人脸识别技术的主要研究方法
《2024年基于深度学习的人脸识别方法研究综述》范文

《基于深度学习的人脸识别方法研究综述》篇一一、引言随着科技的进步,人脸识别技术已经成为了人工智能领域的研究热点。
基于深度学习的人脸识别方法以其高精度、高效率的特点,在众多领域得到了广泛应用。
本文旨在全面梳理和总结基于深度学习的人脸识别方法的研究现状、主要技术、应用领域及未来发展趋势。
二、人脸识别技术的发展历程人脸识别技术自诞生以来,经历了从传统的手工特征提取方法到基于深度学习方法的演变。
早期的人脸识别主要依靠人工设计的特征提取算法,如主成分分析(PCA)、线性判别分析(LDA)等。
随着深度学习技术的崛起,卷积神经网络(CNN)等人脸识别算法得到了广泛应用。
三、基于深度学习的人脸识别方法(一)深度卷积神经网络(Deep Convolutional Neural Network, DCNN)DCNN是目前应用最广泛的人脸识别方法之一。
通过训练大量的数据,DCNN可以自动学习和提取人脸特征,从而提高识别的准确性。
同时,DCNN具有较好的泛化能力,可以应对不同的人脸表情、光照、姿态等变化。
(二)深度学习与特征融合在人脸识别中,特征提取是关键的一步。
通过将深度学习与其他特征提取方法相结合,如基于局部二值模式(LBP)的特征提取方法,可以进一步提高人脸识别的准确性和鲁棒性。
此外,多模态特征融合技术也可以提高人脸识别的性能。
(三)基于深度学习的无约束人脸识别无约束人脸识别是近年来研究的热点。
由于实际应用中的人脸图像往往存在光照、姿态、表情等变化,因此基于深度学习的无约束人脸识别技术显得尤为重要。
该技术通过训练大量的无约束人脸数据,使得模型能够适应各种复杂的人脸变化。
四、主要技术应用领域(一)安防领域基于深度学习的人脸识别技术在安防领域得到了广泛应用。
例如,公安系统可以通过该技术对犯罪嫌疑人进行快速检索和比对,提高破案效率。
此外,该技术还可以应用于门禁系统、监控系统等场景。
(二)金融领域在金融领域,基于深度学习的人脸识别技术可以用于身份验证、支付等方面。
基于人工智能的人脸识别技术研究及应用

基于人工智能的人脸识别技术研究及应用前言随着科技的发展,越来越多的人工智能技术被广泛应用于各个领域中。
其中,人脸识别技术是一项热门的应用之一。
它的重要性在于,它可以为许多日常生活和工作场景提供便利。
本文将介绍基于人工智能的人脸识别技术的研究进展和应用。
一、人脸识别技术的介绍人脸识别技术是一种基于人工智能的模式识别技术,它旨在将人脸中的主要特征提取出来并进行识别。
在实际应用中,人脸识别技术可以用于识别和验证人员身份、智能监控、刑侦和安全防范等方面。
二、人脸识别技术的研究进展1. 人脸识别技术的发展历程人脸识别技术的发展历程可以追溯到上个世纪50年代,并在1988年开始被商业化。
随着计算机处理速度的提高和机器学习算法的不断改进,人脸识别技术已经取得了重大进展。
2. 人脸识别技术的主要算法目前,人脸识别技术主要采用的算法包括人工神经网络算法、决策树算法和支持向量机算法等。
其中,深度学习算法是目前最火热的一种算法。
它可以处理大量复杂的数据,并通过多层神经网络对数据进行分类和识别。
3. 人脸识别技术的关键技术在实际应用中,人脸识别技术需要面对许多技术难题,如光照、姿态、表情、年龄、人种等方面的干扰。
因此,如何解决这些技术问题,成为了人脸识别技术研究的关键之一。
现在,许多新型的人脸识别技术正在被开发出来,以解决这些问题。
三、人脸识别技术的应用1. 人脸识别技术在安防领域中的应用人脸识别技术已经被广泛应用于安防领域中,如智能门禁、刑侦和巡逻等。
使用人脸识别技术可以使安全检查更加高效和准确,同时也可以防止身份欺骗和非法入侵。
2. 人脸识别技术在社会生活中的应用人脸识别技术不仅可以被应用于安防领域,还可以被应用于社会生活中。
比如,在人脸支付、出入校园和自动签到等方面。
这种技术可以给社会生活带来重大的便利和效率提高。
3. 人脸识别技术在医疗领域中的应用人脸识别技术还可以被应用于医疗领域中,如在病人识别、个性化治疗和健康评估等方面。
人脸识别技术研究及其应用

人脸识别技术研究及其应用随着技术的不断发展,人类已经进入了信息化时代,各种智能设备和应用也随之出现。
在这方面,人脸识别技术是一种比较新的技术,它可以通过对人脸图像的采集、分析、处理等一系列技术手段来识别出人物身份。
人脸识别技术不仅具有高精准度、高效率、易操作等优点,而且在各个领域有广泛的应用。
一、人脸识别技术的研究人脸识别技术的研究可以追溯到上世纪六七十年代,但当时技术水平相对较低,只能对一些简单的人脸图像进行处理,实现人脸的自动识别还有一定的困难。
随着计算机技术的不断发展,人脸识别技术也得到了快速的发展和应用。
在研究方法上,人脸识别技术主要是采用数字图像处理技术、模式识别技术、人工智能技术等手段进行研究。
数字图像处理技术可以对图像进行预处理,增强图像的质量和信息量。
模式识别技术可以对图像进行分类和识别,从而达到人脸识别的目的。
人工智能技术可以模拟人类的思维和认知过程,更加精准地进行识别。
二、人脸识别技术的应用人脸识别技术在各个领域都得到了广泛应用。
下面就一些典型的应用进行介绍:1. 安防领域在安防领域,人脸识别技术可以用于门禁系统、监控系统等。
门禁系统可以通过人脸识别技术自动辨识员工,并记录工作考勤时间等信息。
监控系统则可以通过人脸识别技术识别出重点人员,并及时采取措施,保护重要场所的安全。
2. 社会管理人脸识别技术在社会管理领域也有广泛应用。
例如,在警务系统中,可以将犯罪嫌疑人的照片通过人脸识别技术快速匹配到人口系统中的信息,从而加快犯罪的侦查速度。
在人口普查中,人脸识别技术可以对人口数据进行核验和更新。
3. 金融领域人脸识别技术在金融领域也有广泛应用,尤其是在ATM机、网银等领域。
通过人脸识别技术可以对用户进行身份验证,进一步保证用户财产的安全。
4. 医疗领域在医疗领域,人脸识别技术可以用于病人的身份验证和医生的考勤系统中。
通过人脸识别技术可以避免医疗事故和病人身份混淆。
三、人脸识别技术存在的问题随着人脸识别技术的广泛应用,也暴露出了一些问题,例如:1. 精度问题人脸识别技术存在识别精度不够高的问题。
基于深度学习的人脸识别与表情识别技术研究

基于深度学习的人脸识别与表情识别技术研究人脸识别与表情识别技术是目前计算机视觉领域的重要研究内容之一。
随着深度学习技术的发展,基于深度学习的人脸识别与表情识别技术也取得了显著的进展。
本文将重点探讨深度学习在人脸识别和表情识别方面的应用和研究现状。
一、深度学习在人脸识别方面的应用人脸识别是一种通过对人脸图像进行处理和分析,识别出其中的个体身份信息的技术。
深度学习在人脸识别方面的应用主要包括人脸检测、人脸特征提取和人脸识别三个方面。
1. 人脸检测人脸检测是人脸识别的第一步,其主要目标是在图像中准确地找到人脸的位置。
传统的人脸检测方法通常是基于图像特征和机器学习算法,但其准确率和鲁棒性都有一定的局限性。
而基于深度学习的人脸检测技术通过使用卷积神经网络(Convolutional Neural Network, CNN)进行特征学习和分类,能够显著提高人脸检测的准确率和鲁棒性。
2. 人脸特征提取人脸特征提取是指从检测到的人脸图像中提取出能够表征个体身份信息的特征向量。
在过去的几年中,基于深度学习的方法逐渐取代了传统的特征提取算法,如局部二值模式(Local Binary Pattern, LBP)和主成分分析(Principal Component Analysis, PCA)。
深度学习方法如卷积神经网络(CNN)和人脸识别网络(FaceNet)能够提取出更加鲁棒和具有判别性的人脸特征。
3. 人脸识别人脸识别是将得到的人脸特征向量与已知的人脸数据库进行比对,以实现个体身份的识别。
深度学习在人脸识别方面的最大贡献之一就是利用深度神经网络(Deep Neural Network, DNN)进行人脸识别。
例如,著名的深度学习模型Siamese网络通过将两张人脸图像通过卷积神经网络进行编码,然后通过判断两个编码向量之间的距离来判断是否为同一个人。
二、深度学习在表情识别方面的应用表情识别是一种通过对人脸图像中的表情信息进行分析和识别,推测出人物的情感状态的技术。
人脸识别研究方法和技术路线

人脸识别是一项广泛研究的计算机视觉领域任务,涉及多个技术和方法。
以下是人脸识别研究的一般方法和技术路线:数据收集:公共数据集:使用公共数据集(如Labeled Faces in the Wild (LFW)、CelebA等)进行算法的初步验证和比较。
定制数据集:在特定应用场景下,可能需要定制数据集以满足任务的要求。
人脸检测:基于特征的方法:Haar特征、HOG(Histogram of Oriented Gradients)等。
深度学习方法:使用卷积神经网络(CNN)进行端到端的人脸检测。
人脸对齐:关键点检测:检测人脸上的关键点,以便对齐姿态。
几何变换:利用检测到的关键点进行仿射变换或透视变换。
特征提取:传统方法:使用Gabor滤波器、LBP(Local Binary Pattern)等进行特征提取。
深度学习方法:使用预训练的卷积神经网络(如VGG、ResNet、MobileNet)提取人脸特征。
特征融合:将多个尺度、多个模态的特征融合,以增强鲁棒性。
人脸识别模型:传统方法:使用传统机器学习算法,如支持向量机(SVM)、k最近邻(KNN)等。
深度学习方法:使用深度神经网络,如Siamese Network、Triplet Network、FaceNet、DeepFace 等。
迁移学习和微调:利用预训练的人脸识别模型,在特定任务上进行微调,以提高模型的性能。
评估与性能提升:使用评价指标如准确率、召回率、精确度等来评估模型性能。
考虑对抗性攻击、活体检测等问题以提升系统的安全性。
部署与应用:部署训练好的模型到实际应用场景,考虑实时性、计算资源消耗等问题。
持续改进与更新:不断监测模型的性能,根据实际应用场景中的变化和挑战,进行模型的更新和改进。
在人脸识别研究中,深度学习方法在性能上通常表现较好,但也需要大量的标注数据和计算资源。
同时,注意在应用中考虑隐私和安全问题,以及人脸识别技术可能引发的社会和伦理问题。
人脸识别课题研究思路

人脸识别课题研究思路
以下是人脸识别课题研究的一般思路:
1. 了解人脸识别技术现状:通过阅读相关文献和研究报告,了解当前人脸识别技术的发展水平、应用领域、存在的问题等。
2. 选择研究方向:根据人脸识别技术的现状和自身的兴趣,选择一个具体的研究方向,如人脸特征提取、人脸识别算法、人脸表情识别等。
3. 收集数据:根据研究方向,选择合适的数据集进行实验。
可以使用现有的公开数据集,也可以自己采集数据。
4. 设计实验方案:根据研究问题,设计合理的实验方案,包括数据预处理、特征提取、模型选择、训练和测试等。
5. 实现算法:根据实验方案,选择合适的编程语言和工具,实现人脸识别算法。
6. 进行实验:按照实验方案进行实验,记录实验结果,并对结果进行分析。
7. 改进算法:根据实验结果,分析算法的不足之处,并提出改进方案,不断优化算法。
8. 验证算法:使用不同的数据集对改进后的算法进行验证,确保算法的稳定性和泛化能力。
9. 撰写论文:将研究成果撰写成论文,发表在相关学术期刊或会议上。
10. 应用研究成果:将研究成果应用到实际场景中,如安防监控、金融认证、社交娱乐等领域。
以上是人脸识别课题研究的一般思路,具体的研究过程可以根据实际情况进行调整和优化。
基于深度学习的人脸识别技术研究

基于深度学习的人脸识别技术研究人脸识别技术作为一种生物特征识别技术,近年来得到了广泛的应用。
在人脸识别领域,基于深度学习的技术在提高准确性和性能方面取得了显著的进展。
本文将对基于深度学习的人脸识别技术进行研究,探讨其原理、应用和未来发展方向。
一、深度学习在人脸识别中的原理深度学习是一种基于多层神经网络的机器学习方法。
在人脸识别中,深度学习通过构建多层神经网络模型,进行特征抽取和分类识别。
其基本原理是通过学习大量人脸图像数据,自动学习到人脸的内在特征表达,从而实现对人脸的准确识别。
二、基于深度学习的人脸识别技术的应用1. 人脸识别门禁系统基于深度学习的人脸识别技术可以应用于门禁系统中,通过进行人脸识别来实现自动开锁。
该技术具备高准确性和高实时性的特点,能够有效防止非法入侵,提升安全性。
2. 人脸支付系统基于深度学习的人脸识别技术可以用于人脸支付系统中,通过对用户人脸进行识别,实现快速支付。
相比传统的支付方式,人脸支付具有便捷、安全的特点,能够提升用户的支付体验。
3. 人脸搜索和标注基于深度学习的人脸识别技术可以应用于人脸搜索和标注中。
通过对海量图像数据进行人脸识别,可以实现快速准确地搜索和标注人脸信息,提高图像管理的效率。
三、基于深度学习的人脸识别技术的挑战1. 数据集质量基于深度学习的人脸识别技术对大规模高质量的人脸数据集要求较高。
然而,目前公开的人脸数据集往往规模有限且样本分布不均衡,这会影响人脸识别算法的泛化能力和性能。
2. 环境光照和姿态变化人脸识别技术在实际应用中需要应对各种环境光照和姿态变化的挑战。
人脸光照条件的变化和人脸姿态的多样性会导致人脸图像的差异增大,进而影响识别的准确性。
3. 鲁棒性和隐私问题在实际场景中,基于深度学习的人脸识别技术还面临鲁棒性和隐私问题。
鲁棒性主要指在复杂环境和突发事件下的稳定运行能力,而隐私问题主要指对于个人隐私的保护。
四、基于深度学习的人脸识别技术的未来发展方向1. 强化对数据集的研究未来的研究需要重点关注构建规模更大、样本分布更均衡的人脸数据集,并在数据集上进行丰富的研究工作,以提升人脸识别算法的泛化能力和性能。
人脸识别技术的研究调研报告

人脸识别技术的研究调研报告人脸识别技术是一种通过分析和识别人脸图像来确认或验证个人身份的技术。
随着科技的迅速发展和智能化的日益普及,人脸识别技术在很多领域得到了广泛应用,如安全防控、身份认证、公安犯罪侦查等方面。
本调研报告将对人脸识别技术的发展、应用及其相关问题进行研究和分析。
一、人脸识别技术的发展人脸识别技术起源于上世纪60年代,经过长期发展,目前已经取得了显著的突破。
传统的人脸识别技术主要基于特征提取和匹配算法,但这种方法在光照、遮挡和表情变化等方面存在较大的局限性。
近年来,随着深度学习技术的兴起,基于卷积神经网络的人脸识别方法取得了巨大的进展。
这种方法不仅能够有效提取人脸特征,还能够具备一定的抗干扰能力和自我学习能力。
二、人脸识别技术的应用领域1. 安全领域:人脸识别技术被广泛应用于各类安全场所,如机场、车站、银行等。
通过系统对比人员数据库中的人脸信息与实际人脸进行匹配,可以实现快速、准确的身份认证和门禁控制,提高安全防范水平。
2. 身份认证:人脸识别技术也可以替代传统的密码、指纹等身份认证方式,实现更安全、便捷的身份验证。
例如,手机解锁、支付验证等场景可以通过人脸识别技术来进行身份确认,提升用户体验和信息安全性。
3. 公安犯罪侦查:人脸识别技术在犯罪侦查中发挥着重要作用。
警方可以通过人脸识别技术从大规模视频监控数据中快速筛选出目标人物,加快犯罪侦查速度,提高案件破案率。
4. 社交娱乐领域:人脸识别技术也应用于社交娱乐领域,例如人脸表情识别、相似脸推荐等。
这些应用丰富了用户的娱乐体验,扩展了人脸识别技术的应用范围。
三、人脸识别技术面临的挑战与问题尽管人脸识别技术在各个领域取得了显著成效,但仍然存在一些挑战和问题值得研究者们关注。
1. 隐私保护:人脸识别技术涉及到大量个人隐私信息,如何保护个人隐私成为一个重要问题。
研究者们需要在技术发展的同时,加强隐私保护措施,确保个人信息不被滥用。
2. 恶意攻击:人脸识别技术也面临着恶意攻击的威胁,如假冒、修改、伪造人脸特征等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、绪论人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。
人脸识别是一种重要的生物特征识别技术,应用非常广泛。
与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。
本章将简单介绍几种人脸识别技术的研究方法。
关键词:人脸识别2、人脸识别技术的主要研究方法目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。
人脸识别流程图如图2.1所示:图2.1人脸识别流程图3、基于几何特征的人脸识别方法基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。
基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。
这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。
但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。
模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。
基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。
基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。
因此,这也是j 种自下而上的方法。
这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且该方法在复杂背景下,多姿态的人脸图像中也能得到有效的检测结果。
但是这种方法通常需要遍历整个图片才能得到检测结果,并且在训练过程中需要大量的人脸与非人脸样本,以及较长的训练时间。
近几年来,针对该方法的人脸检测研究相对比较活跃。
4、基于代数特征的人脸识别方法在基于代数特征的人脸识别中,每一幅人脸图像被看成是以像素点灰度为元素的矩阵,用反映某些性质的数据特征来表示人脸的特征。
设人脸图像 ) , ( y x I 为二维 N M ×灰度图像,同样可以看成是N M n × = 维列向量,可视为 N M ×维空间中的一个点。
但这样的一个空间中,并不是空间中的每一部分都包含有价值的信息,故一般情况下,需要通过某种变换,将如此巨大的空间中的这些点映射到一个维数较低的空间中去。
然后利用对图像投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。
在基于代数特征的人脸识别方法中,主成分分析法(PCA)和Fisher 线性判别分析(LDA)是研究最多的方法。
本章简要介绍介绍了PCA。
完整的PCA(PrincipalComponentAnalysis)人脸识别的应用包括四个步骤:人脸图像预处理;读入人脸库,训练形成特征子空间;把训练图像和测试图像投影的上一步骤中得到的子空间上;选择一定的距离函数进行识别。
详细描述如下:4.1读入人脸库一归一化人脸库后,将库中的每个人选择一定数量的图像构成训练集,设归一化后的图像是n×n,按列相连就构成n2维矢量,可视为n2维空间中的一个点,可以通过K-L变换用一个低维子空间描述这个图像。
4.2计算K.L变换的生成矩阵训练样本集的总体散布矩阵为产生矩阵,即或者写成:式中xi为第i个训练样本的图像向量,|l为训练样本的均值向量,M为训练样本的总数。
为了求n2×n2维矩阵∑的特征值和正交归一化的特征向量,要直接计算的话,计算量太大,由此引入奇异值分解定理来解决维数过高的问题。
4.3利用奇异值分解(AVD)定理计算图像的特征值和特征向量设A是一个秩为r的行n×r维矩阵,则存在两个正交矩阵和对角阵:其中凡则这两个正交矩阵和对角矩阵满足下式:!其中为矩阵的非零特征值,4.4 把训练图像和测试图像投影到特征空间每一副人脸图像向特征脸子空间投影,得到一组坐标系数,就对应于子空间中的一个点。
同样,子空间中的任一点也对应于~副图像。
这组系数便可作为人脸识别的依据,也就是这张人脸图像的特征脸特征。
也就是说任何一幅人脸图像都可以表示为这组特征脸的线性组合,各个加权系数就是K.L变换的展开系数,可以作为图像的识别特征,表明了该图像在子空间的位置,也就是向量可用于人脸检测,如果它大于某个阈值,可以认为f是人脸图像,否则就认为不是。
这样原来的人脸图象识别问题就转化为依据子空间的训练样本点进行分类的问题。
5、基于连接机制的人脸识别方法基于连接机制的识别方法的代表性有神经网络和弹性匹配法。
神经网络(ANN)在人工智能领域近年来是一个研究热门,基于神经网络技术来进行人脸特征提取和特征识别是一个积极的研究方向。
神经网络通过大量简单神经元互联来构成复杂系统,在人脸识别中取得了较好的效果,特别是正面人脸图像。
常用的神经网络有:BP网络、卷积网络、径向基函数网络、自组织网络以及模糊神经网络等n¨。
BP网络的运算量较小耗时也短,它的自适应功能使系统的鲁棒性增强。
神经网络用于人脸识别,相比较其他方法,其可以获得识别规则的隐性表达,缺点是训练时间长、运算量大、收敛速度慢且容易陷入局部极小点等。
Gutta等人结合RBF与树型分类器的混合分类器模型来进行人脸识别乜螂1。
Lin等人采用虚拟样本进行强化和反强化学习,采用模块化的网络结构网络的学习加快,实现了基于概率决策的神经网络方法获得了较理想结果,。
此种方法能较好的应用于人脸检测和识别的各步骤中。
弹性匹配法采用属性拓扑图代表人脸,拓扑图的每个顶点包含一个特征向量,以此来记录人脸在该顶点位置周围的特征信息¨引。
拓扑图的顶点是采用小波变换特征,对光线、角度和尺寸都具有一定的适应性,且能适应表情和视角的变化,其在理论上改进了特征脸算法的一些缺点。
6、基于三维数据的人脸识别方法一个完整的人脸识别系统包括人脸面部数据的获取、数据分析处理和最终结果输出三个部分。
图2-1 显示了三维人脸识别的基本步骤:1 、通过三维数据采集设备获得人脸面部的三维形状信息;2 、对获取的三维数据进行平滑去噪和提取面部区域等预处理;3 、从三维数据中提取人脸面部特征,通过与人脸库中的数据进行比对;4 、用分类器做分类判别,输出最后决策结果。
基于三维数据的方法的代表性是基于模型合成的方法和基于曲率的方法。
基于模型合成的方法,它的基本思想为:输入人脸图像的二维的,用某种技术恢复(或部分恢复)人脸的三维信息,再重新合成指定条件下的人脸图像。
典型代表是3D可变形模型和基于形状恢复的3D增强人脸识别算法。
3D可变形模型首先通过200个高精度的3D人脸模型构建一个可变形的3D人脸模型,用这个模型来对给定的人脸图像拟合,获得一组特定的参数,再合成任何姿态和光照的人脸图像n卜捌。
基于形状恢复的3D增强人脸识别算法是利用通用的3D人脸模型合成新的人脸图像,合成过程改变了一定的姿态与光源情况。
曲率是最基本的表达曲面信息的局部特征,因而最早用来处理3D人脸识别问题的是人脸曲面的曲率。
Lee禾lJ用平均曲率和高斯曲率值,将人脸深度图中凸的区域分割出来。
7、本章小结上面研究的各种识别方法都获得了一定的成功,但各有优缺点:(1)基于几何特征的识别方法很简单,但目前还没有形成特征提取的统一标准,较难从图像中抽取稳定的特征,尤其是特征受到遮挡或有较大表情变化时,其对姿态变化的鲁棒性也较差。
(2)基于代数特征的识别方法通过各种变换方法来提取主分量,代数特征向量是具有一定稳定性的,基于该方法的识别系统对不同的角度和表情都有一定的鲁棒性。
(3)基于连接机制的识别方法其优点是保存了图像中的材质信息,且特征提取不复杂。
但受到原始图像数据量庞大的影响,识别时间长,特别是当样本数量大大增加时,会严重影响其性能。
(4)基于三维数据的人脸识别方法使用三维数据,是人脸识别的新思路,目前提取但信息还有一定困难,且需要很大数据存储和计算量。
本章介绍了目前常用的一些人脸检测与识别方法,从识别率来看各种方法在指定数据库上的识别性能高低不同,总体来说很难总结哪种方法更为优越。
各种识别方法都有各自的特点,不同的场合识别效果不同。
参考文献:1、卓永亮.基于web的人脸检测与人脸识别2、李寅.基于代数特征的人脸识别研究及其DSP实现3、王红.基于肤色的人脸检测及识别研究4、赵明华.人脸检测和识别技术的研究5、王跃明.表情不变的三维人脸识别研究6、蒋成成.三维人脸识别方法研究7、李进.基于代数特征的人脸识别研究。