烧结过程的理论基础学习知识
烧结理论基础知识考试题A卷

烧结理论基础知识考试题A卷(满分150分)姓名: 得分:一, 推断题(正确记“√”, 错误记“×”)每题2分, 共20分1, 若倒数第二个风箱的废气温度低于倒数第一个风箱的废气温度说明烧结“终点”滞后(√)。
2, 烧结的点火强度低, 可通过延长点火时间或加大煤气流量来提高(√)3, 当料层厚度及抽风量肯定时, 真空度愈高, 则料层透气性愈好。
(×)4, 煤气爆炸主要是由于空气和煤气形式爆炸的混合气体, 同时混合气体达到必要的温度(着火点)或遇上明火造成, 二者缺一不可(√)5, 氧化亚铁是低价铁, 还原性能好, 因此烧结矿中FeO越高, 还原性越好(×)6, 点火后料面呈清黑色, 并有金属光泽局部熔融为最好(×)7, 配料计算将返矿视为常数, 计算时不考虑返矿这是传统的配料计算方法。
(√)8, 当电子秤不准, 电子秤实际配比及微机给定配比不符, 生产上常将不准的电子秤的配比加大或缩小, 来保证电子秤下料量及微机给定的下料量相符, 这种方法临时应急是可行的(√)9, 磁铁矿的主要化合物是四氧化三铁Fe3O4。
(√)10, 赤铁矿的主要化合物是Fe2O3, 3H2O(×)1、二, 填空题。
每空1分, 共30分2、严格限制烧结三点温度, 即点火温度, (终点温度), (总管废气温度)4、在运行混合料抽风烧结的过程中, 沿整个料层高度将呈现出性质不同的五个带为(烧结矿带), (燃料燃烧带), (预热带), (干燥带), (过湿带)5、配料室五勤一准操操作内容是: (勤检查), (勤联系), (勤分析推断)(勤计算调整), (勤总结沟通), 一准为: (配料精确)6、返矿加水的目的是降低返矿的(温度), 稳定混合料水粉, 以利于造球。
7、网目数是指在(1英寸或2.54cm)筛网上的筛孔数, 这是英国泰勒标准筛的表示方法;8、烧结生产工艺流程大体可分为八个部分, 受料系统, 原料打算系统, (配料系统), (混合制粒系统), (烧结系统)抽风系统, (成品处理系统), 除尘系统9、烧结厂用燃料粒度一般标准是≤3mm的部分大于(80)%为合格。
无机非金属材料基础第十章 烧结ppt课件

参见P114内容
3、空位差
颗粒外表上的空位浓度普通比内部空
位浓度为大,二者之差可以由下式描画:
C
3 RT
Co
式中:ΔC为颗粒内部与外表的空位差;γ
为外表能;δ3空位体积;ρ曲率半径;Co
为平外表的空位浓度。
这一空位浓度差导致内部质点向外
表分散,推进质点迁移,可以加速烧结。
如热压烧结,电火花烧结,热等静压 烧结,微波烧结、反响烧结、活化烧结、 松装烧结等。
四、烧结过程推进力
烧结过程推进力是:能量差、压力差、空位差。
1、能量差
近代烧结实际以为,粉状物料的外表能大于多晶 烧结体的晶界能,这就是烧结的推进力,即粉状物料 外表能与多晶烧结体晶界能的能量差。
任何系统降低能量是一种自发趋势、粉体经烧 结后,晶界能取代了外表能,这是多晶资料稳定存在 的缘由。
在外表能驱动下,由粉体变成致密
体。
烧结分类
按照烧结时能否出现液相,可将烧结 分为两类:固相烧结和液相烧结。
固相烧结是指烧结温度下根本上无液 相出现的烧结,如高纯氧化物之间的烧结 过程。
液相烧结是指有液相参与下的烧结, 如多组分物系在烧结温度下常有液相出现。
近年来,在研制特种构造资料和功能 资料的同时,产生了一些新型烧结方法。
14.1 烧结概论
一、烧结定义
宏观定义:粉体原料经过成型、加热到低于熔点的温 度,发生固结、气孔率下降、收缩加大、致密度提高、 晶粒增大,变成巩固的烧结体,这个景象称为烧结。 微观定义:固态中分子〔或原子〕的相互吸引,经过 加热,质点获得足够的能量,进展迁移使粉末体产生 颗粒粘结,产生强度并导致致密化和再结晶的过程称 为烧结。
烧结工(中级)基础理论试题

填空题1.烧结过程的主要作用,是为了充分利用块矿加工过程中产生的________及贫矿精选所得的精矿粉。
2.烧结过程的粘结块机理,是在高温条件下,部分混合料颗粒表面________产生一定数量的液相冷却后使矿粉颗粒粘成块。
3.铁矿粉烧结后,不但改变了冶炼性能,而且有利于________。
4.铁矿粉烧结后,性能的改善,有利于强化高炉冶炼过程及改善________。
5.烧结生产发展的趋势是________的大型的自动化水平的提高。
6.烧结矿热处理的作用是为了________,减少返矿及粉末。
7.烧结矿的生矿还原性好的主要原因是________增加。
8.烧结矿过程宏观上是________。
9.烧结过程中自上而下具有明显的分层性,点火开始后各层依然出观,然后又________。
10.烧结过程中在碳颗粒的周围是________气氛。
11.燃烧层透无性差的主要原因是矿物________,增加了对空气穿透的阻力。
12.在燃烧层中碳燃烧后生________。
13.在燃烧层下部的热交换主要体现在________将热量传递给混合料。
14.燃烧层中温度最高点的移动速度称为________。
15.烧结矿质量不均匀的直接原因是________的温度不均匀。
16.当燃料粒度增大时.料层的透气性________。
17.燃料粒度太粗时,易造成偏析而引起________不均匀。
18.增加固体燃料用量,可以使高温的________升高。
19.混合料中水分蒸发的条件是气相中水蒸汽的分压________该条件下的饱和蒸汽压。
20.当温度大于 100℃时,混合料中的留有部分水分________。
21.褐铁矿烧结时,结晶水分解吸热,可以降低________的烧结温度水平。
22.烧结过程中 CaO 的矿化程度主要与自身粒度、矿石粒度________有关。
23.烧结矿中 FeO 含量越少,氧化度越高,________越好。
24.影响固相反应速度的外在条件是________。
小球烧结技术---小球烧结法的理论基础

立志当早,存高远小球烧结技术---小球烧结法的理论基础小球烧结法就是将烧结混合料制成小球,以提高烧结料层的透气性,实现厚料层及低温烧结的方法。
小球烧结法一般要求混合料中粒度不小于3mm 的小球占混合料总量的75%以上。
该方法所制得烧结矿胶结相主要以针状和柱状铁酸钙为主,烧结矿强度高、还原性好、粉末少、块度大。
早在20 世纪60 年代,我国就进行了小球烧结法的研究,鞍钢开发了适合红矿烧结的双球烧结工艺,但因工艺难度较大,一直未能实现工业化生产。
80 年代,日本成功地开发了部分小球烧结法,于1987 年在福山4 号烧结机上投产,各项主要烧结技术指标都明显优于普通烧结法。
在国内外研究的基础上,钢铁研究总院开发成功了小球烧结新工艺,然后和有关单位合作,于1994~1996 年,小球烧结法在泰山钢铁公司烧结厂和首钢矿山公司烧结厂进行工业化生产获得成功,结束了我国小球烧结工艺只停留在试验研究阶段的历史,这是我国几代烧结工作者努力奋斗的结果。
目前,小球烧结法已在我国钢铁企业得到广泛推广和应用,取得了显著的经济效益。
小球烧结法可以大幅度地提高烧结矿产量,改善烧结矿质量,降低烧结燃料消耗,其理论根据分析如下:烧结机的产量可用下式计算:Q=60KRBHV (1) 式中Q———产量,t/h; K———成品率,%;R———混合料松散密度,t/m3;B———烧结机宽度,m;H———料层高度,m;V———烧结机机速,m/min。
式1 中H 用垂直烧结速度表示时,则:C=H/t 因:C=H/(L/V) 则:CL=HV (2) 式中C———垂直烧结速度,m/min; t———烧结时间,min,t=L/V;K———烧结机长度,m。
将式2代入式1:Q=60KRBCL (3) 在式3 中,烧结机的宽度B 和长度L 为不变量,成品率K、烧结料松散密度R 和垂直烧结速度C 为变量。
可见,采取措施提高成品率K、混合料松散密度R 和垂直烧结速度C 是烧结机增产的关键,现对这。
烧结工艺理论知识(全面)

烧结工艺理论知识(全面)第一章烧结生产概述§1-1烧结生产在冶金工业中的地位一、详述热处理工艺的产生和发展烧结方法在冶金生产中的应用,起初是为了处理矿山、冶金、化工厂的废气物(如富矿粉、高炉炉尘、扎钢皮、炉渣等)以便回收利用。
随着钢铁工业的快速发展,矿石的开采量和矿粉的生成量亦大大增加。
据估计,每生产1t生铁须要1.7~1.9t铁矿石,若就是贫矿,须要的铁矿石则更多。
另外,由于长期的采矿和消耗,能够轻易用以炼钢的富矿愈来愈少,人们不得不大量采矿贫矿(含铁25%~30%)。
但贫矿轻易浸出炼钢就是很不经济的,所以必须经过选矿处置。
选矿后的精矿粉,在含铁品位上就是提升了,但其粒度不合乎高炉炼钢建议。
因此,对采矿出的粉矿(0~8mm)和精矿粉都必须经过造块后方可以用作炼钢。
我国铁矿资源多样,但贫矿较多,约占到80%以上,因此,炼钢前大都需经碎裂、筛分、选矿和造块等处理过程。
烧结生产的历史已有一个多世纪。
它起源于资本主义发展较早的英国、瑞典和德国。
大约在1870年前后,这些国家就开始使用烧结锅。
我国在1949年以前,鞍山虽建有10台烧结机,总面积330m2,但工艺设备落后,生产能力很低,最高年产量仅几十万吨。
我国铁矿石烧结领域取得的成就,概括起来包括以下几个方面:(1)热处理工艺:自1978年马钢冷烧技术科技攻关顺利后,一批重点企业和地方骨干企业基本顺利完成了苏烧改冷烧工艺。
部分企业投入使用原料搅匀料场,并投入使用,绝大多数钢铁企业同时实现了自动化配料、混合机加强制粒、偏析布料、加热筛分、整粒及砌底料技术。
(2)新工艺、新技术开发和应用:如高碱度烧结矿技术、小球烧结技术、低温烧结技术、低硅烧结技术等,在钢铁企业得到推广应用,并取得了显著的效益。
(3)设备大型化和自动化:20世纪50年代,我国最小烧结机75m2,60年代130m2,80年代265m,90年代宝钢二、三期和武钢等450m烧结机相继投产,这些都就是我国自行设计、自行生产,并同时实现自动化生产的。
一、烧结基本原理精讲

⼀、烧结基本原理精讲⼀、烧结(1)、烧结基本原理烧结是粉末冶⾦⽣产过程中最基本的⼯序之⼀。
烧结对最终产品的性能起着决定性作⽤,因为由烧结造成的废品是⽆法通过以后的⼯序挽救的;相反,烧结前的⼯序中的某些缺陷,在⼀定的范围内可以通过烧结⼯艺的调整,例如适当改变温度,调节升降温时间与速度等⽽加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以⼀定的⽅法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发⽣粘结,烧结体的强度增加。
在烧结过程中发⽣⼀系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从⽽获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发⽣致密化,合⾦化,热处理,联接等作⽤。
⼈们⼀般还把⾦属粉末烧结过程分类为:1、单相粉末(纯⾦属、古熔体或⾦属化合物)烧结;2、多相粉末(⾦属—⾦属或⾦属—⾮⾦属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在⽬前PORITE微⼩轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发⽣有以下⼏个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长⼤;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表⾯扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结⼯艺2-1、烧结的过程粉末冶⾦的烧结过程⼤致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发⽣⾦属的回复及吸附⽓体和⽔分的挥发,压坯内成形剂的分解和排除等。
在PORITE微⼩铜、铁系轴承中,⽤R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,⾸先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表⾯氧化物被完全还原,颗粒界⾯形成烧结颈。
烧结工艺知识点总结大全

烧结工艺知识点总结大全一、烧结原理1. 烧结是指将粉末材料在一定温度下加热,使其颗粒间发生结合,形成致密的块状产品。
烧结的基本原理是固相扩散,即热力学上的固相之间的扩散过程。
2. 烧结过程中主要有三种力学过程,分别为颗粒间的原子扩散、颗粒间的表面扩散和颗粒间的体扩散。
这三种扩散方式相互作用,共同促进颗粒间发生结合。
3. 烧结过程中温度、时间和压力是影响烧结效果的重要因素。
通过控制这些参数,可以使烧结过程更加均匀和有效。
二、烧结设备1. 烧结设备主要包括热处理炉、烧结炉、烧结机等。
不同的烧结设备适用于不同的烧结材料和工艺要求。
2. 烧结设备的主要部件包括燃烧室、加热炉、炉膛、热风循环系统、控制系统等。
这些部件共同作用,实现对粉末材料的加热和烧结作用。
3. 热处理炉是常见的烧结设备之一,主要通过电阻加热、气体燃烧等方式对粉末材料进行加热处理,适用于各种金属和非金属材料的烧结工艺。
三、烧结工艺控制1. 烧结工艺控制是烧结过程中的关键环节,可以通过控制温度、时间、压力等参数,实现对烧结过程的精确控制。
2. 烧结工艺控制的主要方法包括PID控制、自适应控制、模糊控制等。
这些控制方法通过对烧结过程中的各个参数进行实时监测和调整,以实现对烧结过程的精确控制。
3. 在实际生产中,烧结工艺控制可以通过计算机控制系统实现自动化,提高生产效率和产品质量。
四、烧结材料选型1. 烧结工艺适用于各种粉末材料,包括金属粉末、陶瓷粉末、粉末冶金材料等。
根据不同的材料性质和要求,选择合适的烧结工艺和设备。
2. 烧结材料的选型考虑因素包括原料种类、粒度、成分、形状等。
根据不同的要求,选择合适的烧结材料,可以有效提高产品质量和生产效率。
3. 在烧结材料选型过程中,也需要考虑成本、资源利用率和环境保护等方面的因素,以实现经济、环保和可持续发展。
五、烧结工艺的应用1. 烧结工艺广泛应用于金属、陶瓷、粉末冶金、电子材料等行业。
在金属制品生产中,烧结工艺可以用于制造各种粉末冶金制品、焊接材料、钎焊材料等。
烧结原理、工艺培训

常见问题及解决方案
烧结温度过高或过低
产品性能不达标
调整烧结温度,优化加热速率和保温时间 。
优化原料配比,调整工艺参数,使用合适 的添加剂。
烧结过程中出现裂纹、变形等问题
环境污染与能耗问题
改进原料制备工艺,提高原料均匀性;优 化烧结工艺,降低烧结应力。
采用环保型烧结工艺,降低能耗,减少废气 、废水、废渣排放。
压力制度调整技巧
合理选择压力
根据产品的要求和原料的特性,选择 合适的压力制度,以保证产品的致密 度和强度。
分段加压
控制加压速度
加压速度过快可能导致产品开裂或变 形,因此应控制加压速度,确保产品 的稳定性。
在烧结过程中,可以采用分段加压的 方式,以适应不同烧结阶段的要求。
气氛控制策略
选择适当气氛
01
减少不合格品率
通过加强质量管理和员工培训,降低不合格 品率,提高生产效益。
提升客户满意度
关注客户需求和反馈,持续改进产品质量和 服务水平,提升客户满意度。
06 安全生产管理与环境保护 要求
安全生产管理体系建立
确定安全生产方针和目标
明确企业安全生产的方向和要达到 的预期结果。
建立安全生产责任制
明确各级人员、各部门在安全生产 中的职责和权限。
05 产品质量检测与评价标准
产品性能指标介绍
物理性能
包括产品的尺寸、形状、重量、密度、 孔隙率等。
化学性能
涉及产品的化学成分、矿物组成、氧 化物含量等。
力学性能
如产品的抗压强度、抗折强度、耐磨 性等。
热学性能
包括产品的热导率、热膨胀系数等。
质量检测方法
抽样检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该带主要使下部料层加热到燃料的着火温度。一般温度为400~800度。
该带主要反应是烧结料中的结晶水及部分碳酸盐、硫酸盐分解,磁铁矿进行还原以及组分间的固相反应等。
(4)干燥带
烧结料的热废气从预热带进入下层,迅速将烧结料加热到100℃以上,因此该带主要是水分的激烈蒸发。
(5)过湿带
从烧结料点火开始,物料中的水分就开始转移到气流中去。含有水蒸气的废气经过料层冷却后,废气被冷却到露点温度,致使其中水蒸气冷凝,这部分烧结料中的水分含量超过了物料的原始水分,出现了过湿现象,这一区域成为过湿带。
燃烧层是烧结料层中温度最高的区域,因此也称高温区。高温区温度水平和厚度对烧结过程的影响非常显著。
首先,高温区移动速度,即垂直燃烧速度,是决定烧结矿产量的主要因素。产量同垂直烧结速度成正比关系,而垂直烧结速度和风速成0.77~1.05次方的关系。因此,增加风速即可提高垂直烧结速度,提高产量。但垂直烧结速度也不能过快,过快会引起烧结矿强度下降,成品率低。混合料的热容量大,导热性好,粒度小,以及吸热反应发展,都能增加混合料从废气中吸热的能力,从而使烧结速度减小,降低烧结矿产量。而适当增加混合料的水分和溶剂用量时,由于改善了烧结料层的透气性,有利于提高烧结速度。
3、烧结料层中发生的物理化学变化及其对烧结生产的影响
烧结矿层在料层的最上部,抽入的空气首先要穿过烧结矿层,而烧结矿层中已无燃料的燃烧,所以被抽入的空气所冷却,发生熔融矿物的结晶和新相的形成过程,并将自身的热量传递给空气,使空气温度升高(称为自动蓄热作用)。由于气流作用和来不及逸出的气泡及冷却时的体积收缩,熔融物冷却后成为多孔状块矿,使料层透气性增加,负压降低。在与空气接触的烧结矿表面层,还可能发生低价氧化物的再氧化反应。
烧结过程的理论基础
烧结就是将矿粉、熔剂和燃料,按一定比例进行配加,均匀的混合,借助燃料燃烧产生的高温,部分原料熔化或软化,发生一系列物理、化学反应,并形成一定量的液相,在冷却时相互粘结成块的过程。
一、烧结过程的基本原理
近代烧结生产是一种抽风烧结过程,将矿粉、燃料、熔剂等配以适量的水分,铺在烧结机的炉篦上,点火后用一定负压抽风,使烧结过程自上而下进行。通过大量的实验对正在烧结过程的台车进行断面分析,发现沿料层高度由上向下有五个带,分别为烧结矿带、燃烧带、预热带、干燥带和过湿带。
在过湿层中,由于重新凝结的水分充塞于烧结料颗粒之间,使气流通过的阻力增加,同时,由于水分过多,超过混合料的原始水分,严重时使物料成泥泞状,严重降低料层透气性,大大降低烧结速度。粒度愈细和吸水性差的物料,这种现象愈明显。
燃烧层对烧结对此层对烧结生产的影响做详细的叙述。
该带严重影响了烧结料的透气性,破坏已造好混合料小球,最好的解决办法就是预热混合料。
图3—2烧结过程各层反应示意图
2、烧结过程分层原因
带式烧结机有明显的分层性,如图3—2所示。抽风烧结过程的这种分层性,是烧结过程自上而下进行的特点所决定的。烧结料中的燃料点燃之后,随抽入的空气继续燃烧,于是料层的表面形成了燃烧层,当这一层的燃料燃烧完毕后,下部料层中的燃料继续燃烧,于是燃烧层向下移动,而其上部形成了烧结矿层。燃烧层产生的高温废气进入燃烧层以下的料层之后,很快将热量传递给烧结料,使料温急剧上升。随着温度的升高,到100℃以上,首先出现混合料中的水分蒸发,达到300~400℃,水分蒸发完毕,继续升高到800℃,混合料中的燃料着火。这样,燃烧层下部形成了100~400℃之间以水分蒸发为主的干燥层和400~800℃之间的预热层。实际上,干燥层和预热层之间没有明显的界限,因此,也有统称为干燥—预热层的。高温废气将热量传递给混合料使之干燥和预热之后,进入干燥层以下的料层,当温度下降到水蒸气的露点(大约60℃)以下时,在干燥层中蒸发进入废气的水分在这里重新凝结,形成了过湿层。随着烧结过程的进行,燃烧层、预热层和干燥层逐渐下移,烧结矿层逐渐扩大,湿料层逐渐减小,最后全部烧结料变为烧结矿层。
(2)燃烧带
该带温度可达1350~1600度,此处混合料软化、熔融及液相生成,发生异常复杂的物理化学变化。该层厚度为15~50mm。此
(-)(+)3~0mm
水
水、蒸汽
煤气与空气
空气
烟道灰
烟尘
返矿
排出废气
(热烧结矿)冷烧结矿
图3—1烧结生产一般工艺流程图
带对烧结产量及质量影响很大。该带过宽会影响料层透气性,导致产量低。该带过窄,烧结温度低,液相量不足,烧结矿粘结不好,导致烧结矿强度低。燃烧带宽窄主要受物料特性、燃料粒度及抽风量的影响。
当前国内外广泛采用带式抽风烧结,代表性的生产工艺流程如图3—1所示。
1、烧结五带的特征
(1)烧结矿带
在点燃后的烧结料中燃料燃烧放出大量热量的作用下,混合料熔融成液相,随着高负压抽风作用和燃烧层的下移,导致冷空气从烧结矿带通过,物料温度逐渐降低,熔融的液相被冷却凝固成网孔状的固体,这就是烧结矿带。
此带主要反应是液相凝结、矿物析晶、预热空气,此带表层强度较差,一般是返矿的主要来源。
燃烧层主要是固体燃料的燃烧,引起料层温度的升高和液相的生成。燃烧层的温度高达1350~1600℃,超过了烧结料的软化和熔化温度,为产生一定数量的液相使烧结料粘结成块创造了条件。此外,燃烧层内还发生碳酸盐和硫酸盐的分解,磁铁矿的氧化、赤铁矿的热分解以及在固体燃料颗粒的周围高价氧化物的还原等反应。由于燃烧层内存在大量液相粘结物,气体通过料层的阻力增加,透气性变坏,不利于提高产量,因此,生产中要求燃烧层的厚度不要太大,一般在15~50mm之间。
干燥层中主要发生水分的蒸发。由于烧结过程的气流速度很快,烧结料又是细粒散料,所以,烧结料温度能迅速提高,在一个很窄的区域(13~30mm)内完成干燥过程。在预热层中,水分蒸发完毕,干料温度继续升高,达到着火温度(800℃左右)。此层内发生部分碳酸盐的分解、硫酸盐的分解和磁铁矿的局部氧化,以及烧结料各成分之间的固相反应。干燥和预热层中,由于升温速度过快,料球易受破坏,恶化料层透气性。