增强热塑性复合材料。 可回收利用,节能、环保。
GMT 特点
与金属板材比,质轻、耐腐蚀、隔热、隔音、绝缘性好。 与SMC比,储存期长、成型周期短、回收利用、无污染、冲击韧性高。 与短纤维增强热塑性复合材料比,GMT强度高,刚性好,抗蠕变性能 好,使用寿命长,制品尺寸稳定性好。
高强度模塑料(HMC和XMC)
主要用于制造汽车部件。 HMC中填料少,采用短切玻纤,65%左右,定向分布;
具有极好的流动性和成型表面,其制品强度约是SMC制品强度的3倍。
XMC不含填料,采用定向连续纤维,含量达70%~80%。
片状模塑料(SMC)的特点
重现性好,不受操作者和外界条件的影响;
组成与SMC相似,可用于模压和挤出成型;
纤维含量较低,纤维较短(6~18 mm),填料含量大;
制品强度比SMC低,适合于压制小型制品,而SMC适合于大型薄壁制品。
片状模塑(压)料(SMC)
厚片状模塑料(TMC)
组成和制作与SMC相似,厚达50 mm。 厚度大,玻璃纤维能随机分布,改善了树脂对纤维的浸润性。 可以采用注射和传递成型。
干混合:按加料顺序加料,在球磨机、Z形捏合机、圆柱形转筒
等设备上混合。
热辊压:关键工序,一般在双辊机上进行,辊压温度和时间是主
要工艺控制指标。如生产电木粉时,低温辊的温度为70 -110 oC、 高温辊的温度为90 -130 oC。
5.1.2.2 短纤维增强热固性模塑料的制造方法
根据纤维和树脂的不同,主要方法有预混法、预浸法、浸毡法和挤出法。
低收缩剂 热塑性聚合物0-10
70-120 1-2 内脱膜剂 硬脂酸铅
BaSO4 硬脂酸铅
热塑性聚合物25-40
60-80 CaCO3 1-2 硬脂酸铅 120-180 1-2
MgO或Ca(OH)2 1-2 2-5
MgO或Ca(OH)2 MgO或Ca(OH)2 0.5-2 1-2 少量 少量
25~35%
4
树脂糊
6
9
顶部PE薄膜
割刀
中空钢鼓轮
7
粗纱切割器 5
割刀
3
粗纱
10
树脂糊 2
1
低部PE薄膜
8
11
压紧辊
SMC成品
SMC的典型配方
类型 配方
树脂 引发剂 填料 增稠剂 颜料 阻聚剂 玻璃纤维 少量 一 般 型 邻苯二甲酸型 100 PhCO3Bu-t CaCO3 1 耐腐蚀型 低收缩型
配 比
间苯二甲酸型100 邻苯二甲酸型 100 PhCO3Bu-t 1 PhCO3Bu-t 1 65 ~ 75 %
预混法工艺流程
配胶 + 纤维预处理 +添加剂准备
浸渍与混合
撕松
烘干
并批
纤维松散、无定向,流动性好,宜做复杂的小型模压制品。但纤维强 度损失较大,模塑料的质量不均匀,劳动条件差。
预浸法工艺流程
粗纱准备、热处理 + 树脂配胶
纱细浸渍
烘干
切割
存放
纤维紧密、成束状,纤维强度损失较小,质量均匀,可制造较复杂 的高强度模压制品,机械化程度较高,劳动强度小。但日产量比预混 法小,只适宜于连续纤维制品。
热熔浸渍法和胶膜辗压法
熔融法:
熔融树脂(加隔离纸)→涂于纤维上→纤维另一面附一层隔离纸→压 实辊→收卷。 胶膜法:与熔融法类似,差别在于树脂是形成胶膜,而非熔融流出。
粉末法制备预浸料
粉末静电法:在连续纤维表面沉积带电树脂粉末,用辐射加热方法使 聚合物粉末永久的粘附在纤维上。 粉末悬浮法: ① 水悬法:水中悬浮的树脂颗粒粘附到连续运动的纤维上; ② 气悬浮:细度为10~20μm聚合物颗粒在硫化床中悬浮。
5.1 复合材料半成品制造工艺
5.1.1 热塑性塑料粒料
5.1.2 热固性模塑料 5.1.3 连续纤维预浸料
模塑粉 短纤维增强热固性模塑料 片状模塑料(SMC)
5.1.4 增强热塑性塑料片材
5.1.3 连续纤维预浸料的制造
溶液浸渍法(如图):
生产工艺:各组分溶解到溶剂+纤维→烘干(除溶剂)→按需切割
(Reinforced Thermoplastics Sheet, RTPS)。
最常见的是玻璃纤维毡增强热塑性塑料 (Glass Mat
Reinforced Thermoplastics ),即 GMT,约占RTPS的
90%。
GMT及其特点
GMT 概念
利用连续或短切玻璃纤维针刺毡和热塑性树脂(如聚丙烯)复合而成
树脂胶 液配制
增强材 料准备
固化
脱膜
后处理
检验
制品
手糊成型工艺—生产准备

场地
要求清洁、干燥、通风良好,空气温度保持在15~35℃之间,
后加工整修段,要有抽风除尘和喷水装臵。
模具准备
清理、组装、涂脱模剂等。
树脂胶液配制
防止胶液中混入气泡; 配胶量不能过多,每次配量要保证在树脂凝胶前用完。
5.1.1 短纤维增强热塑性塑料粒料的制造方法
该法是为解决高熔融粘度树脂的长纤维粒料因纤维在树 脂中分散不好易引起制品性能和外观不良而开发,其工艺 流程如下:
树脂干燥
+ 纤维短切
初混合 粒料干燥
挤 出 称量包装
切 粒
优点:
连续化生产;外观尚佳、质地致密,成型加工性和表面平滑性好, 用柱塞式和螺杆式注射成型机均可成型;劳动保护好。
工艺流程: 原料准备 原料准备
包括过滤、吸磁、干燥、研磨、称量、预热等
初混合
塑炼
造粒
粒料
初混合
在聚合物熔融温度以下、较缓和的剪切力作用,用捏合机、高 速混合机等设备将物料按顺序加入、混合均匀。
塑炼
在高于树脂熔融温度和较大的剪切力作用下 ,在双滚筒炼胶 机、密炼机、单螺杆挤出机等设备使物料热熔、剪切混合达到适当 的柔软度和可塑性,同时除去挥发物。

缺点:
对设备及设备材质要求高,噪音大。
“排气回挤造粒法”双阶排气式挤出机
1.料斗;2.料筒;3.螺杆;4.节流阀;5.排气口;6.真空表; 7.机头;8.口模;9.栅板;10.真空泵;11.冷凝器
5.1 复合材料半成品制造工艺
5.1.1 热塑性塑料粒料
5.1.2 热固性模塑料 5.1.3 连续纤维预浸料
RTM成型工艺
喷射成型工艺 连续缠绕成型工艺
拉挤成型工艺
挤出成型工艺 RRIM工艺
5.1 复合材料半成品制造工艺
5.1.1 热塑性塑料粒料
5.1.2 热固性模塑料 5.1.3 连续纤维预浸料
模塑粉 短纤维增强热固性模塑料 片状模塑料(SMC)
5.1.4 增强热塑性塑料片材
5.1.1 颗粒填充热塑性塑料粒料的制造方法
操作处理方便,操作环境清洁、卫生,改善了劳动条件;
流动性好,可成型为异形制品; 模压工艺对温度和压力要求不高,可变范围大,可大幅度降低
设备和模具费用;
纤维长度40~50 mm,质量均匀性好,适宜于压制截面变化不大 的大型薄壁制品; 制品表面光洁度高,添加低收缩剂后,表面质量更为理想; 生产效率高,成型周期短,易于实现全自动机械化操作,生产 成本相对较低。
5.1.2.3 片状模塑(压)料(SMC)
片状模塑料(SMC)
树脂糊浸渍纤维或短切纤维毡,两边覆盖PE薄膜而成的片状模塑料。 应用最广泛的成型材料之一。 主要原料:不饱和聚酯树脂、增稠剂、引发剂、低收缩剂、填料等。 SMC视用途和要求又发展出一系列新品种,如BMC、TMC、HMC等。
团状模塑料(BMC)
短纤维增强热固性模塑料的制造方法
浸毡法工艺流程
纱线准备 切割 蓬松
撒毡 复合
树脂配制
浸胶 烘干 成品
该法与预浸法工艺大体相同,不同点在于:先将短切纤维均匀铺洒在 玻璃底布上,再用玻璃面布覆盖,然后使夹层浸胶。
相关文档
最新文档