霍尔效应的应用实验报告

合集下载

霍尔效应实验报告文库

霍尔效应实验报告文库

一、实验背景霍尔效应是一种重要的物理现象,最早由美国物理学家霍尔于1879年发现。

当电流通过置于磁场中的导体或半导体时,会在垂直于电流和磁场方向上产生电压,这种现象称为霍尔效应。

霍尔效应不仅揭示了电荷运动规律,而且在许多领域有着广泛的应用,如磁场测量、半导体材料分析、传感器等。

二、实验目的1. 理解霍尔效应的基本原理和实验方法;2. 通过实验测量霍尔元件的霍尔电压与磁场、电流的关系;3. 学习对称测量法消除副效应的影响;4. 确定样品的导电类型、载流子浓度和迁移率。

三、实验原理霍尔效应的原理是基于洛伦兹力定律。

当电流通过导体或半导体时,其中的载流子(电子或空穴)会受到洛伦兹力的作用,从而在垂直于电流和磁场方向上产生横向电场,导致电压的产生。

四、实验仪器1. 霍尔效应实验仪;2. 电源;3. 电流表;4. 磁场发生器;5. 测量线;6. 霍尔元件;7. 导线等。

五、实验内容1. 连接实验电路,确保霍尔元件处于磁场中间;2. 调节电源,使电流表读数稳定;3. 测量不同磁场强度下的霍尔电压;4. 测量不同电流下的霍尔电压;5. 测量不同磁场强度和电流下的霍尔电压;6. 根据测量数据绘制霍尔电压与磁场、电流的关系曲线;7. 使用对称测量法消除副效应的影响;8. 根据霍尔电压、电流和磁场强度计算样品的载流子浓度和迁移率。

六、实验步骤1. 按照实验仪说明书连接实验电路,确保霍尔元件处于磁场中间;2. 调节电源,使电流表读数稳定;3. 测量不同磁场强度下的霍尔电压,记录数据;4. 保持磁场强度不变,改变电流大小,测量霍尔电压,记录数据;5. 改变磁场强度,重复步骤3和4,记录数据;6. 根据测量数据绘制霍尔电压与磁场、电流的关系曲线;7. 使用对称测量法消除副效应的影响,计算样品的载流子浓度和迁移率;8. 分析实验结果,得出结论。

七、实验结果与分析1. 根据实验数据绘制霍尔电压与磁场、电流的关系曲线;2. 通过分析曲线,确定样品的导电类型、载流子浓度和迁移率;3. 讨论实验过程中可能出现的误差,并提出改进措施。

霍尔效应及其应用实验报告

霍尔效应及其应用实验报告

霍尔效应及其应用实验报告一、实验目的。

本实验旨在通过实验观察和数据分析,探究霍尔效应的基本原理及其在实际应用中的意义和作用。

二、实验原理。

霍尔效应是指当导电体中有电流通过时,放置在导电体中的磁场中,会在导电体的横向产生电动势。

这一现象被称为霍尔效应,其数学表达式为E=KBI,其中E为霍尔电动势,K为霍尔系数,B为磁感应强度,I为电流。

三、实验仪器和材料。

1. 霍尔元件。

2. 恒定电流源。

3. 磁场调节装置。

4. 数字示波器。

5. 电源。

6. 万用表。

7. 磁铁。

8. 直流电流表。

9. 直尺。

10. 实验导线。

11. 笔记本电脑。

四、实验步骤。

1. 将霍尔元件固定在实验台上,并连接好电路。

2. 通过磁场调节装置,调整磁场的强度和方向。

3. 通过数字示波器和万用表,测量霍尔元件在不同磁场下的霍尔电动势和电流。

4. 记录实验数据,并进行数据分析和处理。

5. 根据实验数据,探究霍尔效应的规律,并分析其在实际应用中的意义和作用。

五、实验结果与分析。

通过实验数据的测量和分析,我们发现在不同磁场下,霍尔电动势与电流呈线性关系,且霍尔电动势的大小与磁场的强度和电流的大小均有关。

这一结论与霍尔效应的基本原理相吻合。

六、实验应用。

霍尔效应在实际应用中有着广泛的意义和作用。

例如在传感器领域,霍尔元件可以用来测量电流、磁场和速度,广泛应用于汽车、航空航天、电子设备等领域。

另外,霍尔元件还可以用于磁场测量、磁场探测和磁场传感等方面,具有很高的实用价值。

七、实验总结。

通过本次实验,我们深入了解了霍尔效应的基本原理和实际应用,通过实验数据的测量和分析,验证了霍尔效应的存在,并探究了其在实际应用中的意义和作用。

同时也加深了我们对电磁学知识的理解和掌握。

八、实验心得。

通过本次实验,我对霍尔效应有了更深入的了解,实验过程中也锻炼了我的实验操作能力和数据处理能力,使我对电磁学知识有了更加直观和深刻的认识。

以上就是本次实验的全部内容,希望能对大家有所帮助。

霍尔效应及其应用实验报告数据处理

霍尔效应及其应用实验报告数据处理

霍尔效应及其应用实验报告数据处理一、实验目的本次实验的主要目的是通过测量霍尔电压、电流等物理量,深入理解霍尔效应的原理,并探究其在实际中的应用。

同时,通过对实验数据的处理和分析,提高我们的科学研究能力和数据处理技巧。

二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。

假设导体中的载流子为电子,其电荷量为 e,平均定向移动速度为v,导体宽度为 b,厚度为 d,外加磁场的磁感应强度为 B。

则电子受到的洛伦兹力为 F = e v B,在洛伦兹力的作用下,电子会向导体的一侧偏转,从而在导体两侧产生电势差,即霍尔电压 UH 。

根据霍尔效应的基本公式:UH = RH I B / d ,其中 RH 为霍尔系数。

三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。

四、实验步骤1、连接实验仪器,将霍尔元件放入磁场中,确保磁场方向与霍尔元件平面垂直。

2、调节直流电源,给霍尔元件通入恒定电流 I ,并记录电流值。

3、用特斯拉计测量磁场的磁感应强度 B ,并记录。

4、测量霍尔元件两端的霍尔电压 UH ,改变电流和磁场的方向,多次测量取平均值。

五、实验数据记录以下是一组实验数据示例:|电流 I (mA) |磁场 B (T) |霍尔电压 UH (mV) |||||| 500 | 050 | 250 || 500 | 100 | 500 || 500 | 150 | 750 || 1000 | 050 | 500 || 1000 | 100 | 1000 || 1000 | 150 | 1500 |六、数据处理方法1、计算霍尔系数 RH根据公式 UH = RH I B / d ,可得 RH = UH d /(I B) 。

由于 d 为霍尔元件的厚度,在实验中为已知量,因此可以通过测量不同电流和磁场下的霍尔电压,计算出霍尔系数 RH 。

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

大霍尔效应实验报告

大霍尔效应实验报告

大霍尔效应实验报告一、实验目的本实验旨在研究大霍尔效应,通过测量霍尔电压、电流、磁场强度等物理量,深入理解霍尔效应的原理和应用,掌握相关实验技能和数据处理方法。

二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。

霍尔电压$V_H$ 与通过导体的电流$I$、外加磁场的磁感应强度$B$ 以及导体的厚度$d$ 等因素有关,其关系式为:$V_H =\frac{RHIB}{d}$其中,$R_H$ 为霍尔系数,它与导体的材料性质有关。

在本实验中,我们通过给霍尔元件通以电流,并在其周围施加磁场,测量产生的霍尔电压,从而计算出霍尔系数等相关物理量。

三、实验仪器1、霍尔效应实验仪:包括磁场发生装置、霍尔元件、电流源、电压表等。

2、特斯拉计:用于测量磁场强度。

四、实验步骤1、连接实验仪器将霍尔元件插入实验仪的插槽中,确保接触良好。

按照电路图连接电流源、电压表和磁场发生装置。

2、测量霍尔电压与电流的关系设定磁场强度为一定值。

逐渐改变电流大小,测量不同电流下的霍尔电压,并记录数据。

3、测量霍尔电压与磁场强度的关系设定电流为一定值。

逐渐改变磁场强度,测量不同磁场强度下的霍尔电压,并记录数据。

4、测量不同方向磁场下的霍尔电压改变磁场方向,测量相应的霍尔电压。

5、重复测量对每个测量步骤进行多次测量,以减小误差。

五、实验数据记录与处理1、霍尔电压与电流的关系|电流(mA)|霍尔电压(mV)||||| 100 | 250 || 200 | 500 || 300 | 750 || 400 | 1000 || 500 | 1250 |根据数据绘制霍尔电压与电流的关系曲线,可以发现霍尔电压与电流呈线性关系。

2、霍尔电压与磁场强度的关系|磁场强度(T)|霍尔电压(mV)||||| 010 | 200 || 020 | 400 || 030 | 600 || 040 | 800 || 050 | 1000 |绘制霍尔电压与磁场强度的关系曲线,同样呈现线性关系。

霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。

取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。

这时光的偏振面与P2的透光轴平行,因而有光通过。

在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。

于是原来的扭曲结构被破坏,成了均匀结构。

从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。

这时光的偏振方向与P2正交,因而光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。

霍尔效应实验报告步骤(3篇)

霍尔效应实验报告步骤(3篇)

第1篇一、实验目的1. 理解霍尔效应的基本原理。

2. 学习使用霍尔效应实验仪测量磁场。

3. 掌握霍尔效应实验的数据记录和处理方法。

4. 通过实验确定材料的导电类型和载流子浓度。

二、实验原理霍尔效应是当电流通过一个导体或半导体时,若导体或半导体处于垂直于电流方向的磁场中,则会在导体或半导体的侧面产生电压,这个电压称为霍尔电压。

霍尔电压的大小与磁感应强度、电流强度以及导体或半导体的厚度有关。

三、实验仪器1. 霍尔效应实验仪2. 直流稳流电源3. 毫伏电压表4. 霍尔元件5. 导线6. 螺线管7. 磁铁四、实验步骤1. 仪器连接与调整- 将霍尔元件放置在实验仪的样品支架上,确保霍尔元件处于隙缝的中间位置。

- 按照实验仪的接线图连接电路,包括直流稳流电源、霍尔元件、螺线管和毫伏电压表。

- 调节稳流电源,使霍尔元件的工作电流保持在安全范围内(一般不超过10mA)。

- 使用调零旋钮调整毫伏电压表,确保在零磁场下电压读数为零。

2. 测量不等位电压- 在零磁场下,测量霍尔元件的不等位电压,记录数据。

3. 测量霍尔电流与霍尔电压的关系- 保持励磁电流不变,逐渐调节霍尔电流,从1.00mA开始,每隔1.0mA改变一次,记录每次霍尔电流对应的霍尔电压值。

- 改变霍尔电流的方向,重复上述步骤,记录数据。

4. 测量励磁电流与霍尔电压的关系- 保持霍尔电流不变,逐渐调节励磁电流,从100.0mA开始,每隔100.0mA改变一次,记录每次励磁电流对应的霍尔电压值。

- 改变励磁电流的方向,重复上述步骤,记录数据。

5. 绘制曲线- 根据实验数据,绘制霍尔电流与霍尔电压的关系曲线和励磁电流与霍尔电压的关系曲线。

6. 数据处理与分析- 根据霍尔效应的原理,计算霍尔系数和载流子浓度。

- 分析实验结果,确定材料的导电类型。

五、注意事项1. 操作过程中,注意安全,避免触电和电火花。

2. 霍尔元件的工作电流不应超过10mA,以保护元件。

3. 在调节电流和磁场时,注意观察毫伏电压表的读数变化,避免超出量程。

霍尔效应实验报告[共8篇]

霍尔效应实验报告[共8篇]

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的VH —Is,VH—I M曲线,了解霍尔电势差V H与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。

3.学习利用霍尔效应测量磁感应强度B及磁场分布。

4.学习用“对称交换测量法”消除负效应产生的系统误差。

三、器材:1、实验仪:(1)电磁铁。

(2)样品和样品架。

(3)Is和I M 换向开关及V H 、Vó切换开关。

2、测试仪:(1)两组恒流源。

(2)直流数字电压表。

四、原理:霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场HE。

如图15-1所示的半导体试样,若在X方向通以电流SI,在Z方向加磁场B,则在Y方向即试样 A-A/ 电极两侧就开始聚集异号电荷而产生相应的附加电场。

电场的指向取决于试样的导电类型。

对图所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。

即有)(P 0)()(N 0)(型型⇒>⇒<Y E Y E H H显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE 与洛仑兹力B v e 相等,样品两侧电荷的积累就达到动态平衡,故B v e eE H = (1) 其中H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度。

设试样的宽为b ,厚度为d ,载流子浓度为n ,则bd v ne I S = (2) 由(1)、(2)两式可得:dB I R d BI ne b E V S H S H H ===1 (3) 即霍尔电压H V (A 、A /电极之间的电压)与B I S 乘积成正比与试样厚度d 成反比。

比例系数neR H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。

只要测出H V (伏)以及知道S I (安)、B (高斯)和d (厘米)可按下式计算H R (厘米3/库仑):R H =810⨯BI dV S H (4) 上式中的108是由于磁感应强度B 用电磁单位(高斯)而其它各量均采用CGS 实用单位而引入。

由于产生霍尔效应的同时,伴随多种副效应,以致实测的霍尔电场间电压不等于真实的V H 值,因此必需设法消除。

根据副效应产生的机理,采用电流和磁场换向的对称测量法基本上能把副效应的影响从测量结果中消除。

具体的做法是Is 和B (即I M )的大小不变,并在设定电流和磁场的正反方向后,依次测量由下面四组不同方向的Is 和B (即I M )时的V 1,V 2,V 3,V 4,1)+I s +B V 1 2)+I s -B V 2 3)-I s -B V 3 4)-I s +B V 4然后求它们的代数平均值,可得:44321V V V V V H -+-=通过对称测量法求得的VH 误差很小。

另一方面,射载流子浓度为n,薄片厚度为d,则电流强度I 与u 的关系为:bdnqu I =……(5),则可得到 d IB nq V B B 1='……(6),令nq R 1=,则dIBR V B B =' …… (7),R 称为霍尔系数,它体现了材料的霍尔效应大小。

根据霍尔效应制作的元件称为霍尔元件。

在应用中,(6)常以如下形式出现:IB K V H B B =' ……(8) ,式中nqdd R K H1==称为霍尔元件灵敏度,I 称为控制电流。

可见,若I 、K H 已知,只要测出霍尔电压V BB’,即可算出磁场B 的大小;并且若知载流子类型(n 型半导体多数载流子为电子,P 型半导体多数载流子为空穴),则由V BB’的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。

由于霍尔效应建立所需时间很短(10-12~10-14s),因此霍尔元件使用交流电或者直流电都可。

指示交流电时,得到的霍尔电压也是交变的,I 和V BB’应理解为有效值。

五、 步骤:1、测量霍耳电压H V 与工作电流S I 的关系。

① 对测试仪进行调零。

将测试仪的“S I 调节”和“M I 调节”旋钮均置零位,待开机数分钟后若H V 显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。

② 测绘H V -S I 曲线。

将实验仪的“H V ,V σ”切换开关投向H V 侧,测试仪的“功能切换”置H V ,保持M I 值不变(取M I =0.6A ),绘制H V -S I 曲线。

2、测量霍耳电压H V 与工作电流M I 的关系。

实验仪与测试仪各开关位置同上。

保持半导体的电流S I 不变(取S I =300mA ),绘制H V -M I 曲线。

3、测量V σ值。

将切换开关“H V ,V σ”投向V σ侧,“功能切换”置V σ。

在零磁场下,取S I =2.00mA ,测量V σ。

4、确定样品的导电类型。

将实验仪三组双刀开关均投向上方,即S I 沿X 方向,B 沿Z 方向。

毫伏表测量电压为VAA '。

取S I =2.00mA M I =0.6A ,测量H V 大小及极性,判断样品导电类型。

5、 求样品H R ,n ,σ,μ值。

六、 记录:1.测绘H S U I -曲线,保持I M =0.6A 、I S =1.00~4.00mA 不变,在表格中记录霍2.测绘HM U I -曲线,保持Is=3.00mA ;Im=0.300~0.800A 不变,在表格中记测得:V σ=130.6mVVh=-5.40mV七、 数据处理:1、根据数据表作出曲线图:2、在零磁场下,取S I =2.00mA ,测出V σ=130.6mV3、确定样品的导电类型。

测出霍耳电压H V =-5.40mV<0,故样品属N 型。

4、求样品H R ,n ,σ,μ值。

(1)由0.1H H H S S M V d V dR I B I X I ==g 分别求出表1、2的H R ,再求出其平均值H R 、H R ',得3333333(6.1610 6.1610 6.1410 6.1610 6.1410 6.1610) 6.1510(/)6H R Vm AT --------⨯+⨯+⨯+⨯+⨯+⨯'==-⨯3333333(6.0210 5.9610 5.9910 6.010 6.0310 6.0910) 6.0210(/)6H R Vm AT --------⨯+⨯+⨯+⨯+⨯+⨯''==-⨯故333(6.1510 6.0210)== 6.09102H R ----⨯+⨯-⨯(Vm/AT )(2)21319111.0310(/())|| 6.0910 1.610H n AT V m C R e --===⨯⨯⨯⨯g g (3)=22.06(/)S I LA Vm U Sσσ=(4)31|| 6.091022.060.13()H R T μσ--==⨯⨯=八、 预习思考题:1、霍耳元件为什么要用半导体材料,而且要求做得很薄?霍尔电压是如何产生的?答:半导体材料的迁移率μ高,电阻率ρ适中,是制造霍耳器件较理想的材料。

2、 工作电流和磁场为什么要换向?实际操作时如何实现?答:为了把产生霍耳效应的时候所伴随的副效应的影响从测量的结果中消除。

实际操作时通过切换实验仪三组双刀开关改变电流和磁场的方向。

3、 回答S I 、M I 、H U 、U σ分别表示什么含义?S I 、M I 的作用分别是什么? 答:S I 表示样品工作电流;M I 表示励磁电流;H U 表示存在磁场时的霍耳电压;U σ表示在零磁场下的霍耳电压。

S I 的作用是改变电流大小和方向,M I 的作用是改变磁场的大小及方向。

4、 霍耳效应有哪些应用?答:在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS 系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器。

九、操作后思考题:1、如何精确测量霍耳电压?本实验采用什么方法消除各种附加电压?答:设法消除产生霍尔效应时伴随的多种副效应。

本实验采用电流和磁场换向的所谓对称测量法。

2、磁场不恰好与霍耳片的法线一致,对测量结果有何影响?答:磁场不与霍尔片垂直,只有其法向分量能起作用,即霍尔片产生的霍尔电压会减小。

3、 能否用霍耳元件片测量交变磁场?若能,怎样测量?答:能。

4、 如何根据I B ,和H V 的方向,判断所测样品为N 型半导体还是P 型半导体?答:先设定I B ,和H V 的参考正方向:例如设定I 从左向右为正,B 垂直纸面向内为正,正电荷向上偏转,则H V 从下向上为正。

然后将测量仪器按参考正方向连接。

电流表要左边接红表笔,右边接黑表笔,电压表要下表面接红表笔,上表面接黑表笔。

然后将I B ,均调为正,观察电压表的正负。

根据U KIB =,如果电压表为负数,则灵敏度0K >,电子导电,N 型半导体;如果电压表为正数,0K <,空穴导电,P 型半导体。

5、 请根据欧姆定律推导出s I LU Sσσ=(电导率σ为电阻率ρ的倒数)。

答:欧姆定律U R I =,电阻LR Sρ= ,则有 1U L L I S S ρσ== ,而,s I I U U σ==,故电导率s I LU Sσσ= 6、本实验的误差的主要误差有哪些,这些误差对实验有何影响?答:主要误差有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d 的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。

这些误差会影响霍耳系数H R 的计算,从而影响到载流子浓度n 和迁移率μ的计算。

相关文档
最新文档