井下信号的接收与解释.ppt
煤矿特殊工种(信号)培训课件一

本课题的重点掌握内容: 1、漏电、触电的危害及预防。 2、过流现象及保护措施。
3、接地保护及接地网。 4、安全用电制度及措施。
二)系统接地网
1、各种设备单独装设接地极 有时并 不能完全消除人员触电和漏电火花。
1)接地极接触不好。 2)漏电保护不起作用,两设备不同相 漏电。(为线电压的1/2)
二)系统接地网
2.为了提高保护接地的可靠性,通常采用 专门的接地线或铠装电缆的金属护套,橡套电 缆的接地芯线,把分布在井下各地点的电气设 备的金属外壳进行电气上的连接,并与各接地 极进行连接,形成一个井下保护系统。(即总 接地网) 这种情况,既接地可靠,又消除了发生不 同相设备漏电时带来的危险。(过流保护跳闸)
三)接地装置的规格尺寸
4.辅助接地母线:应采用25mm2的铜线或截面不小 于50mm2的镀锌铁线或厚度不小于4mm,截面不 小于50mm2的扁钢。 5.接地芯线截面的强度应足够大(应使两相对地短 路电流通过接地连线时,在其上产生的温度,不超 过150℃。) 6.橡套电缆的接地芯线,除作监测接地回路外,不 得作其它用途。(如控制线)
三)接地装置的规格尺寸
1.主接地极:用耐腐蚀的钢板(或锅炉钢板)制成。 其面积不得小于0.75m2,厚度不得小于5mm。 2.局部接地极:用钢板或钢管制成。其面积不小于 0.6m2,厚度小于3mm。也可用直径不小于35mm, 长度不小于1.5m的钢管制作。但至少钻20个直径 不小于5mm的透孔。 3.接地母线:采用截面不小于50mm2的铜线或截面 不小于100mm2的镀锌铁线,或厚度不小于4mm, 截面不小于100mm2的扁钢。
3、井下供电应坚持三无、四有、两齐、三全、三 坚持的具体内容:
1)三无:无鸡爪子、无羊尾巴、无明线接头。 2)四有:有过流和漏电保护装置,有螺丝和弹簧垫圈,有密封圈和挡板有 接地装置。 3)两齐:电缆悬挂整齐,设备硐室清洁整齐。 4)三全:防护装置全,绝缘用具全,图纸资料全 。 5)三坚持:坚持使用检漏继电器,坚持使用煤电钻、照明和信号综合保护 装置,坚持使用风电和瓦斯电闭锁。
煤矿综合自动化(井下通信技术)

线传输的过程。研究发现,当信号频率越低时,传输线传
输损耗越小,传输距离越大;反之,频率升高,传输损耗 增大,传输距离就越小。但是,频率过低,不仅容易受到
动力源的干扰,而且由于辐射能力降低,不能实现有效的
感应耦合。另外,对于发射天线而言,频率越低,发射效 率也就降低。
频感应通信
优点:结构简单、成本低等; 缺点: ⑴感应通信受巷道形状、截面、粗糙程度、分支、拐弯、倾 斜、围岩构造与介质、非金属支护等影响较小,但受巷道
联系方式
姓名: 郝俊青 电话:1399-4211-140 邮箱:haojunqing@ QQ: 343426920
<欢迎同学“打扰”,愿为大家提供力所能及的帮助与服务 >
THE END
4.Wi-Fi技术存在如下这些致命的技术缺陷:
⑴只有数据压缩算法,没有语音压缩算法,通话严重失真; ⑵手机只能在本基站下通讯,跨基站移动通话会导致掉线;
⑶只适合对同步要求不高的异步数据传送,不具备对实时性要 求极高的移动语音通讯的严格同步机制;
⑷DSSS短码直序扩频的通信体制不适合采用井下定向天线辐 射,严重影响手机通信距离等。 所以,该技术作为矿井无线通信与生产调度应用,其市 场寿命是不会长久的!
缺点:
⑴载波频率低,易受电气干扰;传输距离短、通话清晰度差、 抗干扰能力弱; ⑵动力电缆分支较多,且线路上的各种机电设备启动频繁, 容易造成信道参数不稳定; ⑶动力线与通信机的传输阻抗匹配较困难。
2.中频感应通信
中频感应通信通过架设专用的感应线或利用巷道内已 有的导体(电缆、管道等)进行通信。 从中频感应传输的具体过程来看,可以分为电磁波从 移动台天线到传输线(或相反)的耦合过程和电磁波沿传输
煤矿综合自动化
煤矿井下定位卡分类_概述说明以及解释

煤矿井下定位卡分类概述说明以及解释1. 引言1.1 概述在煤矿井下,定位卡被广泛应用于员工的实时定位和安全监控。
定位卡通过接收来自基站或者卫星发射的信号,能够准确地确定人员的位置,并将数据传输到监控中心进行处理和分析。
本文将重点关注煤矿井下定位卡的分类及其应用场景,以及对不同类型定位方法进行介绍和分析。
1.2 文章结构本文主要分为五个部分。
首先,在引言中概述了文章的目的和内容,然后在第二部分详细介绍了煤矿井下定位卡的分类方法及其应用场景。
接着,在第三部分解释了定位卡的工作原理,包括技术基础、信号传输与接收原理以及数据处理与位置计算方法。
在第四部分中,我们对煤矿井下定位卡分类的优缺点进行了深入分析,并考虑了其他因素和实际应用案例。
最后,在第五部分中总结了本文的主要观点和发现结果,并讨论了尚存在问题和未来研究方向。
1.3 目的本文旨在系统全面地介绍煤矿井下定位卡的分类方法及其应用场景,解释定位卡的工作原理,并对不同分类方法进行优缺点分析。
通过深入研究和分析,我们希望能够为煤矿井下定位卡的选择和应用提供一些参考意见,并为未来相关领域的研究方向提供启示。
2. 煤矿井下定位卡分类2.1 定位卡概述定位卡是一种用于在煤矿井下进行人员和设备定位的技术工具。
它通过接收和处理信号来确定目标位置,并将结果传输到相关人员或系统中。
定位卡广泛应用于煤矿行业,以确保工作人员的安全,提高生产效率和工作管理。
2.2 分类方法介绍根据其工作原理和技术特点,煤矿井下定位卡可以分为多种类型。
主要的分类方法包括:- 无线信号定位:利用无线传输技术,如射频(Radio Frequency)或红外线(Infrared),通过测距或信号强度等方式实现定位。
- 超声波定位:利用超声波传感器发射超声波脉冲,并通过接收反射回来的脉冲计算目标位置。
- 惯性导航:借助惯性测量单元(Inertial Measurement Unit)中的加速度计和陀螺仪等组件,根据物体运动状态进行位置估计。
煤矿井下无线通信系统综合解决方案

运维管理
1. 设备巡检
定期对井下的无线通信设备进 行巡检,确保设备正常运行, 及时发现并处理潜在的问题。
2. 性能监控
通过专业的监控工具,实时监 控无线通信系统的性能指标, 如信号强度、通信速率等。
3. 故障处理
对于发生的故障,及时进行故 障定位、原因分析,并进行修 复,确保通信系统尽快恢复正 常。
根据需求分析结果,设 计无线通信系统方案, 包括选型合适的通信设 备、确定网络拓扑结构 等。
采购所需的通信设备, 并在煤矿井下进行设备 安装,包括基站、天线 、电源等。
对安装完成的设备进行 调试,确保设备正常运 行,并进行初步的功能 测试。
进行系统的试运行,根 据实际运行情况进行必 要的优化调整,以满足 实际需求。
远程指导与决策
03
地面指挥中心的管理人员可通过无线通信系统远程指导井下矿
工解决问题,提高决策效率和准确性。
04
煤矿井下无线通信系统 的实施与运维
系统实施步骤
1. 需求分析
2. 方案设计
3. 设备采购与安装
4. 系统调试
5. 试运行与优化
首先,要明确煤矿井下 的通信需求,包括通信 覆盖范围、通信容量、 通信速率等。
负责对整个无线通信系统 进行监控、管理,确保系 统稳
通过井下基站发射无线信号,无 线通信终端接收并转发信号,实 现井下与地面之间的无线通信。
网络覆盖
利用网络设备构建井下无线通信 网络,实现井下各区域的信号覆
盖,确保通信畅通。
系统管理与维护
通过管理系统对井下无线通信系 统进行实时监控、故障排查、安 全管理等操作,确保系统高效、 稳定运行,为煤矿安全生产提供
无线通信系统可实时传输安全监测数据,一旦检 测到异常,立即向矿工和地面指挥中心发出预警 ,确保矿工安全。
《电阻率测井》课件

05
电阻率测井实例分析
实例一:某油田的电阻率测井解释
总结词
该实例展示了电阻率测井在某油田勘探中的应用,通过电阻 率曲线分析地层岩性、孔隙度、含油性等信息。
详细描述
该油田位于我国东部地区,地层复杂多变,通过电阻率测井 技术,可以确定地层岩性、孔隙度、含油性等参数,为油田 的勘探和开发提供了重要的依据。
辅助电极
用于测量电位差,与主电极一起形成 测量回路。
接地电极
用于连接地面,形成完整的电流回路 。
隔离电极
用于隔离不同层位的地层,避免相互 干扰。
03
电阻率测井方法
直流电阻率测井
总结词
通过向地下供电,测量地层电阻率的方法。
详细描述
直流电阻率测井使用稳定电流源向地下供电,测量地层电阻率的一种方法。它具 有测量精度高、稳定性好的优点,但测量速度较慢,且容易受到电极极化和井眼 效应的影响。
地层对比与划分
通过对比不同地层的电阻率值,对地 层进行划分和识别,确定地层的岩性 、物性和含油性等。
电阻率测井的地质应用
岩性识别
通过电阻率曲线形态和数值的变 化,判断地层的岩性特征,如砂 岩、泥岩等。
含油性评估
根据电阻率值的大小和变化规律 ,评估地层的含油量和油藏类型 ,为油藏开发提供依据。
储层评价
详细描述
电磁波传播电阻率测井利用电磁波在地层中的传播特性,通过测量电磁波的传播速度和幅度衰减来计 算地层电阻率。这种方法具有测量速度快、精度高、受井眼效应影响小的优点,但需要高频率的电磁 波源和精密的接收设备。
04
电阻率测井解释
电阻率测井资料的处理
煤矿开采的井下通讯技术应用

AI技术在井下通讯的应用
AI技术可以用于语音 识别和图像识别,提 高井下通讯的效率和 准确性。
AI技术可以用于优化 井下作业流程,提高 生产效率和降低成本 。
AI技术可以用于预测 和预警,及时发现潜 在的安全隐患和故障 。
云计算技术在井下通讯的应用
云计算技术可以为井下通讯提供 强大的数据处理和分析能力,支
实时监控与反馈
矿工可以通过井下通讯系统实时反馈生产进度和现场情况,便于调度中心及时 调整生产计划。
设备控制通讯
远程控制
井下通讯系统可以实现设备的远程控制,提高生产效率。
设备状态监测
通过井下通讯系统实时监测设备运行状态,及时发现并处理 设备故障。
应急救援通讯
紧急撤离通知
在发生紧急情况时,调度中心可以通过井下通讯系统发布紧急撤离通知,确保矿 工安全撤离。
语音识别与合成技术
在井下通讯中,语音是一种重要的信 息传递方式。
常见的语音识别与合成技术包括基于 规则的语音识别、基于统计的语音识 别、语音合成等。
语音识别与合成技术能够将语音转换 为数字信号,方便传输和处理;同时 ,也能够将数字信号还原为语音,实 现信息的传递。
数据加密与解密技术
01
在井下通讯中,数据的安全性至关重要。
救援指挥
井下通讯系统为应急救援提供通讯支持,确保救援人员与调度中心之间的信息畅 通,提高救援效率。
03
井下通讯技术的关键技术
信号传输技术
信号传输技术是井下通讯技术的 核心,负责将语音、数据等信息
从发送端传输到接收端。
井下环境复杂,存在各种干扰因 素,因此需要采用高效的信号传 输算法和调制解调技术,以保证
信号的稳定传输。
常见的信号传输技术包括无线传 输、有线传输和光纤传输等。
井下压力接收装置的电路设计应用

井下信号的接收与解释

下传指令接收与解释过程
地面计算机发出的指令经由负脉冲发生装置 完成信号的产生与发送,井下控制机构中发电机 的涡轮转速受钻井液脉冲信号影响,把液流信号 转化为电信号,输出电压电流产生低频扰动,在 电压电流输出端加滤波电路,然后由判决电路恢 复地面发送的基带信号,判决电路输出的脉冲
Pi
1MPa 正常压力P
工作方式1
MWD正脉冲 下传变排量负脉冲 综合迭加脉冲
(75~80%)Q的P
打
关
开
闭
下 三降三升
下
传 第一次下传指令 传
几天几夜 持续作业
打
关
开 下 传
三降三升 第二次下传指令
闭 下 传
指
指
令
令
指
指
令
令
T
负
下 钻 到 井 底
循 环 洗 井
脉 冲 生 成
正 常
负 脉 冲
钻生
负 M 地W 面D可监视控化测监井测斜井、眼方轨位迹、脉 冲 生
令
负 脉 冲
正 常 钻
MWD监控测井斜、方位、关 地面可视化监测井眼轨迹闭
泥
生进
浆
成
泵
器
令 开负 启脉 泥冲 浆生 泵成
器
令
T
负
脉
冲
生
成
器
工作方式1使得迭加后的压力波形复杂,给解码带来一定 的困难,有误码,会发生失控。因此,最好采用工作方式2, 在地面将井下MWD关闭,然后再进行控制指令的下传,即采 用工作方式2为最优控制指令的下传方式。
输入当前井 底实钻轨迹 参数
输入目标靶区 的垂深、北坐 标和东坐标
输入目标点井 斜角和方位角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开 启 泥 浆 泵
负 脉 冲 生 成 器
令
负 脉 冲
正 常 钻
MWD监控测井斜、方位、 关 地面可视化监测井眼轨迹 闭
泥
生进
浆
成
泵
器
令 开负 启脉 泥冲 浆生 泵成
器
令
T
负
脉
冲
生
成
器
工作方式1使得迭加后的压力波形复杂,给解码带来一定 的困难,有误码,会发生失控。因此,最好采用工作方式2, 在地面将井下MWD关闭,然后再进行控制指令的下传,即采 用工作方式2为最优控制指令的下传方式。
工作方式2
MWD正 脉 冲
下传变排量负脉冲
Pi
开/关泥浆泵
1MPa 正常压力P
(75~80%)Q的 P
持续 作业
约 1min 打 开 下 传
三降三升 第一次 下传指令
关 闭 下 传
约 1min 打
关
开
闭
下 三降三升 下
传 第二次下传指令 传
指
指
指
指
P=0
下循 关
钻环 闭
到 井 底
洗 井
泥 浆 泵
令
Pi
1MPa 正常压力P
工作方式1
MWD正 脉 冲 下传变排量负脉冲 综合迭加脉冲
(75~80%)Q的 P
打
关开闭Fra bibliotek下三降三升
下
传 第一次下传指令 传
几天几夜 持续作业
打
关
开 下 传
三降三升 第二次下传指令
闭 下 传
指
指
令
令
指
指
令
令
T
负
下 钻 到 井 底
循 环 洗 井
脉 冲 生 成
正 常
负 脉 冲
钻生
示 示描
法 面 距 离 扫 描
最
控
近 偏轨 制
距 差迹 指
离 分修 令
扫 析正 生
描
成
➢ 防碰计算模块 旋转导向钻井地面监控系统的一个重要组成
部分就是对邻井关系的描述。无论是定向井、丛 式井等钻井施工中都需要充分考虑邻井的相互关 系。在钻进过程中,我们要时刻关注实钻井眼轨 迹与设计井眼轨迹的吻合程度及其变化的趋势, 保证中靶。同时还要充分计算与周围邻井的相互 关系,以避免井与井的相碰。在钻井作业过程中, 我们需要了解已钻轨迹的形状,以便判断其发展 趋势,及时采取措施,进行轨迹控制,这就要求 直观形象地显示井眼轨迹。因此,在地面监控软 件系统中开发了防碰计算模块用于进行邻井相互 关系统的描述。
MRSS地面监控系统软件
地面监控系统是MRSS的指挥中心,其主要完成 监测井下工具的工作状态和轨迹的变化趋势,按照几 何导向或地质导向的要求给出控制指令,遥控井下工 具按预定的轨迹钻进,能够根据旋转导向钻井的要求 进行轨迹的修正设计,能够直观形象的显示井眼轨迹。 本文基于Windows平台,采用Visual Basic作为软件 开发工具,开发地面监控软件系统。该系统在导入设 计数据和实时采集MWD上传的实钻数据的基础上, 进行了设计井眼和实钻井眼的轨迹描述、轨迹偏差分 析计算和轨迹修正设计,进而计算出MRSS轨迹控制 参数及相应的下传控制指令,并实现井眼轨迹三维可 视化和防碰计算。
信号直接输入井下微处 理器,指令信息字的解 调由软件完成,检测出 地面信号下传系统下传 的控制指令编码后,通 过查询EPROM,即可知 道指令编码所代表的导 向力的大小和方向,则 导向工具的控制机构即 可控制执行机构按指令 要求去执行,实施工具 面角和导向力的调整 , 这样就完成下传指令的 执行过程。
邻井间相互关系的描述形式主要有水平距离 扫描、最近距离扫描、法面距离扫描三种。
➢ 轨迹控制模块
旋转导向钻井过程中,轨迹控制模块是完成实时接收来自井下上传 的实钻井眼轨迹数据,并与设计井眼轨迹数据进行偏差矢量计算。计算 出轨迹控制指令参数,即导向力的方向和大小,以指令编码的方式下传 给井下工具。
➢ MRSS地面监控软件系统
监控系统软件的设计采用模块化设计的思想,通过对需求的具
体的调研分析,确定整个系统要实现的功能模块如下图所示:
地面监控系统
系统维护模块 数据操作模块 轨迹显示模块 邻井关系描述模块 轨迹控制模块
用 户 管 理
数 据 库 管 理
轨 三水 数数 数迹维平 据据 据剖轨距 添修 删面迹离 加改 除显显扫
根据上述过程,我们设计出两种不同的工作 方式,并绘出相应脉冲压力波示意图。工作方式 1:井下MWD在地面不能控制其开/关或控制失 效时,我们采用工作方式1,用下传指令的“三 降三升”负脉冲压制MWD的正脉冲。MWD的正 脉冲与正常压力的压力差约为1 MPa,“三降三 升”的脉冲压力波远大于1 MPa,因此可以用下 传指令的脉冲压力波压制住MWD的上传压力波。
进成
负 M地 W面D可监视控化测监井测斜井、眼方轨位迹、脉冲生
成
负 脉 冲 生 成
器
器
器
器
工作方式2:当需要下传指令时,通过短起 泵关闭MWD。然后再开泵,同时打开负脉冲生 成器下传指令。“三降三升”脉冲完成后,压力 稳定在正常压力时MWD将再启动。如下图所示, 井下MWD可以通过短起泵,即关闭泵约1分钟后, 再开启泥浆泵。此时,便可将井下MWD关闭。 等待MWD停止工作后,再打开地面的负脉冲生 成器,生成“三降三升”脉冲排量波,下传地面 控制指令。
地面监控计算机 负脉冲产生装置
涡轮发电机
控
制 电压的采集判断
机
构 井下微处理器
导向执行机构 钻头
MRSS系统下传指令与MWD上传联用
MRSS下传指令的原理是有序变排量的负钻井液脉冲压力波, 即“三降三升”。地面生成的下传指令载波脉冲信号通过钻柱内 的钻井液向下传到井下工具,而井下的实钻数据也是由井下 MWD通过钻柱内的钻井液向上传送。因此,上传与下传两个压 力脉冲互相干扰,使波形复杂,最好能分时传输。 通常下传指令需要经过以下几个步骤: ❖ (1) MRST工具下到井底后,一般要循环泥浆通井、洗井等等。 等循环正常后,地面监控系统生成下传指令,启动负脉冲生成器 生成“三降三升”钻井液负脉冲波向下发指令,把井下工具面对 好,调好造斜力大小; ❖ (2) 关闭负脉冲生成器,停止下传指令。正常钻进,MWD信 息上传(延迟时间数秒,延迟距离30 m左右); ❖ (3) 正常钻进,MWD监测井斜、方位,接单根停泵/开泵造 成波形不连续、复杂。 ❖ (4) 根据设计井眼轨迹和偏差矢量法,在需要时通过下传指令, 调控工具面角和造斜力的大小。
➢井下信号的接收与解释
下传指令接收与解释过程
地面计算机发出的指令经由负脉冲发生装置 完成信号的产生与发送,井下控制机构中发电机 的涡轮转速受钻井液脉冲信号影响,把液流信号 转化为电信号,输出电压电流产生低频扰动,在 电压电流输出端加滤波电路,然后由判决电路恢 复地面发送的基带信号,判决电路输出的脉冲