详解GPS工作原理
GPS定位的工作原理

GPS定位的工作原理GPS(全球定位系统)是一种通过卫星来确定地理位置的技术。
它已经广泛应用于导航、地理定位和地图绘制等领域。
下面将详细解释GPS定位的工作原理。
一、卫星信号发射1. 卫星:GPS系统由一组人造卫星组成,它们绕地球轨道运行。
目前,GPS系统中共有24颗卫星。
2. 信号发射:每颗卫星通过无线电波向地球发送信号。
信号中包含有用的位置和时间信息。
二、接收器接收信号1. GPS接收器:GPS接收器是一种装置,用于接收来自卫星的信号。
2. 信号接收:接收器中的天线接收信号,并将其发送到处理器进行处理。
三、三角测量原理1. 时间同步:接收器通过比较接收到信号的到达时间来确定卫星到接收器的距离。
通过与卫星通信所需的时间,接收器可以计算出卫星与其之间的距离。
2. 多个卫星:通过与多颗卫星进行通信,接收器可以得到多个卫星到达的时间,从而可以计算出与多颗卫星之间的距离。
3. 三角测量:接收器使用三角测量原理计算出自身到每颗卫星的距离。
四、定位计算1. 卫星轨道:GPS系统中的卫星轨道已经被精确测量和记录。
卫星轨道的信息存储在GPS接收器内部或连接的设备中。
2. 距离计算:通过使用接收器计算出的与几颗卫星之间的距离,接收器可以使用卫星轨道信息来计算自身的位置。
3. 地理定位:通过比较自身与至少四颗卫星的距离,接收器可以确定自身的地理位置。
4. 计算时间:接收器还可以根据接收到信号的时间来确定当地的时间。
五、误差修正1. 大气层延迟:信号在穿过大气层时会受到延迟,这可能导致距离计算的误差。
接收器使用大气层模型来修正这种误差。
2. 卫星钟偏移:卫星上的钟可能存在略微的时间偏移。
接收器使用卫星信号中的时间信息来修正这种误差。
3. 干扰:接收器还可能受到电子设备、建筑物、树木等物体的干扰。
这些干扰可能导致信号弱化或失真,从而影响定位的准确性。
4. 将设备移动到适合接收信号的位置,可以帮助减少这些误差。
综上所述,GPS定位的工作原理是通过卫星发射信号并接收器接收信号来实现的。
gps导航工作原理

gps导航工作原理GPS导航是一种利用全球定位系统(GPS)进行导航的系统。
通过接收来自卫星的信号,系统能够计算出用户的当前位置并提供准确的导航指引。
GPS导航的工作原理如下:1. 卫星发送信号:全球定位系统由数十颗绕地球轨道运行的卫星组成。
这些卫星会周期性地发送信号,其中包含有关卫星位置和时间的信息。
2. 接收器接收信号:用户的GPS接收器(例如汽车上的导航设备或手机上的导航应用程序)接收到卫星发出的信号。
至少需要接收到3颗卫星的信号才能进行最基本的位置计算,而对于更准确的定位则需要接收到4颗或更多卫星的信号。
3. 信号计算:GPS接收器利用接收到的卫星信号,计算出用户的当前位置。
这个计算是通过测量信号从卫星到接收器的传播时间来进行的。
由于光速是已知的,接收器可以通过测量信号的传播时间和卫星发射信号的时间来计算出用户与卫星之间的距离。
4. 位置计算:一旦接收器知道了与几颗卫星之间的距离,它就可以使用三角定位原理来计算出用户的精确位置。
具体来说,接收器利用接收到的信号来计算出与每颗卫星之间的距离,并将这些距离作为一个三角形的边长。
然后,通过比较这些距离和卫星位置的几何关系,接收器可以确定用户的位置。
5. 导航指引:一旦用户的当前位置被确定,GPS接收器可以根据预先加载的地图数据和用户提供的目的地,计算并提供导航指引。
根据用户的位置和目的地,系统可以计算出最佳的路径,并提供文字或声音指示,引导用户按照正确的方向前进。
值得注意的是,GPS导航系统的准确性和性能可能会受到一些因素的影响,例如地形、建筑物、天气条件和电磁干扰等。
因此,在使用GPS导航时,用户应该保持适当的警惕,并结合实际情况进行导航。
gps测量仪原理

gps测量仪原理
GPS测量仪是一种利用全球卫星定位系统(GPS)技术来测量位置、速度和航向的仪器。
其工作原理如下:
1. GPS系统:GPS系统由一组运行在地球轨道上的卫星和地面控制站组成。
卫星向地面发射定位信号,接收器通过接收多颗卫星的信号,利用三角测量原理计算自身的位置。
2. 测距原理:GPS测量仪通过接收来自多颗卫星的信号,测量从卫星到接收器的信号传播时间,然后乘以光速即可得到距离。
至少需要接收到四颗卫星的信号来进行三维位置测量。
3. 定位算法:GPS测量仪使用一种称为“三角测量法”的算法来计算自身的位置。
该算法利用接收器与多颗卫星之间的距离关系,将其转化为三角形,并利用三角形的几何关系来计算位置坐标。
4. 时钟同步:GPS测量仪中的时钟非常关键,因为定位精度与时钟的同步程度有关。
GPS测量仪会通过接收卫星的时间信号来进行时钟同步,并校准自身的时钟误差。
5. 数据处理:GPS测量仪会收集并记录卫星信号的时间和强度等信息,并将其传输至数据处理单元。
数据处理单元会对这些信息进行处理和分析,最终得出位置、速度和航向等测量结果。
综上所述,GPS测量仪利用卫星定位和三角测量原理,通过
测量卫星信号的传播时间和强度等信息,来计算位置、速度和航向等参数。
gps的原理是什么

gps的原理是什么
GPS的原理是基于卫星定位系统工作的。
GPS系统由地面的
控制站和在轨道上绕地球运行的一组24颗卫星组成。
这些卫
星被称为全球定位系统,它们以恒定的速度绕地球周围运行。
每颗卫星每天绕地球转两次,通过固定的轨道,确保整个地球上的任何地点都可以收到至少四颗卫星的信号。
GPS设备接收卫星发出的信号,并通过计算信号发送和接收
的时间来确定位置。
每颗卫星都具有一个精确的原子钟,其时间同步在地面控制站进行监控和修正。
当GPS接收器接收到
至少四颗卫星的信号时,它能够计算出接收器与每颗卫星之间的距离。
然后,通过三角测量原理,GPS设备可以确定接收
器所在的地理坐标。
在进行位置计算时,GPS接收器会考虑到卫星的位置和距离,以及信号的传输速度。
由于信号在空间中传播的速度是已知的,接收器可以计算出信号从卫星到接收器的距离,并以此为基础来确定位置。
这些计算需要高度精确的时间测量,因此GPS
接收器需要使用非常精确的原子钟。
总结来说,GPS的原理是通过接收卫星发送的信号,并计算
信号的时间和距离来确定接收器的位置。
GPS系统的准确性
取决于卫星的数量和位置,以及接收器的精确度和计算能力。
GPS导航系统的工作原理

GPS导航系统的工作原理GPS(全球定位系统)导航系统是一种通过卫星进行定位和导航的技术。
它由一组卫星、地面控制站和用户接收设备组成。
本文将详细介绍GPS导航系统的工作原理。
一、GPS导航系统的组成GPS导航系统由三个基本组成部分构成:卫星组成、地面控制站和用户接收设备。
1. 卫星组成GPS系统由一组在轨道上飞行的卫星组成。
目前,全球大约有30颗卫星用于GPS导航系统,这些卫星以固定的轨道和速度绕地球运行。
每个卫星都以精确的时间和位置输出信号。
2. 地面控制站地面控制站负责监控和管理卫星的位置和系统状态。
它们对卫星进行周期性的差分修正,以确保GPS系统始终保持准确的定位功能。
地面控制站还与用户接收设备之间建立连接,将卫星信息传递给用户。
3. 用户接收设备用户接收设备是GPS导航系统的最后一个组成部分。
它们可以是车载导航器、手机、手持设备等多种形式。
用户接收设备接收卫星发射的信号,计算出自己的位置,并提供导航和定位功能。
二、GPS导航系统的工作原理GPS导航系统的工作原理基于三角测量和时间计算。
1. 三角测量GPS导航系统使用三角测量原理确定用户的位置。
用户接收设备接收到至少三颗卫星的信号后,可以计算出自己与每颗卫星之间的距离。
通过测量多个卫星与用户之间的距离,用户接收设备可以确定自己的位置。
2. 时间计算GPS系统中的每颗卫星都会向用户接收设备发送精确的时间信号。
用户接收设备接收到卫星的时间信号后,可以计算从卫星发射信号到接收信号所经历的时间差。
由于光速的恒定,用户可以根据时间差计算出与卫星的距离。
3. 定位计算通过同时测量多颗卫星与用户之间的距离,GPS接收设备可以确定自己的位置。
这种定位计算需要至少三颗卫星的信号,因为每颗卫星提供了一个位置坐标。
根据这些位置坐标和距离数据,接收设备可以使用三角测量算法计算出自己的准确位置。
三、GPS导航系统的应用GPS导航系统在各个领域都有广泛的应用。
以下是一些常见的应用示例:1. 车载导航系统车载导航系统通过GPS技术帮助驾驶员定位,并提供路线规划和导航指引。
GPS_百度百科

GPS_百度百科一、GPS的基本概念和原理GPS,全称为全球定位系统(Global Positioning System),是一种基于卫星导航系统的定位技术。
它由一系列的卫星、地面控制站和用户设备组成,能够准确测量地球上任意点的位置坐标,并提供导航、定位等功能。
GPS的原理主要基于三个方面:卫星发射的信号、接收器接收的信号和测量时间。
首先,GPS系统中有24颗卫星(包括备用卫星),它们通过人造卫星轨道在地球上的分布。
这些卫星以恒定速度绕地球旋转,每颗卫星每天都会固定几次跟踪站的位置,并通过无线电信号发送卫星的位置信息。
其次,GPS接收器位于地面或者其他移动设备中,用来接收卫星发射的信号。
接收器会接收到至少四颗卫星的信号,并通过测量信号的传播时间来计算接收器到每颗卫星的距离。
通过将这些距离进行三角测量,GPS接收器能够确定接收器所在的位置。
最后,GPS接收器需要测量时间来确定信号传播的速度,并精确计算出定位信息。
GPS接收器内置一个高精度的原子钟,用来测量信号传播的时间。
接收器通过比较卫星发射信号的时间和它接收到信号的时间差来计算信号的传播时间,从而得出定位信息。
二、GPS的应用领域GPS的应用广泛,涵盖了几乎所有与位置有关的领域。
下面简要介绍几个主要的GPS应用领域:1.车辆导航和交通管理:GPS可以实时导航汽车、飞机等交通工具,提供最佳路线和交通信息,并帮助交通管理部门监控交通流量和疏导交通。
2.航海和航空:GPS已经成为航海和航空领域的重要工具,可用于船舶和飞机的导航定位、航线规划等。
3.军事应用:GPS最初是作为军事导航系统而研发的,现在仍广泛应用于军事领域,用于战术导航、目标定位、军事通信等。
4.地质勘探和测绘:GPS能够提供高精度的地球表面位置坐标,因此在地质勘探、测绘和地质灾害预警等方面有重要应用。
5.环境监测和气象预测:GPS可以用于监测大气湿度、气压和大气延迟等数据,从而提供准确的气象预测和环境监测。
GPS定位原理和简单公式

GPS定位原理和简单公式GPS是全球定位系统的缩写,是一种通过卫星系统来测量和确定地球上的物体位置的技术。
它利用一组卫星围绕地球轨道运行,通过接收来自卫星的信号来确定接收器(GPS设备)的位置、速度和时间等信息。
GPS定位原理基于三角测量原理和时间测量原理。
1.三角测量原理:GPS定位主要是通过测量接收器与卫星之间的距离来确定接收器的位置。
GPS接收器接收到至少4颗卫星的信号,通过测量信号的传播时间得知信号的传播距离,进而利用三角测量原理计算出接收器的位置。
2.时间测量原理:GPS系统中的每颗卫星都具有一个高精度的原子钟,接收器通过接收卫星信号中的时间信息,利用接收时间和发送时间之间的差值,计算出信号传播的时间,从而进一步计算出接收器与卫星之间的距离。
简单的GPS定位公式:1.距离计算公式:GPS接收器与卫星之间的距离可以通过测量信号传播时间得到。
假设接收器与卫星之间的距离为r,光速为c,传播时间为t,则有r=c×t。
2.三角测量公式:GPS定位是通过测量与至少4颗卫星的距离,来计算接收器的位置。
设接收器的位置为(x,y,z),卫星的位置为(x_i,y_i,z_i),与卫星的距离为r_i,根据三角测量原理,可得到以下方程:(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=r_1^2(x-x_2)^2+(y-y_2)^2+(z-z_2)^2=r_2^2...(x-x_n)^2+(y-y_n)^2+(z-z_n)^2=r_n^2这是一个非线性方程组,可以通过迭代方法求解,求得接收器的位置。
3.定位算法:GPS定位一般使用最小二乘法来进行计算。
最小二乘法是一种数学优化方法,用于最小化误差的平方和。
在GPS定位中,通过最小化测量距离与计算距离之间的差值的平方和,来确定接收器的位置。
总结:GPS定位原理基于三角测量和时间测量原理,通过测量接收器与卫星之间的距离,利用三角测量公式和最小二乘法来计算接收器的位置。
GPS工作原理

GPS工作原理GPS(Global Positioning System)是一种通过卫星定位技术来确定地理位置的系统。
它由一系列卫星、地面控制站和接收器组成。
GPS工作原理是利用卫星信号和接收器之间的通信来计算位置。
1. GPS卫星GPS系统由一组绕地球轨道运行的卫星组成。
这些卫星分布在不同的轨道上,确保覆盖全球范围。
每个卫星被设计为以特定速率和方向绕地球旋转,以确保高度准确的定位信息。
2. 接收器GPS接收器是用来接收卫星发射的信号并计算位置的设备。
接收器内部含有高精度的时钟来测量信号的传播时间。
接收器收到至少4个卫星的信号后,可以根据信号传播时间的差异来计算接收器的位置。
3. 三角定位法GPS工作基于三角定位法的原理。
接收器通过测量从卫星到接收器的信号传播时间来确定距离。
由于信号传送的速度已知,接收器可以使用传播时间来计算距离。
接收器同时接收来自多个卫星的信号,并使用三角定位法来计算自身的位置。
4. 卫星定位准确性GPS的定位准确性取决于多个因素,包括卫星的数量和位置、接收器的精度以及信号传输的中断等。
在良好的接收条件下,GPS的定位准确度可以达到几米甚至更小。
5. GPS应用GPS的应用广泛,包括导航系统、车辆追踪、地图绘制、航空航海、军事用途等。
人们可以通过GPS设备和手机定位服务来导航、查找附近的兴趣点、追踪运动活动等。
总结:GPS工作原理是通过接收卫星信号和使用三角定位法来计算位置。
卫星发射信号,接收器计算距离并确定位置。
GPS应用广泛,对于导航和定位提供了重要的支持。
通过不断改进与发展,GPS技术已经成为我们生活不可或缺的一部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
详解GPS工作原理开车最难过的就是迷路。
不过自从有了GPS,很多道路问题都能迎刃而解,它可以部署在汽车导航系统或便携式导航设备里,也可以部署进汽车中控台,甚至是车主的智能手机里,只需打开地图,你就能轻松的知道自己在什么位置。
不过,如果汽车导航界面做的比较粗糙,输入数据就会比较麻烦,特别是在驾驶汽车的过程中,会很难完成地址的输入操作。
本文将给大家介绍下什么是GPS,它可以为汽车做些什么,未来它又会有哪些可能的用途。
GPS会让你更加安全地驾驶,帮助你了解周边交通情况,寻找附近的服务,甚至还可以帮助商店推销服务。
GPS是如何工作的(可能比你想知道的还要多)从1994年开始,地球上空就出现了24颗GPS卫星,他们被分成了六组,在1.3万英尺的高空中围绕地球飞行。
它们是同步轨道卫星,但并不是静止的,而是以每小时8千英里的速度从西向东飞行,每天可以绕地球两次。
每颗卫星上搭载了原子钟,并且不断报告:伪随机码:每颗卫星的ID星历数据:当前日期和时间,卫星是否健康或不健康(“不健康”可能意味着卫星正在重新定位或重新校准,不是指它飞走了)年鉴数据:定位卫星在什么时间到达什么位置的数据(每个GPS 卫星都有年鉴数据)GPS内部的接收器会从卫星捕捉到达时间(TOA)和飞行时间(TOF)。
给定光速(恒定),以及信号在什么时候、什么地方发生,GPS接收器便会计算出你的车、你的便携式导航仪、徒步GPS,或是智能手机在地球上哪个位置。
当设备沿着高速公路移动,它还会计算行驶速度和罗盘航向,不过GPS的速度通常会比汽车里程表显示的时速慢几英里。
行驶数据会呈现在导航系统里。
卫星信号从地球大气层从40-600英里高空穿过电离层,会产生延迟;而GPS系统会应用校正因子。
一般而言,我们需要三个GPS信号来确定(三角定律)接收器的位置,然后用第四个信号来计算高度。
当然,接收器接收的卫星数量越多(最多应该是十二个,因为一共二十四颗卫星,另外十二个在地球的另一边),定位的质量就会越高。
如果原子时钟不准确,或是其他不准确的信息进入,GPS可以进行修正。
第一颗GPS卫星是在1978年发射升空的,目前很多GPS卫星都能很好地运行,工作时间长达十年。
他们的重量约为2千磅(按地球上重量计),如果算上支持卫星动力的太阳能电池板的话,长度可以达到17英尺。
这些卫星的发射器能超过产生不到50瓦特的输出,当然,很多新的卫星也在开发,发射,全世界很多国家现在都有自己的GPS卫星。
更加新一些的GPS系统(接收器在地球上)定位会更加准确,而且能够定位更小的对象,价格也更便宜,它们甚至还能定位室内GPS 接收器。
美国国防部高级研究计划局曾经展示过一个芯片,它比一美分硬币还要小,但是却内置了三个陀螺仪,三个加速度计,以及一个内置时钟(见上图)。
还有其他一些研究人员开发了很多技术,目的是提升GPS计时功能和卫星时钟的准确度。
这些研究的主要目的,是让昂贵的GPS系统能够进一步提升准确度,并且能够把这种准确度应用在普通人的汽车中控系统里面。
GPS接收器有多准确?GPS一开始军事卫星系统,主要是希望提升飞机,潜艇,以及其他武器设备的定位准确度。
直到2000年,GPS才实现了民用化,但是精确度有些降低。
发送给非军事用户的未加密的时间信号会随机抵销,让定位误差在100米左右。
人们这种情况称为选择可用性(SA),当你定位一辆汽车,也许它的实际位置可能会和你有一到两个街区那么远。
差分GPS技术的开发,使用了基于地面参考站来纠正精准度,这种技术可以将SA信号定位在15米范围内,大约2到3辆汽车的长度,如果在最好的情况下,其精准度甚至可以达到10厘米或四英寸,这种情况已经非常不错了,它甚至可以用来测试定位桩是否足够准确。
与此同时,美国联邦航空局、海岸警卫队、以及交通运输部却要求停止使用SA信号。
2000年,时任美国总统的比尔克林顿命令提升民用GPS质量,不再允许所谓的“选择可用性”,美国政府的GPS网站上说,“美国没有意图再使用选择GPS可用性了。
”如今,汽车内的GPS接收器可以精准定位到10至15米的范围,而且其中的卫星接收器模块成本也只有几美元而已。
单独的GPS接收器,精准度可以达到3米范围,如果你使用的是价格更贵,质量更好的卫星接收器模块,甚至可以精准定位到几厘米的范围。
美国天宝公司推出的Total Station GPS系统,售价高达2.5万美元,它的精准度可以控制在一英寸范围内。
这意味着在高精度GPS系统的控制下,你甚至可以远程控制道路施工设备,整平并修整地面,最终铺设一条公路出来。
如果你有一个老式汽车导航系统,它的定位精准度大概在15米范围左右,那么这个导航系统会做些小把戏。
如果你的高速公路上向北行驶,附近没有其他道路,位置图标会与道路对齐;如果你在双向之间有分车带的公路上开车,那么导航系统就会对齐到向北的道路上。
如果你转弯,或是绕圈行驶,导航也会进行自我校正。
GPS导航也会使用一个内置的罗盘,运动传感器,以及测速仪,它会准确判断出你是否进入到隧道。
(如果你在一个隧道里,那么会看到当前位置图标在隧道中间,精准度可以达到一辆汽车长度的范围,非常完美。
)除了显示地图,GPS还能为汽车做什么?显然,汽车里的GPS可以在地图上准确定位,但实际上,它还可以做很多其他事情,下面就举几个例子:自动碰撞通知。
在汽车事故中,如果汽车装配了车载资讯处理系统,比如通用的安吉星(OnStar),汽车会自动向车载资讯远程呼叫中心报告所在位置,然后呼叫距离你最近的公共安全应答点(PSAP),或帮你拨打紧急电话。
此外,使用Ford&Sync,还可以通过蓝牙连接的手机直接拨打电话。
通常路过的司机也会帮忙拨打紧急电话,但如果车祸发生在一个比较偏僻的地方,说不定好久才有一辆汽车路过。
增强型的自动天体导航添加了很多非GPS信息,比如失事的地理位置和车辆破损程度,还有如果汽车翻车了,乘客是否有系安全带。
宝马和通用汽车正在研究相关算法,可以预测当汽车出车祸时,乘客严重受伤的可能性;这些汽车公司相信,他们的算法足够准确,能够帮助处理安全事故的工作人员判断,是否需要派遣医疗救援直升机(主要出于成本考虑,因为使用一次医疗救援直升机的费用大约是5千到1.5万美元)。
上面提到的这一切,如果没有GPS信号都是无法实现的。
可预测前照灯。
首先是前照灯,然后是好的前照灯(包括氙气大灯,LED大灯,以及激光大灯),再下来是转向大灯(当你的方向盘朝右打的时候,车轮向右,右转灯就会打开)。
现在,如果有了GPS信号,当你驶向路口时,汽车就会预先判断出你要转向,继而打开车灯。
据悉福特汽车公司正在试运行一款根据GPS信号判断的转向灯。
延长混合动力汽车,电动汽车的行驶里程。
电动汽车,或者是混合动力汽车,需要尽可能的保持电量充足,才能行使更长的里程。
但是很多爬坡,或是路况不好的地段往往特别耗电,举个例子,如果让你的电动车在略微有些坡度的高速公路上行驶一段时间,貌似不会有太大问题。
但是,如果地图数据显示了GPS位置,然后告诉你目前的充电量在完成上坡路段之后,只能再开2.5公里,那么或许你在上坡之前,就该考虑一下是不是要给自己的汽车充电了。
服务。
当你搜索附近距离最近的汉堡王时,就得依靠GPS来帮忙了。
不过GPS服务仍然需要做的更好一些,很多第三方App,还有车载导航系统里的数据库,真的需要思考一下如何提供用户想要的服务,要知道,人们想要的是距离最近的汉堡王,而不是20里外的汉堡王。
智能手机App。
如果你的汽车里有车载资讯处理系统,那么肯定会有与之配套的App,你可以在自己的手机上操作很多功能,比如远程启动汽车,或是远程关闭车门。
据说还有一款基于GPS的定位App应用,如果你把车停在一个巨大的商场停车场,购物之后想不起来具体停在哪个车位上,此时这款App应用就会将你引导到自己的汽车边上。
智能车库门开启器。
许多汽车有HomeLink车库门开启器。
汽车的中控台已经被各种各样的按键占满了,如果让车主在手工去操作打开车库门似乎还真的有点儿low了,此时GPS的作用就发挥出来了,当你距离车库还有半英里的时候,中控显示屏上的右边就会弹出一个按键,你只需触摸点击一下,车库门就会自动打开。
校准车速里程表。
美国联邦监管机构要求汽车的车速里程表不能少报车速。
集成GPS可以把你的车速里程表校准到最准确的速度上。
如果你有一个便携式导航设备,通常可以显示出你的车速。
提供最佳车道建议。
如今,一些好的导航系统具有车道出口显示功能,告诉司机哪些是直通车道,哪些是驶出车道,哪些既能直通,又能驶出。
一些定位更准确的GPS,甚至会在你需要驶出车道,或是需要变道之前,给司机进行提示。
GPS和自动驾驶汽车自动驾驶汽车依靠视觉(或雷达)传感器,和三维地图来准确定位,也能因此判断出哪些地方有危险。
此时,如果GPS能够精准定位到英寸级别的范围,而不是一米或五米范围,那么将会发挥更大的作用。
事实上,这种技术已经诞生了。
至少,自动驾驶汽车需要把自己放在一个12英尺宽的车道中间,并且车辆来回摇晃幅度的范围不能超过一英尺。
带有后视镜的汽车大约有六到七英尺宽。
如果考虑到里中心位置存在一定的偏离度,那么可以在汽车两边在延长出1.5到2英尺的安全距离。
如今,利用相关视觉辅助系统可以通过定位车道标记来跟踪汽车的位置。
当汽车搭载上超精准的GPS,就可以扮演汽车传感器的“独立审计员”。
GPS可以判断出车道偏离警示系统(LDW)可能不是表现的很好,并提醒车主。
如果是下雨或是下雪天,视觉系统的功能可能会略有下降,因为有些车道标线可能会被雨雪给覆盖掉,此时GPS将会继续帮助汽车保持在车道中央行驶。
在恶劣天气里,有些车辆仍然需要外出工作,比如扫雪车,此时如果有GPS,不仅可以引导车辆方向,超速时提醒司机保持中速行驶,还可以在偏离既定路线时发出警报。
在未来的五年时间里,虽然让自动驾驶汽车实现每小时60英里的速度有些困难,但是每小时30英里应该不难实现。
购买建议上世纪90年代中期,世界上首款嵌入式车载导航系统出现在了宝马7系车上,成本约为2500美元(放在2015年,相当于4千美元)。
如今,超过1千美元的导航系统已经是凤毛麟角了,一般的导航系统售价基本是在500美元(或以下),部署这些导航设备的汽车售价基本上都是在5万美元以上。
另外值得一提的是,现在汽车中控装载彩色LCD 屏幕已经是标配了,因此导航也成为了汽车必不可少的一项服务功能。
嵌入式导航系统的主要优点就是屏幕大(对角线为7英寸到10英寸),二级导航显示一般会放在仪表盘或是挡风玻璃显示屏上,相对于便携式本文由美国福斯特半导体提供导航已和智能手机导航,车载导航的控制旋钮和操作按键更大。
此外,汽车车顶都会装上鲨鱼鳍式天线,这样可以更快速的启动定位。