52反比例函数的图像与性质3
专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)(原卷版-初中数学北师大版9年级上册

专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)知识点2.反比例函数的图象与性质(重点)知识点3.反比例函数表达式中比例系数k 的几何意义(难点)【方法二】实例探索法题型1.反比例函数的图象与性质的应用题型2.反比例函数与图形面积问题题型3.利用反比例函数图象的对称性解题题型4.创新题题型5.反比例函数与几何图形的综合【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义考法2.利用反比例函数的性质比较函数值大小【方法四】成果评定法【学习目标】1.能画出反比例函数的图象,知道反比例函数的图象是双曲线。
2.理解反比例函数的性质,并能运用其性质解决相关的问题。
3.理解反比例函数)0(≠=k xky 中的比例系数k 的几何意义,并能运用其意义求与反比例函数图象有关的图形面积问题。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.知识点2.反比例函数的图象与性质(重点)1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.注意:(1)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠)中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;注意:(1)反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.(2)反比例的图像关于原点的对称【例2】(2022秋•南华县期末)反比例函数与一次函数y =kx +1在同一坐标系的图象可能是()A .B .C.D.【变式】(2022秋•大渡口区校级期末)在同一坐标系中,函数和y=kx﹣2的图象大致是()A.B.C.D.【例3】(2023•瑞安市开学)对于反比例函数,当﹣1<y≤2,且y≠0时,自变量x的取值范围是()A.x≥1或x<﹣2B.x≥1或x≤﹣2C.0<x≤1或x<﹣2D.﹣2<x<0或x≥1【变式】(2023•西湖区校级开学)若点A(x1,y1),B(x2,y2),C(x3,y3),都在反比例函数(k为常数,k>0)的图象上,其中y2<0<y1<y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3知识点3.反比例函数表达式中比例系数k的几何意义(难点)通过反比例函数上一点向一条坐标轴作垂线,这个点与垂足和原点所构成的三角形面积为12k,与两条坐标轴围成矩形面积为k,注意加绝对值时,有正负两个答案.【例4】(2023•和平区校级三模)如图,点A在双曲线上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k 的值为()A .2B .4C .﹣2D .﹣4【变式】如图,矩形ABCD 的边CD 在x 轴上,顶点A 在双曲线1y x =上,顶点B 在双曲线3y x=上,求矩形ABCD 的面积.A B CDE Oxy【方法二】实例探索法题型1.反比例函数的图象与性质的应用1.(2023•株洲)下列哪个点在反比例函数的图象上?()A .P 1(1,﹣4)B .P 2(4,﹣1)C .P 3(2,4)D .2.(2023•西湖区校级开学)若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),都在反比例函数(k 为常数,k>0)的图象上,其中y 2<0<y 1<y 3,则x 1,x 2,x 3的大小关系是()A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 33.(2023春•东阳市期末)已知反比例函数的图象的一支如图所示,它经过点(3,﹣2).(1)求此反比例函数的表达式,并补画该函数图象的另一支.(2)求当y ≤4,且y ≠0时自变量x 的取值范围.4.(1)平面直角坐标系中,点A (725)m m --,在第二象限,且m 为整数,求过点A 的反比例函数解析式;(2)若反比例函数3k y x -=的图像位于第二、四象限内,正比例函数2(1)3y k x =-过一、三象限,求整数k 的值.5.已知反比例函数(0)k y k x =≠,当自变量x 的取值范围为84x ≤≤--时,相应的函数取值范围是12y ≤≤--1,求这个反比例函数解析式.题型2.反比例函数与图形面积问题6.(1)若P是反比例函数3kyx=图像上的一点,PQ⊥y轴,垂足为点Q,若2POQs∆=,求k的值;(2)已知反比例函数kyx=的图像上有一点A,过A点向x轴,y轴分别做垂线,垂足分别为点B C,,且四边形ABOC的面积为15,求这个反比例函数解析式.7.(2022秋•朝阳期末)如图,一次函数y=k1x+b与反比例函数y=(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b的x的取值范围;(3)求△AOB的面积.题型3.利用反比例函数图象的对称性解题8.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为()A.﹣3B.﹣C.D.39.(2023•广西)如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D 两点,以AB,AD为邻边的矩形ABCD被坐标轴分割成四个小矩形,面积分别记为S1,S2,S3,S4,若,则k的值为()A.4B.3C.2D.1(1)若点A(1,1),分别求线段(2)对于任意的点A(a,b),试探究线段14.(2022秋·安徽滁州·九年级统考期中)如图,已知1A,2A,3A,…,n A…是x轴上的点,且15.(2021秋·河北石家庄每个台阶凸出的角的顶点记作(1)若L 过点1T ,则k =(2)若曲线L 使得1T T ~16.(2022秋·全国·九年级期末)如图,已知反比例函数题型5.反比例函数与几何图形的综合17.过原点作直线交双曲线(0)ky k x=>于点A 、C ,过A 、C 两点分别作两坐标轴的平行线,围成矩形ABCD ,如图所示.(1)已知矩形ABCD 的面积等于8,求双曲线的解析式;(2)若已知矩形ABCD 的周长为8,能否由此确定双曲线的解析式?如果能,请予求出;如果不能,说明理由.y ABCDOx18.正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数(0)ky k x=>的图像上,已知正方形OAPB 的面积是16.(1)求k 的值和直线OP 的函数解析式;(2)求正方形ADEF 的边长.yABPFOxED19.如图,已知正方形OABC 的面积是9,点O 为坐原点,A 在x 轴上,C 在y 轴上,B 在函数(00)ky k x x=>>,的图像上,点P (m ,n )在(00)ky k x x=>>,的图像上异于B 的任意一点,过点P 分别作x 轴,y 轴的垂线,垂足分别是E 、F .设矩形OEPF 和正方形OABC 不重合部分的面积是S .(1)求点B 的坐标;(2)当92S =时,求点P 的坐标;(3)写出S 关于m 的函数解析式.A BC PE FyOx【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义1.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y =和y =的图象的四个分支上,则实数n 的值为()A .﹣3B.﹣C.D .32.(2023•湘西州)如图,点A 在函数y=(x >0)的图象上,点B 在函数y=(x >0)的图象上,且AB ∥x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为()A .1B .2C .3D .4考法2.利用反比例函数的性质比较函数值大小3.(2023•镇江)点A(2,y1)、B(3,y2)在反比例函数y=的图象上,则y1y2(用“<”、“>”或“=”填空).4.(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y45.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【方法四】成果评定法一、单选题A.1 43.(2022·福建福州·校考模拟预测)如图,在x轴于B、D两点,连结A .4B .65.(2022秋·福建厦门·九年级校考期中)如图,过双曲线上任意一点交x 轴、y 轴于点M 、N ,所得矩形A .4B .4-6.(2021秋·河北石家庄·九年级校联考期中)关于反比例函数A .函数图像分别位于第一、三象限C .函数图像过()(23A mB n -,、,A.4 10.(2023·江苏宿迁图像上,点E在yA.1B 二、填空题11.(2022秋·湖南永州13.(2022秋·黑龙江大庆的大小关系是14.(2023·安徽滁州15.(2023秋·重庆沙坪坝比例函数()0ky k x=≠上两点,平行线,两直线交于点16.(2023秋·福建泉州·九年级校考专题练习)如图,已知直线(00)a y x a x =>>,和b y x =象于点D ,过点C 作CE ∥17.(2022秋·贵州铜仁·九年级统考期中)如图,点112232021OA A A A A A ==== 图象分别交于点123,,,B B B 18.(2023·浙江·九年级专题练习)如图,点所示,分别过点A ,C 作x 轴与构成的阴影部分面积为2,则矩形三、解答题19.(2023秋·陕西榆林·九年级校考期末)已知反比例函数(1)函数的图象在第二、四象限?(1)求k的值;(2)请用无刻度的直尺和圆规作出(3)设(2)中的角平分线与⊥.证:DE OA(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点()121,7552,,,,2A y B y C x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭②当函数值2y =时,求自变量x 的值;(1)求点A 的坐标;(2)求反比例函数的解析式:(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足12PBO ODE S S∆∆=。
11.2 反比例函数的图像与性质(3)

反馈训练: 见指南
影部分面积为3,则这个反比例函数的
关系式是
y
3 x
( x.
0)
y
p
N
M ox
1、分别举出具有下列特征的反比例函数:
(1)图象分布在第一、三象限;
(2)图象在每一个象限内,y随x的增大而增大.
2、如图,P1、P2、P3是双曲线上的三点, 过这三点分别作y轴的垂线,得到三个三角形
△面积P1分A1别O、是△S1P、2AS22O、、S3△.则P(3A3DO,)设他们的y
则四边形OBAC的面积=
。
y
AC
BO
x
2.已知:A是双曲线上的一点,过点A向
x轴作垂线,垂足为B,△AOB的面积
是4,则它的解析式为
。
3.如图,点P是反比例函数 y 2 图象上 x
的一点,PD⊥x轴于D.则△POD的面积
为1 .
y
P (m,n)
oD
x
4.如图,点P是反比例函数图象上的一
点,过点P分别向x轴、y轴作垂线,若阴
反比例函数 y=10 ( x>0)的图像是其在第一 x
象限的一支.
2.
y
yy k6 y xx
y
P2(1,6) P1(3,2) P(m,n)
P(m,n)
A P(m,n)
o
x
oA
xo
x
S=︱k︱
1 S= 2 ︱ k︱
1.A是双曲线y= x5上一点,过点A向x轴 作垂线,垂足为B,向y轴作垂线,垂足为C,
y随x增大而增大,求n的取值范围.
5.已知点A(2,y1)、B(1,y2)在反比例函数
y= k x
第2课时反比例函数的图象和性质精品课件

在物理学中,一些物理量之间可能存在反 比例关系,如速度和时间。通过反比例函 数可以分析这种关系并求解相关问题。
05
练习题与课堂互动环节
判断题练习
01
判断题1
函数 y = k/x (k ≠ 0) 的图象经 过原点。
02
判断题2
反比例函数 y = k/x (k > 0) 的 图象在第一、三象限。
03
近线的位置。
04
用平滑的曲线连接各点
与列表法相同,需要用平滑的 曲线连接各坐标点,以得到完
整的反比例函数图象。
图象特点分析
反比例函数的图象是双曲线,且以原点 为对称中心。
图象的两条渐近线分别是x轴和y轴。
当x>0时,图象位于第一象限;当x<0时 ,图象位于第三象限。
在每个象限内,随着x的增大(或减小) ,y的值逐渐减小(或增大),但永远不 会与x轴或y轴相交。
例函数。
我能够熟练地画出反比例函数的 图象,并根据图象分析函数的性
质。
我能够运用反比例函数的性质解 决一些实际问题,如比较函数值
的大小等。
拓展延伸:反比例函数在其他领域应用
物理中的应用
在电路中,电阻、电流和电压之间的关系可以表示为反比例函数。例如,当电阻一定时, 电流与电压成正比;当电压一定时,电流与电阻成反比。
02
01
因为当 $x = 0$ 时,函数值 $y$ 无定义(分母不能为 0)。
函数值变化规律
当 $k > 0$ 时
函数图象位于第一象限和第三象限, 且关于原点对称。
在第一象限和第三象限内,随着 $x$ 的增大,$y$ 的值逐渐减小,且无限 趋近于 $x$ 轴。
函数值变化规律
《反比例函数的图象和性质》反比例函数PPT课件 (共23张PPT)

挑战“记忆”
你还记得正比例函数 的图象与性质吗? y=kx(k≠0)
回顾与思考
正比例函数y=kx(k≠0)的图象是
当k>0时,
y
一条直线
当k<0时,
y
o
x
o
x
y随x的增大而增大;
y随x的增大而减小.
设问:
1. 我们已研究过正比例函数,一次函 数的图像,那反比例函数的图像是否象 前面所学的函数一样是直线呢? 2. 图像会与坐标轴相交吗,为什么?
y
0 1
k>0
双 x曲 线
-4 x x
x 反比例函数y = — k 的图象是由两支曲线 组成的。
(1)
一 、___ 三 象限, 当 k>0 时,两支曲线分别位于第___ 在每一象限内,y的值随x值的增大而 _____ 减小 ;
二、___ 四 象限. (2) 当 k<0 时,两支曲线分别位于第___ 在每一象限内,y的值随x值的增大而_____ 增大 。
(不相交,x≠0 ,y≠0)
画函数图象的三个步骤
是什么?
1、列表
2、描点
3、连线
4 例1.画出函数 y = — 的图象。 x
例1.画出函数 y = —4 的图象。 x
解: 1.列表:
x Y=
4 x
… -8 -4 -3 -2 -1 …
1 -2
-1
4 -3
1 -2
…
1 2
1 2 3 4 8 2
4 3
● ●
3.连线:
-1 -2 -3 ● -4 -5 -6 -7 ● -8
x
Y=4/X的函数曲线 12.5 10 7.5 5 2.5 0 -2.5 -2 -1.5 -1 -0.5 -2.5 -5 -7.5 -10 -12.5 0 0.5 1 1.5 2 2.5
反比例函数的应用ppt课件

清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
人教版九年级下册数学知识点总结

人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
高中数学 常见函数:正比例函数、反比例函数与对勾函数
1 / 3常见函数之 正比例函数、反比例函数与对勾函数1.正比例函数如果y=kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线一次函数的性质当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小。
2、反比例函数(1) 反比例函数及其图象如果)0,(≠=k k xk y 是常数,那么,y 是x 的反比例函数。
反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象(2)反比例函数的性质当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y 随x 的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。
3.对勾函数()b f x ax x=+的图象与性质 对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(1) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0b<0对勾函数的图像(ab 同号)2 /3 当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
反比例函数的图像和性质及应用复习公开课课件
是6。
(1)求这个一次函数的解析式
y
(2)求三角形POQ的面积
D
P
C
o
x
Q
5.当反比例函数y=m+1 / x的图象满足__y_随__x_的__增__大__而__减__小_____ 时,m的取值范围是 m> -1 。
找范围
、函数 y 2 的图象,当x=-2时,y= __-_1 ,当x<-2
x
时,y的取值范围是 -_1_<_y<_0_ ;当y﹥-1时,x的取值范围 是 _X_<_-_2_或__x_>_0 .
y
0
x
y
0
x
画一画
描点法
画出反比例函数 y =
4 x
和
y=
4 x
的函Байду номын сангаас图象。
列
描
连
表
点
线
注意:①列表时自变量取值要均匀 和对称,x≠0②描点时自左住右用 光滑曲线顺次连结,切忌用折线。 ③两个分支合起来才是反比例函数图象。
说一说
反比例函数y=k/x(k≠0)的性质
y
y
0
x
0
x
1.点(23,-3)在反比例函数y=k/x的图象上,则k=__-6_9___。 该函数的图象位于第_二__,四____象限,y随x增大而__增_大____,若点 P(a, 2)是该函数上的一点,则a=___-6_9_/_2_.
. 如图所示,已知直线y1=x+m与x轴、y•轴分别
交于点A、B,与双曲线y2=
k(k<0)分别交于 x
点C、D,且C点坐标为(-1,2).
(1)分别求直线AB与双曲线的解析式; (2)求出点D的坐标;
反比例函数知识点
反比例函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!反比例函数知识点数学学习反比例函数要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.反比例函数知识点有哪些?一起来看看反比例函数知识点,欢迎查阅!反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
中考数学 精讲篇 考点系统复习 第三章 函数 第三节 反比例函数
1 (2)由(1)得:△BCH 的面积为2×4×4=8.
9.(2016·重庆 A 卷第 22 题 10 分)如图,在平面直角坐标系中,一次函 数 y=ax+b(a≠0)的图象与反比例函数 y=kx(k≠0)的图象交于第二、第 四象限内的 A,B 两点,与 y 轴交于 C 点.过 A 作 AH⊥y 轴,垂足为点 H,
8
8 32
∴BE=3.∴k=4×3= 3 .故选:D.
命题点 2:反比例函数与一次函数、三角函数、几何图形的综合(近 6 年考查 4 次) 7.(2017·重庆 A 卷第 22 题 10 分)如图,在平面直角坐 标系中,一次函数 y=mx+n(m≠0)的图象与反比例函数 y =kx(k≠0)的图象交于第一、三象限内的 A,B 两点,与 y 轴交于点 C.过点 B 作 BM⊥x 轴,垂足为 M,BM=OM,OB= 2 2,点 A 的纵坐标为 4.
4 OH=3,tan∠AOH=3,点 B 的坐标为(m,-2). (1)求△AHO 的周长; (2)求该反比例函数和一次函数的解析式.
解:(1)∵AH⊥y 轴于点 H,∴∠AHO=90°. AH 4
∵tan∠AOH=OH=3,OH=3, ∴AH=4. OA= AH2+OH2= 42+32=5. ∴△AHO 的周长为 3+4+5=12.
∴一次函数的解析式为 y=-x-1.
令 y=0,得 x=-1,∴点 C 的坐标为(-1,0).
1
(2)由(1)知,点 A 的坐标为(-4,3), 点 A 在反比例函数 y=kx(k≠0)的图象上, ∴∵∴反点3比=B(例-mk,函4.-数∴2的k)=在解-反析1比式2,例为函y=数-y=1x2-. 1x2的图象上,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学导学案总课时数课题 5.2反比例函数的图
象与性质(二)
课时数 1 撰写人
学习目标进一步巩固作反比例函数的图象.
逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.
重点难点提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质. 自学指导类比一次函数图象性质引出反比例函数图象其他性质
自主探究1.做—做
(1)函数图象分别位于哪几个象限?
(2)在每一个象限内,随着x值的增大.y的值是怎样变化的?这是为什么吗?
(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?
2.议一议
研究y=-
x
2
,y=-
x
4
,y=-
x
6
的图象有哪些共同特征?回答上面三个同样的问题。
通过讨论,可以得出如下结论:
反比例函数y=
x
k
的图象,当k()时,在每一象限内,y的值随x值的
增大而();当k()时,在每一象限内,y的值随x值的增大
而().
3.想一想
(1)在一个反比例函数图象任取两点P、Q,过点Q
分别作x轴,y轴的平行线,与坐标轴围成的矩
形面积为S
1
;过点Q分别作x轴y轴的平行线,
与坐标轴围成的矩形面积为S
2
,S
1
与S
2
有什么关
系?为什么?
(2)将反比例函数的图象绕原点旋转180°后.能与原来的图象重合吗?
反比例函数的图象是一个以( )为中心的( )对称图形
尝
试
应
用
1.反比例函数y=k/x的图象,当k()0时,在第()象限内,在每一
象限内,y的值随,值的增大而();当k()O时,图象在第()
象限内,y的值随x值的增大而().
2.在一个反比例函数图象上任取两点P,Q,分别过P,Q作x轴、y轴的平行
线,与坐标轴围成的矩形面积为S
1
,S
2
,则有()
3.将反比例函数的图象绕原点旋转180°后,能与原来的图形().即反比例
函数是()图形.
4.反比例函数的图象既不能与x轴相交也不能与y轴(),但是当x的值越
来越接近于0时,y的值将逐渐变得很大;反之,y的值将逐渐接近于0.因此,
图象的两个分支无限接近;轴和y轴,但永远不会与x轴和y轴相交.
自学时发现的问题。