平面直角坐标系中的伸缩变换

合集下载

数学学案:平面直角坐标轴中的伸缩变换

数学学案:平面直角坐标轴中的伸缩变换

1.2 平面直角坐标轴中的伸缩变换1.会画出伸缩变换后的平面图形.2.了解在平面直角坐标系中的伸缩变换作用下平面图形的变化情况.3.能用变换的观点来观察图形之间的因果关系,知道图形之间是可以类与类变换的.平面直角坐标轴中的伸缩变换在平面直角坐标系中进行伸缩变换,即改变x 轴或y 轴的________,将会对图形产生影响.(1)若P (x ,y )为坐标轴中任意一点,保持纵坐标不变,将横坐标x 缩为原来的错误!,得到点P ′(x ′,y ′),坐标对应为错误!通常叫做平面直角坐标系中的一个压缩变换.(2)若P (x ,y ),保持纵坐标不变,将横坐标伸长为原来的2倍,得到P ″(x ″,y ″).坐标对应为⎩⎪⎨⎪⎧x ″=2x ,,y ″=y 通常叫做平面直角坐标系中的一个伸长变换.【做一做】将一条直线作伸缩变换后得到图形可能是( ).A .直线B .圆C .椭圆D .抛物线1.对平面直角坐标轴中伸缩变换的理解剖析:在平面直角坐标系中进行伸缩变换,即改变x 轴或y 轴的单位长度,将会对图形产生影响.其特点是坐标系和图形发生了改变,而图形对应的方程不发生变化.如在下列平面直角坐标系中,分别作出f (x ,y )=0的图形:(1)x 轴与y 轴具有相同的单位长度;(2)x 轴上的单位长度为y 轴上单位长度的k 倍;(3)x 轴上的单位长度为y 轴上单位长度的错误!.第(1)种坐标系中的意思是x 轴与y轴上的单位长度一样,f(x,y)=0的图形就是我们以前学过的平面直角坐标系中的f(x,y)=0的图形;第(2)种坐标系中的意思是如果x轴上的单位长度保持不变,y轴上的单位长度缩小为原来的错误!,此时f(x,y)=0表示的图形与第(1)种坐标系中的图形是不同的;第(3)种坐标系中的意思是如果y轴上的单位长度保持不变,x轴上的单位长度缩小为原来的错误!,此时f(x,y)=0表示的图形与第(1)种坐标系中的图形是不同的.2.对伸缩变换图形的画法剖析:图形的伸缩变换,是坐标轴中x轴和y轴的变化,可以利用“五点作图法”进行转化,画出相应图形,再研究其性质.答案:单位长度【做一做】A 直线在伸缩变换中图形是不会发生变化的.题型一椭圆在平面直角坐标系中的伸缩变换【例1】在下列平面直角坐标系中,分别作出椭圆错误!+错误!=1的图形:(1)x轴与y轴具有相同的单位长度;(2)x轴上的单位长度为y轴上单位长度的2倍;(3)x轴上的单位长度为y轴上单位长度的错误!.分析:(1)常规描点法画椭圆;(2)改变y轴上的单位长度;(3)改变x轴上的单位长度.反思:改变x轴或y轴的单位长度,导致了椭圆错误!+错误!=1的图形的变化,改变了哪个轴的单位长度及改变了多少一定要清楚,不然画出的伸缩变换后的图形就不符合题目要求了.题型二双曲线在平面直角坐标系中的伸缩变换【例2】在下列平面直角坐标系中,分别作出双曲线x29-错误!=1的图形:(1)x轴与y轴具有相同的单位长度;(2)x轴上的单位长度为y轴上单位长度的3倍;(3)x轴上的单位长度为y轴上单位长度的1 3 .反思:图形的变化,有的不仅是坐标轴单位长度的变化,有的会引起图形形状的变化.【例1】解:(1)建立平面直角坐标系,使x轴与y轴具有相同的单位长度,错误!+错误!=1的图形如下:(2)如果x轴上的单位长度保持不变,y轴上的单位长度缩小为原来的错误!,错误!+错误!=1的图形如下:(3)如果y轴上的单位长度保持不变,x轴上的单位长度缩小为原来的错误!,错误!+错误!=1的图形如下图:【例2】解:(1)建立平面直角坐标系,使x 轴与y 轴具有相同的单位长度,x 29-错误!=1的图形如下图:(2)如果x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的错误!,错误!-错误!=1的图形如下:(3)如果y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的错误!,错误!-错误!=1的图形如下图:1 一条双曲线在平面直角坐标系中进行伸缩变换后,其图形可能是( ).A .双曲线B .圆C .椭圆D .抛物线2已知一椭圆的方程为22=1164x y ,如果x 轴上的单位长度为y 轴上单位长度的12,则该椭圆的形状为( ).3一个平行四边形经过平面直角坐标轴中的伸缩变换后,其图形是__________.4在下列平面直角坐标系中,分别作出抛物线y2=-4x的图形:(1)x轴与y轴具有相同的单位长度;(2)x轴上的单位长度为y轴上单位长度的2倍;(3)x轴上的单位长度为y轴上单位长度的1.2答案:1.A 双曲线在平面直角坐标系中进行伸缩变换后,图形形状是不会发生变化的.2.B 如果y轴上的单位长度保持不变,x轴上的单位长度缩小为原来的错误!,则该椭圆的形状为选项B中所示.3.平行四边形4.解:(1)建立平面直角坐标系使x轴与y轴具有相同的单位长度,抛物线y2=-4x的图形如下:(2)如果x轴上的单位长度保持不变,y轴上的单位长度缩小为原来的错误!,抛物线y2=-4x的图形如下:(3)如果y轴上的单位长度保持不变,x轴上的单位长度缩小为原来的12,抛物线y2=-4x的图形如下:。

选修4-4 平面直角坐标系中的伸缩变换

选修4-4 平面直角坐标系中的伸缩变换

选修4-4 §1.2平面直角坐标系中的伸缩变换〖知识网络建构〗1.一般地,由⎩⎨⎧kx = x',y = y'所确定的伸缩变换,是伸缩系数为k 向着y 轴的伸缩变换。

当k > 1时,表示伸长;当 k < 1时,表示压缩,即曲线上所有的点的纵坐标不变,横坐标变为原来的 k 倍。

这里P (x ,y)是变换前的点,P'(x',y')是变换后的点。

2.同样由 ⎩⎨⎧x = x',ky = y'所确定的伸缩变换是伸缩系数为k 向着x 轴的伸缩变换。

〖典例剖析〗【例1】:求下列点经过横坐标变为原来的2倍,纵坐标变为原来的3倍后的点的坐标: (1) (1,2); (2) (-2,-1). 【例1】解:(1)(2,6);(2)(-4,-3).【变式与拓展1】.点(2,-3)经过伸缩变换⎪⎪⎩⎪⎪⎨⎧==y y x x 31'21'后的点的坐标是 ;解:变式1.(1,-1);【变式与拓展2】.点),(y x 经过伸缩变换⎪⎩⎪⎨⎧==yy x x 3'21'后的点的坐标是(-2,6),则=x ,=y ;解:变式2.2,4=-=y x【例2】:在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧==yy xx 3'2'后的图形:(1)032=+y x ;(2)122=+y x .【例2】解:(1)0''=+y x ;(2)19'4'22=+y x 〖能力训练〗1.点)1,2(π经过伸缩变换⎩⎨⎧==yy xx 3'2'后的点的坐标是 )3,(π; ; 2.点),(y x 经过伸缩变换⎩⎨⎧==yy xx 2'3'后的点的坐标是)4,3(-π,则=x x π=,=y 2y =-.3.曲线364922=+y x 经过伸缩变换⎪⎪⎩⎪⎪⎨⎧==y y x x 31'21'后的曲线方程是 1''22=+y x .4.曲线C 经过伸缩变换⎪⎪⎩⎪⎪⎨⎧==y y x x 21'31'后的曲线方程是36'9'422=-y x ,则曲线C 的方程是1''22=-y x .5.将点(2,3)变成点(3,2)的伸缩变换是(B )A.⎪⎪⎩⎪⎪⎨⎧==y y x x 23'32' B.⎪⎪⎩⎪⎪⎨⎧==y y x x 32'23' C.⎩⎨⎧==x y y x '' D.⎩⎨⎧-=+=1'1'y y x x6.将直线22=-y x 变成直线4''2=-y x 的伸缩变换是 ⎩⎨⎧==y y xx 4'' .7.在伸缩变换⎩⎨⎧==y y x x '2'与伸缩变换⎩⎨⎧==yy x x 2'2'的作用下,单位圆122=+y x 分别变成什么图形?解:在⎩⎨⎧==y y x x '2'的作用下,单位圆变成椭圆1'4'22=+y x ;在⎩⎨⎧==yy x x 2'2'的作用下,单位圆变成圆4''22=+y x ;8.为了得到函数R x x y ∈+=),63sin(2π的图像,只需将函数R x x y ∈=,sin 2的图像上所有的点(C )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)9.曲线)6sin(π+=x y 经过伸缩变换⎩⎨⎧==y y x x 2'3'后的曲线方程是 )63'sin(2'π+=x y ;10.将曲线0222=+-x y x 变成曲线0'4'16'22=+-x y x 的伸缩变换是 ⎪⎩⎪⎨⎧==y y x x 21'2' .11.函数()f x 的图像是将函数2log (1)x +的图像上各点的横坐标变为原来的13,纵坐标变为原来的12而得到的,则与()f x 的图像关于原点对称的图像的解析式是 。

平面直角坐标系伸缩变换课件

平面直角坐标系伸缩变换课件
可以方便地处理与变换相关的问题, 因为它们不依赖于特定坐标系的选取 。
伸缩变换的矩阵表示
伸缩变换
将平面中的点按照某个方向进行缩放,通常称为放缩变换。
伸缩变换矩阵
放缩变换可以通过一个二阶实对称矩阵来实现,该矩阵称为伸缩变 换矩阵。
伸缩变换矩阵的性质
具有正定的对角线元素,并且其特征值分别对应于放缩变换的两个 方向上的缩放因子。
平面直角坐标系伸 缩变换的优缺点及 展望
平面直角坐标系伸缩变换的优点
便于解决几何问题
通过伸缩变换,可以将复杂的几 何问题转化为简单的代数问题,
从而更便于解决。
丰富数学内容
伸缩变换是一种新的数学方法,可 以丰富数学的教学内容,提高学生 的学习兴趣。
应用广泛
伸缩变换在物理学、工程学等领域 都有广泛的应用,可以帮助学生更 好地理解这些领域的基础知识。
平面直角坐标系伸缩 变换课件
目录
CONTENTS
• 平面直角坐标系基础 • 伸缩变换的基本原理 • 伸缩变换的应用 • 伸缩变换的数学模型 • 伸缩变换的实现方法 • 平面直角坐标系伸缩变换的优缺
点及展望
01
平面直角坐标系基 础
定义与性质
定义
平面直角坐标系是一个二维的数 轴系统,它由两个互相垂直的坐 标轴构成。
伸缩变换的逆变换与等价变换
01
02
03
04
逆变换
如果一个变换可以通过逆变换 还原到原始状态,那么这个变
换就称为可逆的。
等价变换
两个变换可以相互转换,并且 它们对所有点的作用相同,那
么它们称为等价的。
伸缩变换的逆变换
通过伸缩变换矩阵的逆矩阵可 以获得逆变换矩阵。
等价变换的证明

讲坐标系平面直角坐标系中的伸缩变换

讲坐标系平面直角坐标系中的伸缩变换

2023讲坐标系平面直角坐标系中的伸缩变换contents •引言•平面直角坐标系的基本概念•伸缩变换的基本原理•伸缩变换的应用实例•平面直角坐标系中的伸缩变换•结论与展望目录01引言伸缩变换是指对平面直角坐标系中的点进行有比例的放大或缩小,可以用一个矩阵来表示这种变换。

伸缩变换的主要特点是,原点保持不变,且每个轴上的单位长度发生了变化。

伸缩变换的定义伸缩变换在图像处理、计算机视觉和机器学习等领域具有广泛应用。

通过伸缩变换,可以将图像或数据集的大小调整为适合分析或处理的要求,从而提高算法的准确率和效率。

伸缩变换的重要性伸缩变换的应用场景图像缩放01在图像处理中,通过伸缩变换可以调整图像的大小,以满足不同应用的需求。

数据预处理02在机器学习中,为了提高算法的准确性,通常需要对数据进行预处理,其中包括对数据进行缩放。

通过伸缩变换,可以将数据调整为同一尺度,减少计算误差。

计算机视觉03在计算机视觉中,伸缩变换被广泛应用于目标检测、识别和跟踪等领域。

通过对图像进行伸缩变换,可以增强目标特征,提高检测准确率。

02平面直角坐标系的基本概念在平面直角坐标系中,每个点都可以由两个数值,即横坐标和纵坐标,来表示。

例如,点A的坐标为(3,4)。

点的坐标表示点的坐标平面直角坐标系的原点是(0,0)。

原点平面直角坐标系中有两条相互垂直的坐标轴,分别是x轴和y轴。

坐标轴点到点的距离在平面直角坐标系中,两点之间的距离可以通过欧几里得距离公式来计算。

例如,点A(3,4)到点B(1,2)的距离是[(3-1)^2 + (4-2)^2]^0.5 = 2.8284。

向量的模一个向量的模等于其终点与原点之间的距离。

例如,向量OA的模是[(3^2 + 4^2)^0.5] = 5。

距离与向量的计算平面几何的基本定理勾股定理在直角三角形中,勾股定理表述了两条直角边的平方和等于斜边的平方。

平行线之间的距离两条平行线之间的距离等于两直线上的对应点之间的距离。

1_1_2、平面直角坐标系中的伸缩变换

1_1_2、平面直角坐标系中的伸缩变换
1)当a >1时,将y = f(x)图象上每一个点的
纵坐标不变,横坐标缩短到原来的 1, a
2)当0 < a <1时,将y = f(x)图象上每一个点的
纵坐标不变,横坐标伸长到原来的 1 倍,
即得函数y = f(ax)的图象;a
特殊地:y=sin x, x R( >0, 1)的图象能够由y=sinx
1.1.2平面直角坐标 系中的伸缩变换
• 教学目标:
• (1)学会用坐标法来解决几何问题。
• (2)能用变换的观点来观察图形之间的因果联 系,知道图形之间是能够类与类变换的。
• (3)掌握变换公式,能求变换前后的图形或变 换公式。
• 教学重点:应用坐标法的思想及掌握变换公式。
• 教学难点:掌握坐标法的解题步骤与应用,总结 体会伸缩变换公式的应用。通过典型习题的讲解、 剖析,及设置相关问题引导学生思考来突破难点。
(C)纵坐标伸长到原来的2倍,横坐标不变
(D)纵坐标缩短到原来的1 倍,横坐标不变 2
1.选择题 :已知函数y 3sin( x )的图象为C.
5
(3)为了得到函数y 4sin( x )的图象,只要
5
把C上所有的点 C
( A)横坐标伸长到原来的4 倍,纵坐标不变 3
(B)横坐标缩短到原来的3 倍,纵坐标不变 4
亿元上升到1995年6月的18.281亿元,能够用图1和图2来
表示增长幅度。
贷款/亿元
20
贷款/亿元
18
18 16
图1 16
14
14
图2
3 6 月份
3 6 月份
这两个图中所表示的数据是相同的,但是给我们的感
觉是图2显示的增长的幅度要大,产生这种误解的原因是

平面直角坐标系知识点平面直角坐标系中的伸缩变换坐标系的作用

平面直角坐标系知识点平面直角坐标系中的伸缩变换坐标系的作用

一、平面直角坐标系中的伸缩变换设点P(x,y)是平面直角坐标系中任意一点,在变换的作用下,点P(x,y)对应到P'(x',y'),称为平面直角坐标系中的伸缩变换。

在平面上取两条互相垂直并选定了方向的直线,一条称为x轴,一条称为y轴,交点O为原点。

再取一个单位长度,如此取定的两条互相垂直的且有方向的直线和长度单位构成平面上的一个直角坐标系,即为xOy。

数轴(直线坐标系):在直线上取定一点O,取定一个方向,再取一个长度单位,点O,长度单位和选定的方向三者就构成了直线上的坐标系,简称数轴.如图,平面直角坐标系:在平面上取两条互相垂直并选定了方向的直线,一条称为x轴,一条称为y轴,交点O为原点。

再取一个单位长度,如此取定的两条互相垂直的且有方向的直线和长度单位构成平面上的一个直角坐标系,即为xOy。

如图:建立坐标系必须满足的条件:任意一点都有确定的坐标与它对应;反之,依据一个点的坐标就能确定这个点的位置.坐标系的作用:①坐标系是刻画点的位置与其变化的参照物;②可找到动点的轨迹方程,确定动点运动的轨迹(或范围);③可通过数形结合,用代数的方法解决几何问题。

平面直角坐标系知识点(1)平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。

(2)两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做x轴或横轴,垂直的数轴叫做y轴或纵轴,x轴y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

(3)x轴y轴将坐标平面分成了四个象限,右上方的部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(4)坐标平面内的点与有序实数对一一对应。

有序数对:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

高二数学选修44432平面直角坐标系中的伸缩变换

高二数学选修44432平面直角坐标系中的伸缩变换
x’=x
y’=3y
后的图形。 〔1〕2x+3y=0; (2)x2+y2=1
2.在同一直角坐标系下,求满足下列 图形的伸缩变换:曲线4x2+9y2=36变 为曲线x’2+y’2=1 3.在同一直角坐标系下,经过伸缩变
换 x’=3x 后, y’=y
曲线C变为x’2-9y’2 =1,求曲线C的 方程并画出图形。
设点P〔x , y〕经变换得到点为P′ (x′, y′)
x′=x 2
y′=3y
通常把 2 叫做平面直角坐标系中的 一个坐标伸长变换。
问题分析:
〔3〕怎样由正弦曲线y=sinx得到曲线 y=3sin2x? 写出其坐标变换。
在正弦曲线y=sinx上任取一点P(x,y),保持纵坐
标不变,将横坐标x缩为原来的
1 2
,在此基础
上,将纵坐标变为原来的3倍,就得到正弦曲线
y=3sin2x.
设点P〔x , y〕经变换得到点为P′ (x′, y′)
1
x′= 2 x
3
y′=3y
通常把 3 叫做平面直角坐标系中的一
个坐标伸缩变换。
定义:设P(x,y)是平面直角坐标系中 任意一点,在变换
:xy''xy
(0) (0)
4
1
纵坐标不变,将横坐标x缩为原来 2 ,得到点
P′(x′, y′).坐标对应关系为:
坐标对应关系为:
1
x’= 2 x 1 y’=y
通常把 1 叫做平面直角坐标系中 的一个压缩变换。
问题分析:
〔2〕怎样由正弦曲线 y=sinx得到曲 线 y=3sinx? 写出其坐标变换。
问题分析:
在正弦曲线上任取一点P〔x , y〕,保持横坐标 x不变,将纵坐标伸长为原来的3倍,就得到曲 线y=3sinx。

平面直角坐标系中的伸缩变换

平面直角坐标系中的伸缩变换

平面直角坐标系中的伸缩变换【知识要点归纳】(1) 以坐标法为工具,用代数方法研究几何图形是解析几何的主要问题,它的特点是“数形结合”。

(2) 能根据问题建立适当的坐标系又是能否准确解决问题的关键。

(3) 设点P (x,y )是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅='),0(,),0(,:μμλλϕy y x x 的作用下,点P(x,y)对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换。

【典型例题】 在同一直角坐标系中,求满足下列图形变换的伸缩变换。

(1) 将直线22=-y x 变成直线42='-'y x ,(2) 曲线0222=--x y x 变成曲线0416/22=-'-'x y x【解题能力测试】1、已知x x f x x f ωsin )(,sin )(21==()0>ω)(2x f 的图象可以看作把)(1x f 的图象在其所在的坐标系中的横坐标压缩到原来的31倍(纵坐标不变)而得到的,则ω为( ) A .21 B .2 C.3 D.312.在同一直角坐标系中,经过伸缩变换⎩⎨⎧='='yy x x 35后,曲线C 变为曲线18222='+'y x 则曲线C 的方程为( )A .1725022=+y x B.1100922=+y x C .12410=+y x D.19825222=+y x 3.在同一平面坐标系中,经过伸缩变换⎩⎨⎧='='yy x x ,3后,曲线C 变为曲线9922='+'y x ,求曲线C 的方程并画出图象。

4.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎪⎩⎪⎨⎧='='yy xx 3121后的图形。

求: (1);025=+y x (2)122=+y x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系中的伸缩变换
【例1】 在同一平面直角坐标系中,求一个伸缩变换,使得圆
x 2+y 2=1变换为椭圆x 29+y 24=1.
【解】 设伸缩变换为⎩⎪⎨⎪⎧
x ′=λx (λ>0),y ′=μy (μ>0), 由题知λ2x 29+μ2y 24=1,
即⎝ ⎛⎭⎪⎫λ32x 2+⎝ ⎛⎭
⎪⎫μ22y 2=1. 与x 2+y 2=1比较系数,
得⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫λ32=1,⎝ ⎛⎭⎪⎫μ22=1,故⎩⎪⎨⎪⎧
λ=3,μ=2, 所以伸缩变换为⎩⎪⎨⎪⎧
x ′=3x ,y ′=2y ,即先使圆x 2+y 2=1上的点的纵坐标不变,将圆上的点的横坐标伸长到原来的3倍,得到椭圆x 29+y 2=1,
再将该椭圆的点的横坐标不变,纵坐标伸长到原来的2倍,得到椭圆x 29+y 24=1.
若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧
x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝ ⎛⎭
⎪⎫x ′+π6,求函数y =f (x )的最小正周期. 解:由题意,把变换公式代入曲线y ′=3sin ⎝ ⎛⎭
⎪⎫x ′+π6得3y =3sin ⎝ ⎛⎭⎪⎫2x +π6,整理得y =sin ⎝ ⎛⎭⎪⎫2x +π6,故f (x )=sin ⎝ ⎛⎭
⎪⎫2x +π6.所以y =f (x )的最小正周期为2π2=π.。

相关文档
最新文档