人脸识别主要算法原理

合集下载

人脸识别是什么原理

人脸识别是什么原理

人脸识别是什么原理
人脸识别是一种通过计算机技术自动识别和识别人脸的过程。

它基于人脸的特征和模式,将人脸图像与存储在数据库中的已知人脸进行比对,并确定其身份。

人脸识别的原理是通过采集人脸图像,提取人脸的特征信息,然后与已知人脸的特征进行比对匹配。

其主要步骤包括:
1. 检测人脸区域:首先,通过计算机视觉技术从图像或视频中检测出可能的人脸区域。

这可以通过一些算法如Haar级联分
类器、深度学习神经网络等来实现。

2. 提取人脸特征:对于检测到的人脸区域,需要从中提取出具有区分度的特征。

这些特征可以是人脸的轮廓、眼睛、鼻子、嘴巴等等。

常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、局部二进制模式(LBP)等。

3. 特征匹配与比对:将提取的人脸特征与存储在数据库中的已知人脸特征进行匹配比对。

通常采用的方法是计算两者之间的相似度得分,如欧氏距离、余弦相似度等。

匹配过程中,如果相似度得分超过预设的阈值,则认为两者匹配成功。

4. 判决与识别:根据匹配得分进行判决与识别。

如果匹配得分高于设定的阈值,则判定为已知人脸,并给出对应的身份标识;否则,判定为未知人脸或非法人脸。

人脸识别技术在安全防控、身份识别、门禁考勤、人机交互等
领域有广泛应用,并且随着深度学习等技术的发展,人脸识别的准确度和鲁棒性不断提高。

手机人脸识别原理

手机人脸识别原理

手机人脸识别原理
手机人脸识别技术是一种通过手机摄像头对用户脸部特征进行检测和分析,从而确定用户身份的技术。

它主要基于以下原理:
1. 提取脸部特征:手机摄像头拍摄用户的脸部图像,并通过图像处理算法将图像中的脸部特征提取出来。

这些脸部特征可以包括人脸的轮廓、眼睛、嘴巴、鼻子等部位的位置和形状信息。

2. 特征比对和匹配:将提取的脸部特征与事先存储在手机内部的特征模板或数据库中的特征进行比对和匹配。

这些特征模板通常是通过用户在手机上进行人脸注册时生成的,其中包含用户脸部特征的数学描述。

3. 人脸比对算法:手机人脸识别技术还依赖于一系列人脸比对算法,例如相似度计算、特征融合等。

这些算法可以通过将提取的脸部特征与特征模板进行比对,计算相似度得分,并确定用户身份。

4. 图像采集和预处理:手机在进行人脸识别时需要对图像进行采集和预处理。

采集时需要保证光线条件充足,并采集多张角度不同、表情不同的图像以增加准确性。

预处理阶段主要包括人脸检测、人脸对齐、图像增强等步骤,以提高对脸部特征的提取和匹配的精度。

5. 脸部识别模型的训练:为了实现准确的人脸识别,手机人脸识别系统需要经过大量的数据训练。

数据集通常包含各种光照条件下的人脸图像,用于训练人脸识别模型。

这些模型可以通
过机器学习和深度学习方法进行训练,以提高人脸识别算法的准确性和鲁棒性。

综上所述,手机人脸识别技术通过摄像头采集用户的脸部图像,提取脸部特征,并将其与事先存储的特征模板进行比对和匹配,从而实现对用户身份的识别。

这项技术在手机解锁、支付安全、人脸表情识别等领域具有广泛应用。

人脸识别技术的原理与实现方法

人脸识别技术的原理与实现方法

人脸识别技术的原理与实现方法人脸识别技术是一种通过计算机对人脸图像进行处理和分析,来实现自动识别和辨认人脸身份的技术。

它广泛应用于安防领域、人脸解锁设备、身份验证、社交媒体过滤和人脸表情分析等方面。

本文将介绍人脸识别技术的原理和实现方法。

一、人脸识别技术的原理1. 人脸采集人脸识别系统首先需要获取人脸图像或视频。

常见的人脸采集方式包括摄像头捕捉、视频录制和图像输入等方式。

采集到的图像经过预处理后,可以用于进一步的特征提取和人脸匹配。

2. 预处理预处理阶段主要包括图像裁剪、图像旋转和图像增强等处理。

图像裁剪是为了将人脸从原始图像中分离出来,消除不必要的背景信息。

图像旋转是为了使人脸图像朝向一致,便于后续处理。

图像增强可以提升图像质量,增强关键信息的可见度。

3. 特征提取特征提取是人脸识别技术的核心环节。

常见的特征提取方法包括局部二值模式(Local Binary Pattern, LBP)、主成分分析(Principal Component Analysis, PCA)和线性判别分析(Linear Discriminant Analysis, LDA)等。

这些方法能够从图像中提取出具有辨别力的特征向量,用于人脸识别的分类和匹配。

4. 人脸匹配人脸匹配是通过计算机算法将输入的人脸特征与数据库中存储的人脸特征进行比对,从而确定人脸的身份。

常用的匹配算法包括欧氏距离、马氏距离和余弦相似度等。

匹配结果可以得出与输入人脸最相似的人脸或身份。

5. 决策阶段决策阶段是根据匹配结果判断人脸识别的最终结果。

当匹配得分超过一定阈值时,判定为认证通过,否则判定为认证失败。

二、人脸识别技术的实现方法1. 基于2D人脸识别方法2D人脸识别方法使用的是人脸图像或视频的信息。

该方法对图像的质量和角度要求较高。

基于2D人脸识别的方法包括基于特征提取的方法和基于神经网络的方法。

其中,基于特征提取的方法一般使用LBP、PCA或LDA等算法提取人脸特征,并进行匹配。

人脸识别技术的算法原理

人脸识别技术的算法原理

人脸识别技术的算法原理人脸识别技术作为一种生物识别技术,已经在各个领域得到广泛应用。

它具备便捷性、高效性和准确性等优点,成为现代生活中不可或缺的一部分。

那么,人脸识别技术究竟是如何实现的呢?本文将详细介绍人脸识别技术的算法原理。

一、图像采集人脸识别技术的第一步是图像采集。

通过摄像头或其他设备,将待识别的目标人脸图像转化为数字信号,并对其进行预处理以提高后续算法的准确性。

预处理包括图像增强、图像灰度化、直方图均衡化等过程,旨在减少非人脸信息对识别结果的影响。

二、特征提取特征提取是人脸识别技术的核心环节。

通过特定的算法和模型,从图像中提取出能够代表人脸特征的信息。

常见的特征提取方法有主成分分析(PCA)、线性判别分析(LDA)、小波变换等。

这些方法可以将高维的人脸图像数据转化为低维特征向量,减少存储和计算的复杂性。

三、特征匹配在特征提取之后,需将提取到的特征与已有数据库中的特征进行匹配,以确定目标人脸的身份。

常用的匹配算法有欧几里得距离、马氏距离、余弦相似度等。

这些算法通过计算待识别人脸特征与数据库中特征的相似度或距离来进行匹配。

四、决策与识别在特征匹配阶段,通过设定一个匹配阈值,将待识别人脸判定为数据库中的某一身份或非法身份。

如果特征相似度超过设定阈值,则认为匹配成功,否则认为匹配失败。

如果识别成功,系统将输出目标人脸的身份信息,否则需进行进一步判断或采取其他措施。

五、技术进展与应用挑战人脸识别技术近年来取得了长足的发展,但仍面临一些挑战。

首先,光照条件、人脸表情、姿态等因素会影响识别准确性;其次,人脸变化、攻击手段等可能导致识别错误或被绕过;此外,隐私和安全问题也需要被高度重视。

为解决这些问题,研究人员不断提出新的算法模型和技术手段,并将人脸识别技术应用于安防、金融、出行等领域。

总结起来,人脸识别技术的算法原理由图像采集、特征提取、特征匹配和决策识别等步骤组成。

通过不断的研究和创新,人脸识别技术在实现高效准确的同时也面临一些挑战,需要与其他技术相结合,以实现更广泛的应用和进一步提升技术水平。

人脸识别主要算法原理

人脸识别主要算法原理

人脸识别主要算法原理人脸识别是一种通过计算机技术对人脸图像进行分析和识别的技术手段。

其主要算法原理包括图像预处理、人脸检测、人脸特征提取和人脸匹配等步骤。

1.图像预处理:在人脸识别之前需要对输入的图像进行预处理,以提高后续算法的准确性和鲁棒性。

常用的图像预处理方法包括图像对比度增强,直方图均衡化,噪声去除以及图像尺寸归一化等。

这些处理可以降低光照变化、面部表情、姿态变化等对识别的影响。

2.人脸检测:人脸检测是人脸识别的第一步,其目标是从输入图像中准确地找到人脸位置和大小。

常用的检测方法包括基于特征的方法(如Haar特性、HOG特征)和基于机器学习方法(如级联分类器、支持向量机)。

这些方法从图像中提取特定的视觉特征,并通过分类器进行判断。

3.人脸特征提取:人脸特征提取是人脸识别的核心技术,通过对人脸图像进行特征提取,将其转化为高维的特征向量表示。

常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。

这些方法从人脸图像中提取出具有区分性能的特征,以便后续的识别和匹配。

4.人脸匹配:人脸匹配是人脸识别的最后一步,其目标是将输入的人脸特征与已有的人脸特征进行比对,以确定其身份。

常用的匹配方法包括欧氏距离、余弦相似度等。

这些方法根据特征向量之间的相似度进行分类或判断,得出最终的识别结果。

此外,人脸识别还应用了机器学习和深度学习等技术,以提高识别的准确性和鲁棒性。

例如,使用卷积神经网络(CNN)进行人脸特征提取和分类,通过大规模的训练数据集和深层网络结构,可以提高人脸识别的性能。

总之,人脸识别主要依靠图像预处理、人脸检测、人脸特征提取和人脸匹配等算法原理来实现。

通过这些步骤,可以从输入的人脸图像中提取出具有区分性能的特征,并将其与已有的人脸特征进行比对,从而实现人脸的识别和匹配。

随着机器学习和深度学习的发展,人脸识别的性能将得到进一步的提升。

人脸识别算法_几种人脸识别算法的原理概念及其代码特征

人脸识别算法_几种人脸识别算法的原理概念及其代码特征

人脸识别算法_几种人脸识别算法的原理概念及其代码特征一、基于特征分析的人脸识别算法基于特征分析的算法主要通过提取人脸图像的特征信息,然后进行对比匹配。

常用的特征分析算法有主成分分析(PCA)、线性判别分析(LDA)和局部二值模式(LBP)等。

1.主成分分析(PCA)主成分分析是一种经典的人脸识别算法,其主要思想是将原始的高维人脸图像数据降维到低维空间,并通过保留最重要的特征信息来实现对人脸的识别。

该算法将人脸图像看作向量,通过对人脸样本进行协方差矩阵分析,得到一组特征向量,通常称为特征脸。

然后通过计算待测人脸与特征脸的距离来判断身份。

2.线性判别分析(LDA)线性判别分析是一种将高维空间数据映射到低维空间的方法,在保留类别内部信息的同时,还具有良好的分类性能。

在人脸识别中,LDA将人脸图像看作样本,通过计算类别内均值和类别间均值的差异,找到能最好区分不同类别的投影方向。

最后,通过计算待测人脸与特征向量的距离来进行识别。

3.局部二值模式(LBP)局部二值模式是一种用于纹理分析的特征描述符,其主要思想是使用局部区域的像素值与中心像素值进行比较,然后按照比较结果生成二进制编码。

在人脸识别中,LBP算法通过将人脸图像划分为小的局部区域,计算每个区域的LBP特征向量,然后将不同区域的特征向量连接起来形成一个长向量。

最后通过计算待测人脸与训练样本的LBP特征向量的距离来进行识别。

二、基于深度学习的人脸识别算法随着深度学习的快速发展,基于深度学习的人脸识别算法逐渐成为主流。

这类算法通过设计并训练深度神经网络,可以自动学习人脸图像的特征表示,从而实现更准确的人脸识别。

1.卷积神经网络(CNN)卷积神经网络是一种前馈神经网络,其主要特点是通过卷积层和池化层来提取图像的局部特征,使得神经网络能够更好地适应图像的结构信息。

在人脸识别中,CNN通过输入人脸图像到网络中,网络会自动提取各种特征,然后通过全连接层进行分类或验证。

人脸识别原理及算法

人脸识别原理及算法

人脸识别的基本原理及算法1. 介绍人脸识别是一种用于识别和验证人脸身份的技术。

它通过分析人脸图像中的特征,比如脸部轮廓、眼睛、鼻子等,来确定一个人的身份。

人脸识别技术在安全领域、社交媒体、身份验证等方面有着广泛的应用。

人脸识别技术主要包括以下几个步骤:人脸检测、人脸对齐、特征提取和特征匹配。

下面将详细介绍每个步骤的原理及相关算法。

2. 人脸检测人脸检测是人脸识别的第一步,它的目标是从图像中准确地找出人脸的位置。

常用的人脸检测算法有Haar特征和卷积神经网络(CNN)。

2.1 Haar特征Haar特征是一种基于图像的局部特征,通过计算图像中不同区域的灰度差异来检测人脸。

Haar特征通过在图像上滑动不同大小的矩形滤波器,计算每个滤波器内部的像素和,然后通过比较不同滤波器的和来判断该区域是否为人脸。

Haar特征的计算速度快,但对光照和角度变化敏感,容易产生误检和漏检。

2.2 卷积神经网络(CNN)卷积神经网络是一种深度学习算法,通过多层卷积和池化操作来提取图像的特征。

在人脸检测中,CNN可以学习到更加复杂的特征表示,具有更好的鲁棒性和准确性。

CNN的训练过程通常需要大量的标注数据,但在人脸检测中,由于已有的人脸数据集较为丰富,因此可以使用预训练的CNN模型来进行人脸检测。

3. 人脸对齐人脸对齐的目标是将检测到的人脸图像中的特征点对齐到一个标准位置,以消除不同人脸之间的差异。

常用的人脸对齐算法有基于特征点的对齐和基于几何变换的对齐。

3.1 基于特征点的对齐基于特征点的对齐算法通过检测人脸图像中的特征点,如眼睛、鼻子、嘴巴等,然后根据这些特征点的位置来对齐人脸。

常用的特征点检测算法有Dlib和MTCNN。

3.2 基于几何变换的对齐基于几何变换的对齐算法通过计算人脸图像中的几何关系来对齐人脸。

常用的几何变换包括平移、旋转、缩放等操作。

这些变换可以通过计算特征点之间的距离和角度来确定。

4. 特征提取特征提取是人脸识别的核心步骤,它的目标是从对齐后的人脸图像中提取出具有区分性的特征,以便进行后续的比对和识别。

人脸识别关键技术及原理

人脸识别关键技术及原理

人脸识别关键技术及原理
人脸识别是一种基于图像处理和模式识别技术的身份认证技术,其关键技术和原理包括以下几个方面:
1. 人脸检测:利用计算机视觉技术对图像或视频中的人脸进行快速准确的检测。

常用的人脸检测算法有基于Haar特征的级
联分类器(Viola-Jones算法)和基于深度学习的卷积神经网络方法。

2. 人脸对齐:将检测到的人脸进行对齐,使得人脸图像在尺度、姿态和光照等方面具有一致性。

常用的对齐方法包括基于特征点的人脸关键点定位和基于几何变换的人脸对齐。

3. 特征提取:将对齐后的人脸图像转化为有区分度的特征向量。

常用的特征提取方法有主成分分析(PCA)、局部二值模式(LBP)、深度学习中的卷积神经网络(CNN)等。

4. 特征匹配:将提取到的特征向量与已有的人脸数据库中的特征进行匹配和比较。

常用的匹配方法有欧氏距离、余弦相似度以及支持向量机(SVM)等。

5. 决策分类:根据匹配结果进行人脸认证或者识别。

认证是将待验证的人脸与单个已知身份进行匹配,识别是将待识别的人脸与多个已知身份进行比较,并输出最相似的身份。

常用的分类方法包括最近邻分类器(KNN)、支持向量机(SVM)和
深度学习中的卷积神经网络等。

以上是人脸识别的关键技术和原理,通过这些技术和方法,人脸识别可以实现在各种场景下的自动化人脸识别和身份验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人脸识别主要算法原理人脸识别主要算法原理主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。

1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。

3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。

1. 基于几何特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。

几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。

Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。

采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。

这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。

基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。

同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。

2. 局部特征分析方法(Local Face Analysis)主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。

基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。

这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。

3. 特征脸方法(Eigenface或PCA)特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。

特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。

这些特征向量称为特征脸(Eigenface)。

实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。

将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。

特征子脸在相应的图像空间中生成子空间,称为子脸空间。

计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。

基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。

现在Eigenface(PCA)算法已经与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法;而自1991年特征脸技术诞生以来,研究者对其进行了各种各样的实验和理论分析,FERET'96测试结果也表明,改进的特征脸算法是主流的人脸识别技术,也是具有最好性能的识别方法之一。

该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。

其技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。

”这种算法是利用人体面部各器官及特征部位的方法。

如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。

Turk和Pentland提出特征脸的方法,它根据一组人脸训练图像构造主元子空间,由于主元具有脸的形状,也称为特征脸,识别时将测试图像投影到主元子空间上,得到一组投影系数,和各个已知人的人脸图像比较进行识别。

Pentland等报告了相当好的结果,在200个人的3000幅图像中得到95%的正确识别率,在FERET数据库上对150幅正面人脸象只有一个误识别。

但系统在进行特征脸方法之前需要作大量预处理工作如归一化等。

在传统特征脸的基础上,研究者注意到特征值大的特征向量(即特征脸)并不一定是分类性能好的方向,据此发展了多种特征(子空间)选择方法,如Peng的双子空间方法、Weng的线性歧义分析方法、Belhumeur的FisherFace方法等。

事实上,特征脸方法是一种显式主元分析人脸建模,一些线性自联想、线性压缩型BP网则为隐式的主元分析方法,它们都是把人脸表示为一些向量的加权和,这些向量是训练集叉积阵的主特征向量,Valentin对此作了详细讨论。

总之,特征脸方法是一种简单、快速、实用的基于变换系数特征的算法,但由于它在本质上依赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有着很大的局限性。

基于KL 变换的特征人脸识别方法基本原理:KL变换是图象压缩中的一种最优正交变换,人们将它用于统计特征提取,从而形成了子空间法模式识别的基础,若将KL变换用于人脸识别,则需假设人脸处于低维线性空间,且不同人脸具有可分性,由于高维图象空间KL变换后可得到一组新的正交基,因此可通过保留部分正交基,以生成低维人脸空间,而低维空间的基则是通过分析人脸训练样本集的统计特性来获得,KL变换的生成矩阵可以是训练样本集的总体散布矩阵,也可以是训练样本集的类间散布矩阵,即可采用同一人的数张图象的平均来进行训练,这样可在一定程度上消除光线等的干扰,且计算量也得到减少,而识别率不会下降。

4. 基于弹性模型的方法Lades等人针对畸变不变性的物体识别提出了动态链接模型(DLA),将物体用稀疏图形来描述(见下图),其顶点用局部能量谱的多尺度描述来标记,边则表示拓扑连接关系并用几何距离来标记,然后应用塑性图形匹配技术来寻找最近的已知图形。

Wiscott等人在此基础上作了改进,用FERET图像库做实验,用300幅人脸图像和另外300幅图像作比较,准确率达到97.3%。

此方法的缺点是计算量非常巨大。

Nastar将人脸图像(Ⅰ) (x,y)建模为可变形的3D网格表面(x,y,I(x,y) ) (如下图所示),从而将人脸匹配问题转化为可变形曲面的弹性匹配问题。

利用有限元分析的方法进行曲面变形,并根据变形的情况判断两张图片是否为同一个人。

这种方法的特点在于将空间(x,y)和灰度I(x,y)放在了一个3D空间中同时考虑,实验表明识别结果明显优于特征脸方法。

Lanitis等提出灵活表现模型方法,通过自动定位人脸的显著特征点将人脸编码为83个模型参数,并利用辨别分析的方法进行基于形状信息的人脸识别。

弹性图匹配技术是一种基于几何特征和对灰度分布信息进行小波纹理分析相结合的识别算法,由于该算法较好的利用了人脸的结构和灰度分布信息,而且还具有自动精确定位面部特征点的功能,因而具有良好的识别效果,适应性强识别率较高,该技术在FERET测试中若干指标名列前茅,其缺点是时间复杂度高,速度较慢,实现复杂。

5. 神经网络方法(Neural Networks)人工神经网络是一种非线性动力学系统,具有良好的自组织、自适应能力。

目前神经网络方法在人脸识别中的研究方兴未艾。

Valentin提出一种方法,首先提取人脸的50个主元,然后用自相关神经网络将它映射到5维空间中,再用一个普通的多层感知器进行判别,对一些简单的测试图像效果较好;Intrator等提出了一种混合型神经网络来进行人脸识别,其中非监督神经网络用于特征提取,而监督神经网络用于分类。

Lee等将人脸的特点用六条规则描述,然后根据这六条规则进行五官的定位,将五官之间的几何距离输入模糊神经网络进行识别,效果较一般的基于欧氏距离的方法有较大改善,Laurence等采用卷积神经网络方法进行人脸识别,由于卷积神经网络中集成了相邻像素之间的相关性知识,从而在一定程度上获得了对图像平移、旋转和局部变形的不变性,因此得到非常理想的识别结果,Lin等提出了基于概率决策的神经网络方法(PDBNN),其主要思想是采用虚拟(正反例)样本进行强化和反强化学习,从而得到较为理想的概率估计结果,并采用模块化的网络结构(OCON)加快网络的学习。

这种方法在人脸检测、人脸定位和人脸识别的各个步骤上都得到了较好的应用,其它研究还有:Dai等提出用Hopfield网络进行低分辨率人脸联想与识别,Gutta等提出将RBF与树型分类器结合起来进行人脸识别的混合分类器模型,Phillips等人将MatchingPursuit滤波器用于人脸识别,国内则采用统计学习理论中的支撑向量机进行人脸分类。

神经网络方法在人脸识别上的应用比起前述几类方法来有一定的优势,因为对人脸识别的许多规律或规则进行显性的描述是相当困难的,而神经网络方法则可以通过学习的过程获得对这些规律和规则的隐性表达,它的适应性更强,一般也比较容易实现。

因此人工神经网络识别速度快,但识别率低。

而神经网络方法通常需要将人脸作为一个一维向量输入,因此输入节点庞大,其识别重要的一个目标就是降维处理。

PCA的算法描述:利用主元分析法(即Principle Component Analysis,简称PCA)进行识别是由Anderson和Kohonen提出的。

由于PCA在将高维向量向低维向量转化时,使低维向量各分量的方差最大,且各分量互不相关,因此可以达到最优的特征抽取。

6. 其它方法:除了以上几种方法,人脸识别还有其它若干思路和方法,包括一下一些:1)隐马尔可夫模型方法(Hidden Markov Model)2)Gabor 小波变换+图形匹配(1)精确抽取面部特征点以及基于Gabor引擎的匹配算法,具有较好的准确性,能够排除由于面部姿态、表情、发型、眼镜、照明环境等带来的变化。

相关文档
最新文档