GPS工作原理

合集下载

GPS定位的工作原理

GPS定位的工作原理

GPS定位的工作原理GPS(全球定位系统)是一种通过卫星来确定地理位置的技术。

它已经广泛应用于导航、地理定位和地图绘制等领域。

下面将详细解释GPS定位的工作原理。

一、卫星信号发射1. 卫星:GPS系统由一组人造卫星组成,它们绕地球轨道运行。

目前,GPS系统中共有24颗卫星。

2. 信号发射:每颗卫星通过无线电波向地球发送信号。

信号中包含有用的位置和时间信息。

二、接收器接收信号1. GPS接收器:GPS接收器是一种装置,用于接收来自卫星的信号。

2. 信号接收:接收器中的天线接收信号,并将其发送到处理器进行处理。

三、三角测量原理1. 时间同步:接收器通过比较接收到信号的到达时间来确定卫星到接收器的距离。

通过与卫星通信所需的时间,接收器可以计算出卫星与其之间的距离。

2. 多个卫星:通过与多颗卫星进行通信,接收器可以得到多个卫星到达的时间,从而可以计算出与多颗卫星之间的距离。

3. 三角测量:接收器使用三角测量原理计算出自身到每颗卫星的距离。

四、定位计算1. 卫星轨道:GPS系统中的卫星轨道已经被精确测量和记录。

卫星轨道的信息存储在GPS接收器内部或连接的设备中。

2. 距离计算:通过使用接收器计算出的与几颗卫星之间的距离,接收器可以使用卫星轨道信息来计算自身的位置。

3. 地理定位:通过比较自身与至少四颗卫星的距离,接收器可以确定自身的地理位置。

4. 计算时间:接收器还可以根据接收到信号的时间来确定当地的时间。

五、误差修正1. 大气层延迟:信号在穿过大气层时会受到延迟,这可能导致距离计算的误差。

接收器使用大气层模型来修正这种误差。

2. 卫星钟偏移:卫星上的钟可能存在略微的时间偏移。

接收器使用卫星信号中的时间信息来修正这种误差。

3. 干扰:接收器还可能受到电子设备、建筑物、树木等物体的干扰。

这些干扰可能导致信号弱化或失真,从而影响定位的准确性。

4. 将设备移动到适合接收信号的位置,可以帮助减少这些误差。

综上所述,GPS定位的工作原理是通过卫星发射信号并接收器接收信号来实现的。

gps导航工作原理

gps导航工作原理

gps导航工作原理GPS导航是一种利用全球定位系统(GPS)进行导航的系统。

通过接收来自卫星的信号,系统能够计算出用户的当前位置并提供准确的导航指引。

GPS导航的工作原理如下:1. 卫星发送信号:全球定位系统由数十颗绕地球轨道运行的卫星组成。

这些卫星会周期性地发送信号,其中包含有关卫星位置和时间的信息。

2. 接收器接收信号:用户的GPS接收器(例如汽车上的导航设备或手机上的导航应用程序)接收到卫星发出的信号。

至少需要接收到3颗卫星的信号才能进行最基本的位置计算,而对于更准确的定位则需要接收到4颗或更多卫星的信号。

3. 信号计算:GPS接收器利用接收到的卫星信号,计算出用户的当前位置。

这个计算是通过测量信号从卫星到接收器的传播时间来进行的。

由于光速是已知的,接收器可以通过测量信号的传播时间和卫星发射信号的时间来计算出用户与卫星之间的距离。

4. 位置计算:一旦接收器知道了与几颗卫星之间的距离,它就可以使用三角定位原理来计算出用户的精确位置。

具体来说,接收器利用接收到的信号来计算出与每颗卫星之间的距离,并将这些距离作为一个三角形的边长。

然后,通过比较这些距离和卫星位置的几何关系,接收器可以确定用户的位置。

5. 导航指引:一旦用户的当前位置被确定,GPS接收器可以根据预先加载的地图数据和用户提供的目的地,计算并提供导航指引。

根据用户的位置和目的地,系统可以计算出最佳的路径,并提供文字或声音指示,引导用户按照正确的方向前进。

值得注意的是,GPS导航系统的准确性和性能可能会受到一些因素的影响,例如地形、建筑物、天气条件和电磁干扰等。

因此,在使用GPS导航时,用户应该保持适当的警惕,并结合实际情况进行导航。

gps的原理是什么

gps的原理是什么

gps的原理是什么
GPS的原理是基于卫星定位系统工作的。

GPS系统由地面的
控制站和在轨道上绕地球运行的一组24颗卫星组成。

这些卫
星被称为全球定位系统,它们以恒定的速度绕地球周围运行。

每颗卫星每天绕地球转两次,通过固定的轨道,确保整个地球上的任何地点都可以收到至少四颗卫星的信号。

GPS设备接收卫星发出的信号,并通过计算信号发送和接收
的时间来确定位置。

每颗卫星都具有一个精确的原子钟,其时间同步在地面控制站进行监控和修正。

当GPS接收器接收到
至少四颗卫星的信号时,它能够计算出接收器与每颗卫星之间的距离。

然后,通过三角测量原理,GPS设备可以确定接收
器所在的地理坐标。

在进行位置计算时,GPS接收器会考虑到卫星的位置和距离,以及信号的传输速度。

由于信号在空间中传播的速度是已知的,接收器可以计算出信号从卫星到接收器的距离,并以此为基础来确定位置。

这些计算需要高度精确的时间测量,因此GPS
接收器需要使用非常精确的原子钟。

总结来说,GPS的原理是通过接收卫星发送的信号,并计算
信号的时间和距离来确定接收器的位置。

GPS系统的准确性
取决于卫星的数量和位置,以及接收器的精确度和计算能力。

gps全站仪工作原理

gps全站仪工作原理

gps全站仪工作原理
GPS全站仪是一种用于测量和定位的仪器设备,其工作原理基于全球定位系统(GPS)技术。

GPS全球定位系统由一组24颗卫星组成,这些卫星以固定的轨道绕地球运行。

GPS全站仪收到来自这些卫星的信号,并使用这些信号进行测量和定位。

工作原理如下:
1. 三角测量原理:GPS全站仪通过同时接收来自至少四颗卫星的信号,在设备内部进行测距和角度测量,利用三角测量原理计算出目标点的坐标。

2. 卫星信号接收:全站仪通过自身的接收天线接收到来自卫星的无线电信号。

卫星信号中包含有关卫星的位置、时间以及其他必要的信息。

3. 信号处理:全站仪接收到的卫星信号通过内部的信号处理器进行解码和处理。

信号处理器会将信号传递给测距计算器和角度测量器。

4. 测距计算:全站仪利用卫星信号的到达时间差来测量目标点与各个卫星之间的距离。

这一步骤称为伪距测量。

全站仪同时接收多颗卫星的信号,通过多点定位算法计算得出目标点的具体位置。

5. 角度测量:全站仪利用内置的角度测量器测量目标点与设备的水平角度和垂直角度。

通过角度和测距的联合测量,可以计算出目标点的二维或三维坐标。

6. 数据处理和显示:全站仪将测量到的数据进行处理,将结果显示在设备的屏幕上。

用户可以通过这些数据进行测量、绘图和分析。

通过以上工作原理,GPS全站仪可以实现高精度的测量和定位。

它在土地测量、建筑工程、矿业勘探等领域被广泛应用。

GPS_百度百科

GPS_百度百科

GPS_百度百科一、GPS的基本概念和原理GPS,全称为全球定位系统(Global Positioning System),是一种基于卫星导航系统的定位技术。

它由一系列的卫星、地面控制站和用户设备组成,能够准确测量地球上任意点的位置坐标,并提供导航、定位等功能。

GPS的原理主要基于三个方面:卫星发射的信号、接收器接收的信号和测量时间。

首先,GPS系统中有24颗卫星(包括备用卫星),它们通过人造卫星轨道在地球上的分布。

这些卫星以恒定速度绕地球旋转,每颗卫星每天都会固定几次跟踪站的位置,并通过无线电信号发送卫星的位置信息。

其次,GPS接收器位于地面或者其他移动设备中,用来接收卫星发射的信号。

接收器会接收到至少四颗卫星的信号,并通过测量信号的传播时间来计算接收器到每颗卫星的距离。

通过将这些距离进行三角测量,GPS接收器能够确定接收器所在的位置。

最后,GPS接收器需要测量时间来确定信号传播的速度,并精确计算出定位信息。

GPS接收器内置一个高精度的原子钟,用来测量信号传播的时间。

接收器通过比较卫星发射信号的时间和它接收到信号的时间差来计算信号的传播时间,从而得出定位信息。

二、GPS的应用领域GPS的应用广泛,涵盖了几乎所有与位置有关的领域。

下面简要介绍几个主要的GPS应用领域:1.车辆导航和交通管理:GPS可以实时导航汽车、飞机等交通工具,提供最佳路线和交通信息,并帮助交通管理部门监控交通流量和疏导交通。

2.航海和航空:GPS已经成为航海和航空领域的重要工具,可用于船舶和飞机的导航定位、航线规划等。

3.军事应用:GPS最初是作为军事导航系统而研发的,现在仍广泛应用于军事领域,用于战术导航、目标定位、军事通信等。

4.地质勘探和测绘:GPS能够提供高精度的地球表面位置坐标,因此在地质勘探、测绘和地质灾害预警等方面有重要应用。

5.环境监测和气象预测:GPS可以用于监测大气湿度、气压和大气延迟等数据,从而提供准确的气象预测和环境监测。

GPS工作原理

GPS工作原理

GPS工作原理GPS(Global Positioning System)是一种通过卫星定位技术来确定地理位置的系统。

它由一系列卫星、地面控制站和接收器组成。

GPS工作原理是利用卫星信号和接收器之间的通信来计算位置。

1. GPS卫星GPS系统由一组绕地球轨道运行的卫星组成。

这些卫星分布在不同的轨道上,确保覆盖全球范围。

每个卫星被设计为以特定速率和方向绕地球旋转,以确保高度准确的定位信息。

2. 接收器GPS接收器是用来接收卫星发射的信号并计算位置的设备。

接收器内部含有高精度的时钟来测量信号的传播时间。

接收器收到至少4个卫星的信号后,可以根据信号传播时间的差异来计算接收器的位置。

3. 三角定位法GPS工作基于三角定位法的原理。

接收器通过测量从卫星到接收器的信号传播时间来确定距离。

由于信号传送的速度已知,接收器可以使用传播时间来计算距离。

接收器同时接收来自多个卫星的信号,并使用三角定位法来计算自身的位置。

4. 卫星定位准确性GPS的定位准确性取决于多个因素,包括卫星的数量和位置、接收器的精度以及信号传输的中断等。

在良好的接收条件下,GPS的定位准确度可以达到几米甚至更小。

5. GPS应用GPS的应用广泛,包括导航系统、车辆追踪、地图绘制、航空航海、军事用途等。

人们可以通过GPS设备和手机定位服务来导航、查找附近的兴趣点、追踪运动活动等。

总结:GPS工作原理是通过接收卫星信号和使用三角定位法来计算位置。

卫星发射信号,接收器计算距离并确定位置。

GPS应用广泛,对于导航和定位提供了重要的支持。

通过不断改进与发展,GPS技术已经成为我们生活不可或缺的一部分。

gps原理公式

gps原理公式

gps原理公式全球定位系统(GPS)原理是基于三角测量的方法来确定地球上某个位置的经度、纬度和海拔高度。

其工作原理如下:1. 卫星发射信号:GPS系统由一组地球轨道上的卫星组成,它们向地面发射无线电信号。

这些信号包括卫星的精确时钟信息以及卫星的编号。

2. 接收机接收信号:GPS接收机用天线接收到卫星发射的信号。

接收机将信号转换为电信号,并进行放大和处理。

3. 三角测量测距:接收机同时接收到多颗卫星发射的信号后,根据信号的传播时间差来计算距离。

这是通过衡量信号接收时间和发射时间之间的差异来实现的。

传播时间差越大,距离越远。

4. 数据处理:接收机将接收到的信号和测距数据传输给计算机进行处理。

计算机分析信号传播时间差以及卫星位置信息,使用三角定位算法来计算接收机所在位置的经度、纬度和海拔高度。

5. 定位结果显示:计算机计算出接收机所在位置后,将结果显示在GPS设备的屏幕上,用户可以通过地图或其他导航功能来了解自己的位置和导航方向。

GPS定位公式:根据三角定位算法,可以使用以下公式计算接收机的位置:(x,y,z): 接收机所在位置的直角坐标(t1,t2,t3): 接收到信号的时间差(x1,y1,z1): 第一个卫星的位置坐标(x2,y2,z2): 第二个卫星的位置坐标(x3,y3,z3): 第三个卫星的位置坐标通过上述数据,可以使用以下公式计算接收机的经度和纬度:x = [(t1 - t2) * c * x3 - (t1 - t3) * c * x2] / [2*(x1-x2)*(t1-t3) +2*(x1-x3)*(t1-t2)]y = [(t1 - t2) * c * y3 - (t1 - t3) * c * y2] / [2*(y1-y2)*(t1-t3) +2*(y1-y3)*(t1-t2)]z = [(t1 - t2) * c * z3 - (t1 - t3) * c * z2] / [2*(z1-z2)*(t1-t3) +2*(z1-z3)*(t1-t2)]其中,c为光速。

gps卫星定位系统工作原理

gps卫星定位系统工作原理

gps卫星定位系统工作原理
GPS卫星定位系统工作原理如下:
1. GPS卫星发射信号:GPS卫星通过地面控制站向空中发射
无线电信号,信号包含时间信息和卫星的位置信息。

2. 接收信号:GPS接收器收到GPS卫星发射的信号,通常会
接收到来自多颗卫星的信号。

3. 三角定位原理:GPS接收器通过接收多颗卫星的信号,利
用三角定位原理计算自身的位置。

接收器会测量信号的传播时间,因为光在真空中传播的速度是已知的,所以通过测量时间可以计算出信号的传播距离。

4. 定位计算:GPS接收器通过接收到的多颗卫星信号,将自
身的位置坐标与卫星的位置信息进行计算和比对,从而确定自身的准确位置。

5. 误差修正:GPS系统中存在许多误差因素,例如大气影响、钟差等。

GPS接收器会校正这些误差,以提高定位的准确性。

6. 定位结果输出:GPS接收器将计算出的准确位置信息输出
给用户,用户可以通过显示屏等方式查看自身的位置坐标、速度等相关信息。

总的来说,GPS卫星定位系统的工作原理是通过接收多颗卫
星发射的信号,并通过三角定位原理计算自身的位置,再校正误差以提高定位的准确性,最后将定位结果输出给用户。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 GPS卫星信号的组成GPS卫星信号采用典型的码分多址(CDMA)调制技术进行合成(如图2所示),其完整信号主要包括载波、伪随机码和数据码等三种分量。

信号载波处于L波段,两载波的中心频率分别记作L1和L2。

卫星信号参考时钟频率f0为10.23MHz,信号载波L1的中心频率为f0的154倍频,即:fL1=154×f0=1575.42MHz (1)其波长λ1=19.03cm;信号载波L2的中心频率为f0的120倍频,即:fL2=120×f0=1227.60MHz (2)其波长λ2=24.42cm。

两载波的频率差为347.82MHz,大约是L2的28.3%,这样选择载波频率便于测得或消除导航信号从GPS卫星传播至接收机时由于电离层效应而引起的传播延迟误差。

伪随机噪声码(PRN)即测距码主要有精测距码(P码)和粗测距码(C/A码)两种。

其中P码的码率为10.23MHz、C/A码的码率为1.023MHz。

数据码是GPS卫星以二进制形式发送给用户接收机的导航定位数据,又叫导航电文或D码,它主要包括卫星历、卫星钟校正、电离层延迟校正、工作状态信息、C/A码转换到捕获P码的信息和全部卫星的概略星历;总电文由1500位组成,分为5个子帧,每个子帧在6s内发射10个字,每个字30位,共计300位,因此数据码的波特率为50bps。

数据码和两种伪随机码分别以同相和正交方式调制在L1载波上,而在L2载波上只用P 码进行双相调制,因此L1和L2的完整卫星信号分别为:SL1(t)=AcCi(t)Di(t)sin(ωL1t+φc) (3)+ApPi(t)Di(t)cos(ωL1t+φP1)SL2(t)=BpPi(t)Di(t)cos(ωL2t+φp2) (4)式中,Ap、Bp、Ac分别为P码和C/A码的振幅;Pi(t)、Ci(t)分别为对应P码和C/A码的伪随机序列码;Di(t)为卫星导航电文数据码;ωL1、ωL2分别为L1和L2载波信号的角频率;φC 和φP1、φP2分别为C/A码和P码对应于载波的起始相位。

合成的GPS信号向全球发射,随时随地供接收机解算导航定位信息使用。

2 GPS接收机的灵敏度GPS接收机对信号的检测质量取决于信噪比,当其为“理想接收机”时,接收机输入端的信噪比Si/Ni与其输出端的信噪比So/No相同。

由于实际GPS接收机存在内部噪声,使得(So/No)<(Si/Ni);而噪声越大,输出信噪比越越小,则接收机的性能越差,此时接收机的噪声系数为:F=(Si/Ni)/(So/No) (5)式(5)表明由于内部噪声影响,接收机输出端信噪比相对于输入端信噪比变差的倍数,由式(5),输入信号额定功率可表示为:Si=NiFo(So/No) (6)式(6)给出了GPS接收机在噪声背景下接收卫星信号的能力,接收机不仅要将输出信号放大到足够的数值,更重要的是要使输出端的信噪比So/No达到所需比值。

令(So/No)≥(So/No)min时对应的接收机输入信号功率的最小可检测信号功率为Simin,通常用它表示接收机的灵敏度。

由于接收机的输入噪声额定功率Ni=kT0Bn (7)式(7)中k为玻尔兹曼常数,k=1.38×10 -23J/K,T0为单元电路的室内温度17℃(290K,绝对温度),Bn为单元电路的带宽。

将式(7)代入式(6)可得:Si=kT0BnFo(So/No) (8)于是可进一步得到GPS接收机的灵敏度为:Simin=kT0BnFo(So/No)min (9)由式(9)可知,为了提高GPS接收机的灵敏度,就要减少最小可检测信号功率Simin,因此在接收机电路设计中一方面要考虑尽量降低接收机的总噪声系数Fo,另一方面应设法提高噪声背景下GPS接收机输出端的信噪比So/No。

3 GPS接收机天线单元天线单元的主要功能是接收空中GPS卫星信号,从而为接收机射频前端提供较为纯净的完整卫星信号。

在接收机设计中,当两个单元电路级联时(如图3所示),如果第一、二级单元电路的噪声系数和额定功率增益分别为F1、F2和G1、G2,其带宽均为Bn;设级联电路的总噪声系数为Fo,则其实际输出的额定噪声功能No为:No=kT0BnG1G2Fo (10)由于No由两部分组成,即:No=No12+ΔN2 (11)其中No12是由于第一级单元电路的噪声在第二级单元电路输出端呈现的额定噪声功率,ΔN2是由于第二级单元电路所产生的噪声功率,且No12=kT oBnG1G2F1 (12)ΔN2=kT oBnG2(F2-1) (13)将式(12)、(13)代入式(11),则No=kToBnC1C2Fo=kT oBnG1G2F1+kT oBnG2(F2-1) (14)化简式(14),得到两级单元电路级联后的总噪声系数为:Fo=F1+(F2-1)/G1 (15)同理可得,n级单元电路级联时的总噪声系数为:Fo=F1+(F2-1)/G1+(F3-1)/(G1G2)+Λ+(Fn-1)/(G1G2ΛGn-1) (16)可见,GPS接收机中各级单元电路的内部噪声对级联后总噪声系数的响应有所不同,级数越*前的单元电路的噪声系数对总噪声系数的影响越大。

因此,总噪声系数主要取决于最前面几级单元电路的噪声系数,其中天线热噪声对接收机性能影响最大,故设计时采用接收天线、射频频段选择带通滤波器及高频低噪放(LNA)等器件组成天线单元(如图4所示)。

天线单元采用DC 5V供电,其中LNA采用高增益、低噪声、高频放大器MAAM12021,其增益高达21dB、噪声系数低于1.55dB,有利于降低GPS接收机的总噪声系数;其工作频段处于1.5~1.6GHz,适合于C/A码GPS接收机的频带需求,可满足高增益和低噪声系数的性能指标要求。

4 GPS接收机射频单元噪声总线伴随着信号同时出现,尽可能提高噪声背景下输出端的信噪比是改善接收机灵敏度的重要措施。

GPS接收机天线单元接收并提供给射频单元的信号频率很高而信道带宽又很窄,要直接滤出所需信道,则需Q值非常大的滤波器,至少目前的技术水平难以满足这一指标;另外高频电路在增益、精度和稳定性等方面的问题,在高频范围直接对GPS卫星信号进行解调很不现实。

为此,在射频单元设计中采用“超外差”式多级变频配合区配滤波器的电路结构,以消除噪声干扰,解决高频信号处理中所遇到的困难。

适合这种电路结构的芯片采用了第二代GPS接收机射频前端GP2010。

它采用44引脚、帧面方形封装,主要集成了频率合成器、混频器、自动增益控制(AGC)电路以及数字量化器等。

GP2010接收的信号频率与L1载波的卫星信号频率兼容,主要用于设计C/A码GPS接收机的射频单元。

微弱的GPS高频信号通过超外差式三级混频电路,去掉了其它信道干扰,获得了足够增益,解调并撮出所需的中频信息。

图5给出了前两级超外差式下变频器和带有自动增益控制(AGC)电路的第三级混频器的工作原理图,每经过一次下变频,输出信号的频率降低、幅度增大,而其它信道和频段的干扰则被逐步滤除。

GP2010利用混频器将高频GPS信号搬到很低中频频率的同时引入了镜频干扰,而利用滤波器对镜频干扰的抑制效果取决于镜频频率与信号频率之间的距离,或者说取决于中频频率的高低。

如果中频频率高,则信号与镜频相距较远,那么镜频成份就能受到较大抑制;反之,如果中频频率较低,则信号与镜频相隔不远,滤波器对干扰的滤波效果就比较差。

由于信道选择在中频进行,同理,较高的中频频率对信道选择滤波器的要求也较高,于是镜频抑制与信道选择形成一对矛盾,而中频频率的选择成为平衡这对矛盾的关键。

所以在GPS接收机设计中,通常使用两级或三次变频来取得更好的折衷。

由图5可看出,GP2010的三级变频器采用了中心频率分别为175.42MHz、35.42MHz和4.309MHz的三个中频滤波器。

各级混频器需要的本振信号均由片内集成锁相环(PLL)频率合成器提供(如图6所示)。

它主要由PLL振荡器回路、鉴相器、PLL环路滤波器、分频器和一个完整的1400MHz压控振荡器(VCO)等元件组成。

PLL采用10.000MHz参考频率;VCO的控制增益为150MHz/V、输出频率范围为1386~1414MHz。

为了提供高稳定度参考频率源,设计中采用了温度补偿型晶体振荡器(TCXO)自输入阻抗为5kΩ的参考频率提供10.000MHz的AC小信号频率给PLL振荡器。

当PLL相位锁定参考信号时,鉴相输出逻辑高电平指示相位已锁定,相位锁定时间约需6ms,环路增益约为150dB。

VCO输出的1400MHz信号作为第一本振信号,由其分频产生的140.0MHz、31.111MHz信号分别作为第二本振第第三本振信号。

当GP2010接收到1575.42MHz的GPS卫星信号时,通过三级变频可得到4.309MHz的中频信号。

为配合通道单元和解算单元完成导航信号的数据提取及信号处理,在5.714MHz采样时钟控制下,GP2010的片内集成数字量化器可实现对4.309MHz的中频卫星信号进行数字量化,从而为通道单元相关器提供TTL电平的2位量化输出,即1.405MHz的二进制符号及量值数字信息,如图7所示。

为了得到平稳的中频卫星信号及采样数字输出,该模块同时产生AGC控制信号用于稳定第三级变频(如图5(b)所示)时所产生的中频信号幅度。

总之,GP2000芯片组是Zarlink半导体公司为设计GPS接收机而推出的一系列集成电路,采用GP2000芯片组可设计出多通道卫星信号接收设备。

在GPS接收机设计中,天线单元的设计着重考虑频段选择和高频低噪放对接收机总噪声系数的影响,以提高接收机灵敏度;射频单元利用频率合成、频率变换、自动增益控制等技术,依*高品质的中频频率选择、镜频抑制和信道选择滤波器,对所接收的GPS信号进行变频、放大、滤波、采样等一系列处理,从而得到数字中频卫星信号。

由此精心设计的超外差式GPS接收机可达到很高的接收灵敏度、频率选择性和较大的动态范围,并具有结构简单、体积小、重量轻、耗电省等优点。

相关文档
最新文档