【人教版】2019年春八年级下册数学:全册精品导学案16.3 第2课时 二次根式的混合运算
新人教版八年级数学下册导学案(全册136页)

第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 是多少时,31x -在实数范围内有意义? 解:由 得: 。
当 时,31x -在实数范围内有意义.(3)注意:1、形如a (a ≥0)的式子叫做二次根式的概念;2、利用“a (a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x 是多少时,23x ++11x +在实数范围内有意义? 例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2)(2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25)三、巩固练习 教材练习. 四、课堂检测 (1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式? -7 37x x 4 16 8 1x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.若3x -+3x -有意义,则2x -=_______.3.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数4.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0). 学习目标:1、理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗? (二)学生学习课本知识 (三)、探究新知1、a (a ≥0)是一个 数。
人教版数学八年级下全册导学案2【精品】

八年级(下)数学导学案教学目录第16章二次根式(9)16.1 二次根式(2)16.2 二次根式的乘除(2)16.3 二次根式的加减(3)阅读与思考海伦——秦九韶公式数学活动小结(2)第17章勾股定理(9)17.1 勾股定理(4)阅读与思考勾股定理的证明17.2 勾股定理的逆定理(3)阅读与思考费马大定理数学活动小结(2)第18章平行四边形(15)18.1 平行四边形(7)18.1.1 平行四边形的性质18.1.2 平行四边形的判定18.2 特殊的平行四边形(6)18.2.1 矩形18.2.2 菱形18.2.3 正方形实验与探究丰富多彩的正方形数学活动小结(2)第19章一次函数(17)19.1 变量与函数(6)19.1.1 变量与函数19.1.2 函数的图象阅读与思考如何测算岩石的年龄19.2 一次函数(7)19.2.1 正比例函数19.2.2 一次函数19.2.3一次函数与方程、不等式信息技术应用用计算机画函数图象19.3 课题学习选择方案(2)数学活动小结(2)第20章数据的分析(12)20.1 数据的集中趋势(6)20.1.1 平均数20.1.2 中位数和众数20.2 数据的波动程度(2)阅读与思考数据波动程度的几种度量20.3课题学习体质健康测试中的数据分析(2)数学活动小结(2)第二十一章 二次根式 16.1 《 二次根式(1)》学案课型: 上课时间: 课时:学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程 一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
新人教版八年级下册数学全册导学案

目录学习目标学习目标学习目标$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(二)导学案$16.1二次根式(二)导学案$16.1二次根式(二)导学案$16.1二次根式(二)导学案)0,0()4()8(6416)3()5()5()2(22222<<<+-+-b a b a m m m$16.1二次根式(二)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案b a b a =()0,0>≥b a$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.3二次根式的加减(一)导学案$16.3二次根式的加减(一)导学案$16.3二次根式的加减(一)导学案3($16.3二次根式的加减(一)导学案$16.3二次根式的加减(二)导学案$16.3二次根式的加减(二)导学案$16.3二次根式的加减(二)导学案$16.3二次根式的加减(二)导学案)22)(32(2+-$17.1勾股定理(一)导学案$17.1勾股定理(一)导学案上)二、答疑解惑我最棒(约8分钟)甲:乙:丙:丁:同伴互助答疑解惑 三、合作学习探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题◆关于直角三角形,你知道哪些方面的知识?(1)直角三角形叫Rt △(2)两锐角互余∠A+∠B=90°(3)三角形的面积s=21ab=21hc (4)30°所对的直角边等于斜边的一半(5)证明两个直角三角形全等有“HL”◆毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500•年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯$17.1勾股定理(一)导学案学习活动设计意图 却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突破恍然大悟的样子,站起来,大笑着跑回家去了.同学们,你想知道大哲学家发现了什么吗?(见课件)问题:大正方形的面积与两个小正方形的面积有什么关系?$17.1勾股定理(一)导学案学习活动设计意图◆在约公元前1100年,我国古算书《周髀bì算经》记载,人们已经知道,如果勾是三,股是四,那么弦是五.在我国古代,人们将直角三角形中的短的直角边叫做勾长的直角边叫做股斜边叫做弦.四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:(1)经过证明被确认正确的命题叫做定理(2)勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,那么即 直角三角形两直角边 的平方和等于斜边的平方。
八年级下册数学(人教版)导学案—16

八年级下册数学(人教版)导学案—16.3二次根式的加减二次根式的加减(1)学习内容:二次根式的加减学习目标:1、理解和掌握二次根式加减的方法.2、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.学习过程一、自主学习(一)、复习引入计算.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3 == == == ==以上题目,是我们所学的同类项合并.同类项合并就是字母不变,系数相加减.(二)、探索新知学生活动:计算下列各式.(1)2(2)==(3)(4)==由此可见,二次根式的被开方数相同也是可以合并的,如但它们可以合并吗?也可以.3=3所以,二次根式加减时,可以先将二次根式化成最简二次根式, 再将被开方数相同的二次根式进行合并.例1.计算(1(2==例2.计算(1)-(2))+(= =归纳:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.二、巩固练习教材练习三、学生小组交流解疑,教师点拨、拓展1、例3.已知4x2+y2-4x-6y+10=0,求(+y)-(x)的值.2、归纳小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.四、课堂检测(一)、选择题1.以下二次根式:;中,().A.①和① B.①和① C.①和① D.①和①232.下列各式:①=1;;,其中错误的有( ).A .3个B .2个C .1个 D.0个二、填空题13、-2是同类二次根式的有________.2.计算二次根式-7的最后结果是________.三、综合提高题1.已知-(结果精确到0.01)2.先化简,再求值.(6x-(,其中x=,y=27. 二次根式的加减(2)课型: 上课时间: 课时:学习内容:利用二次根式化简的数学思想解应用题.学习目标:1、 运用二次根式、化简解应用题.2、 通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.学习过程一、 自主学习(一)、复习引入上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,1732先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,(二)、探索新知例1.如图所示的Rt①ABC中,①B=90°,点P从点B开始沿BA边以1厘米/①秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后①PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)分析:设x秒后①PBQ的面积为35平方厘米,那么PB=x,BQ=2x,①根据三角形面积公式就可以求出x的值.解:设x 后①PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:求解得:所以①PBQ的面积为35平方厘米.PQ=答:①PBQ的面积为35平方厘米,PQ的距离为厘米.例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,①只需知道这四段的长度.解:由勾股定理,得AB=BC=BACQP所需钢材长度为: AB+BC+AC+BD==二、巩固练习教材练习三、学生小组交流解疑,教师点拨、拓展1、 例3.若最简根式是同类二次根式,求a 、b 的值.(①同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同的根式; 解:首先把根式化为最简二次根式:=由题意得方程组:解方程组得:2、本节课应掌握运用最简二次根式的合并原理解决实际问题.四、课堂检测(一)、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(①结果用最简二次根式) A .5 B C . D .以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,①为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示) A .13 B . C . D .(二)、填空题 (结果用最简二次根式)1.有一长方形鱼塘,已知鱼塘长是宽的2倍,面积是1600m 2,①鱼塘的宽是_______m .2.已知等腰直角三角形的直角边的边长为,那么该等腰直角三角形的周长是____.3a(三)、综合提高题1.若最简二次根式是同类二次根式,求m 、n 的值. 2.同学们,我们观察下式:(-1)2=)2-+12=2-2+1=3-反之,3-2=2-+1=(1)2①3-2=-1)2-1求:(1(2; (3吗?二次根式的加减(3)学习内容:含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.学习目标:1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.学习过程一、 自主学习(一)复习引入1.计算 (1)(2x+y )·zx== (2)(2x 2y+3xy 2)÷xy===2.计算 (1)(2x+3y )(2x -3y ) (2)(2x+1)2+(2x -1)2=== ===(二)、探索新知如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?①仍成立. 例1.计算: (1)+× (2)(-)= =n例2.计算 (1))(3(2)))==二、巩固练习课本练习三、学生小组交流解疑,教师点拨、拓展1、例3.已知,X==2 ,并求值. 解:原式=+ =(x+1)+x -=4x+2当X==2时①原式=4X2+2=102、、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.四、课堂检测(一)、选择题1.-)的值是( ). A .3B .3C .D .2.计算().A .2 B.3 C .4D .1(二)、填空题1.(-+)2的计算结果(用最简根式表示)是________. 2.(1-(-(1)2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.2(1)x x +-2(1)x x+-20323232031224.已知,b=3-2,则a2b-ab2=_________.三、综合提高题1.化简2.当的值.(用最简二次根式表示)课外知识(1)、练习:下列各组二次根式中,是同类二次根式的是().ABC与D.(2)、互为有理化因式:①互为有理化因式是指两个二次根式的乘积是有理数,不含有二次根式:如+1-1也是互为有理化因式.练习:1________;2、x的有理化因式是_________.3、_______.。
人教版八年级数学下册导学案(全册)

第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
2019年【人教版】八年级下册数学:全册精品导学案(40份打包)-精品

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念学习目标:1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题.重点:理解二次根式的概念及有意义的条件.难点:利用二次根式的有意义的条件及其非负性解题.一、知识链接1.什么叫作平方根?2.什么叫作算术平方根?什么数有算术平方根?二、新知预习1. 用带根号的式子填空:(1)如图①的海报为正方形,若面积为2m 2,则边长为 m ;若面积为S m 2,则边长为______ m .(2)如图②的海报为长方形,若长是宽的2倍,面积为6m 2,则它的宽为_____m .(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,那么t 为_____. 2.自主归纳:(1)二次根式的概念:一般地,我们把形如()0a a ____的式子叫作二次根式. “____”称为二次根号.(2)二次根式的双重非负性:二次根式的被开方数为________数,二次根式的值为_________数.三、自学自测1.下列各式中是二次根式的是( )A .33 B.4 C.3-π D.()31-自主学习教学备注学生在课前完成自主学习部分教学备注 配套PPT 讲授1.情景引入 (见幻灯片3-8)2.探究点1新知讲授(见幻灯片9-16)图① 图②四、我的疑惑____________________________________________________________一、要点探究探究点1:二次根式的意义及有意义的条件问题分别表示什么意义?问题2这些式子有什么共同特征?要点归纳:一般地,我们把形如)0a≥的式子叫作二次根式.为_______.例1 下列各式中,哪些是二次根式?哪些不是?))(1)(2)6;(3)0(5),;(6)mx y≤;异号1(1.下列各式:)1x≥一定是二次根式的个数有( )A.3个B.4个C.5个D.6个2.(1)x的取值范围是___________;(2)若式子12x +-x 的取值范围是___________.探究点2:二次根式的双重非负性问题1:当x问题2a 的取值范围是什么?它本身的取值范围又是什么?要点归纳:二次根式的实质是表示一个非负数(或式)的算术平方根.对于任意一个二次1)a 为被开方数,为保证其有意义,可知a ____0; (2例3 若22(4)0a c --=,求a -b +c 的值.【变式题】已知a ,b 为等腰三角形的两条边长,且a ,b 满足4b =,求此三角形的周长. 已知|31|和4的平方根. 2. ( ) A.x >2 B.x ≥2 C.x <2 D.x ≤2 3.当x =____取最小值,其最小值为______.2.使式子()2a有意义的条件是_______________.二、要点探究 探究点1:()()20a a ≥的性质活动1 如图是一块具有民族风的正方形方巾,面积为a ,求它的边长,并用所求得的边长表示出面积,你发现了什么?活动2 为了验证活动1的结论是否具有广泛性,下面根据算术平方根及平方的意义填空,你又发现了什么?a (a ≥0) 算术平方根 a 平方运算()2a观察两者有什么关系?要点归纳:一般地,()2a a =(a ____0),即一个非负数的算术平方根的平方等于_________. 典例精析例1(教材P3例2变式题)计算:2237(1);(2).54⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭例2 在实数范围内分解因式:242(1)3;(2)4 4.x y y --+方法总结:本题逆用了()()20aa a =≥在实数范围内分解因式.在实数范围内分解因式时,原来在有理数范围内分解因式的方法和公式仍然适用.针对训练 计算: 22(1)(5)(2)(22). ;课堂探究教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片12-21)2 413 ... ____________________ ...____________________ ...探究点2:2a 的性质 议一议:下面根据算术平方根的意义填空,你有什么发现?1.计算:=24 ;=22.0 ;=2)54( ; =220 .观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时 .2.计算:=-2)4( ;=-2)2.0( ;=-2)54( ;=-2)20( .观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 . 3.计算:=20 ;当==2,0a a 时 .要点归纳:将上面得到的结论综合起来,得到二次根式的又一条非常重要的性质:()()()2____0____=0____0.a a a a a ⎧⎪==⎨⎪⎩>,,<即任意一个数的平方的算术平方根等于它本身的绝对值. 典例精析例3 (教材P4例3变式题)化简:2(1)10;-2(2)(3.14).-π方法总结:利用2a a =化简求值时,先应确定a 的正负,再化简. 例4 实数a 、b 在数轴上的对应点如图所示,请你化简:()222.a b a b -+-【变式题】实数a 、b 在数轴上的对应点如图所示,化简:2244a ab b a b +++-.方法总结:利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号.例5 已知a 、b 、c 是△AB C 的三边长,化简:()()()222.a b c b c a c b a ++-+-+-- 分析:教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片12-21)利用三角形三边关三边长均为正数,a +b >c 两边之和大于第三边,b +c -a >0,c -b -a <0针对训练 1.计算:22(1)(-2)(2)(-1.2). ;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-探究点3:代数式的定义用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起来的式子,我们称这样的式子为代数式. 典例精析例6 (1)一条河的水流速度是2.5 km/h ,船在静水中的速度是 v km/h ,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为5:3的长方形贺卡,若面积为S ,用代数式表示出它的长.方法总结:列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是( ) A.7 B.3>2 C .2x D.2223x y + 2.如图是一圆形挂钟,正面面积为S ,用代数式表示出钟的半径为__________.二、课堂小结 二次根式的性质 内容性质1一个非负数的算术平方根的平方等于它_______.即()()20.a a a =≥教学备注配套PPT 讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)1.化简16得( )A. ±4B. ±2C. 4D.-42.当1<x <3时,2(3)3x x --的值为( )A.3B.-3C.1D.-13.下列式子是代数式的有 ( )①a 2+b 2; ②ab ; ③13; ④x =2; ⑤3×(4-5);⑥x -1≤0; ⑦10x +5y =15 ; ⑧.ac b+ A.3个 B.4个 C.5个 D.6个 4.化简:(1)9=_______ ; (2)2(4)-=_______; (3)()27______-=; (4)()281______=.5. 实数a 在数轴上的位置如图所示,化简22(1)a a -+-的结果是_________.6.利用a =2()a (a ≥0),把下列非负数分别写成一个非负数的平方的形式: (1) 9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0 . 能力提升7.(1)已知a 为实数,求代数式2242a a a +---+的值. (2)已知a 为实数,求代数式249a a a +--+-的值.第十六章 二次根式16.2 二次根式的乘除第1课时 二次根式的乘法学习目标:1.理解二次根式的乘法法则;2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算. 重点:理解二次根式的乘法法则:()0,0≥≥=⋅b a ab b a .难点:会运用二次根式的乘法法则和积的算术平方根的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子()2a 有意义的条件是_________.自主学习 当堂检测教学备注 配套PPT 讲授 6.当堂检测 (见幻灯片26-29)教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-5)2.探究点1新知讲授(见幻灯片6-15)三、要点探究 探究点1算一算 计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯_____;2516____;_______2516)2(=⨯=⨯=⨯._____3625____;_______3625)3(=⨯=⨯=⨯思考 你发现了什么规律?你能用字母表示你所发现的规律吗?猜测 _____0,0ab a b ,你能证明这个猜测吗?要点归纳:一般地,二次根式相乘,_________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.例1(教材P6例1变式题)计算:二次根式乘法法则同0,k a b k a b ⋅⋅=⋅⋅⋅⋅≥≥(计算:37;1(2)427-3.2⎛⎫⨯ ⎪⎝⎭方法总结:当二次根式根号外的因数不为(a n b mn =比较大小(一题多解533与;(2)--方法总结: 比较两个二次根式大小的方法:可转化为比较两个被开方数的大小,即将根号外的正数平方后移到根号内,计算出被开方数后,再比较被开方数的大小被开方数大的,其算术平方根也大.也可以采用平方法.1.计算82⨯的结果是 ( ) A.10 B.4 C.6 D.22.下面计算结果正确的是 ( ) A.452585⨯= B. 5342205⨯= C. 433275⨯= D.5342206⨯=3.计算:61510⨯⨯=_________. 探究点2:积的算术平方根的性质 一般的()0,0≥≥=⋅b a ab b a ,反过来可写为______0,0_ab a b要点归纳:算术平方根的积等于各个被开方数积的算术平方根. 典例精析例4 (教材P7例2变式题)化简:(1)225328-;(2)()3226900x x y xy x y ,++≥≥ .方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.针对训练 1. 计算:()()31(1)144169(2)284a a ; . -⨯-⋅2.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若长为24,宽为8,求出它的面积.二、课堂小结二次根式的乘内容教学备注 配套PPT 讲授3.探究点2新知讲授(见幻灯片16-22)4.课堂小结(见幻灯片29)0,0a b a b多个二次根式相乘时此法则也适用,即(0,a b c n abc n a⋅⋅⋅=⋅⋅⋅≥()(0,m a n b mn ab a b=≥≥6x-,则()A.≥6 B.x≥0 C.0≤≤6 D.为一切实数2.下列运算正确的是()A.=B.532=-=(2)(4)8-⨯-=5315==⨯= 3.计算:(1)⨯______ ;(2)⨯_______ ;(3)_____.=4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):12()--8a,12b,求250a,332b,求7,70,a b==试着用 4.9.第十六章二次根式当堂检测4___________;_____;91616___________;_____;2525 3636___________;_____.49你发现了什么规律?你能用字母表示你所发现的规律吗?_____0,0a a b b.:(1)算术平方根的商等于被开方数商的算术平方根(2)当二次根式根号外的因数(式除以单项式法则,探究点2:商的算术平方根的性质要点归纳:把二次根式的除法法则反过来,就得到二次根式的商的算术平方根的性质:a b≥>_00)_____,.(语言表述:商的算术平方根,等于积中各因式的算术平方根的商.例2 (教材P8例5变式题)计算:)0;x>1.x的取值范围是()A..x≠2B..x≥0C..x>2D..x≥22.化简:探究点3:最简二次根式这样的式子分母的根号吗?思考要点归纳:(1)把分母中的根号化去,使分母变成有理数的这个过程就叫做分母有理化.(2)我们把满足以下两个条件的二次根式,叫做最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.例3 在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.探究点4:二次根式除法的应用例4 (教材P9例7变式题)高空抛物现象被称为“悬在城市上空的痛”.据报道:一个30g的鸡蛋从18楼抛下来就可以砸破行人的头骨,从25楼抛下可以使人当场死亡.据研究从高空抛物时间t和高度h近似的满足公式t=从100米高空抛物到落地所需时间t2是从50米高空抛物到落地所需时间t1的多少倍?二、课堂小结 二次根式的除法内容二次根式的除法法则 算术平方根的积等于各个被开方数积的算术平方根.即0,0a aa b bb . 商的算术平方根的性质 商的算术平方根,等于积中各因式的算术平方根的商.即0,0a aa b bb. 最简二次根式最简二次根式满足两个条件:①被开方数不含分母; ②被开方数中不含能开得尽方的因数或因式.教学备注 配套PPT 讲授 4.探究点3新知讲授(见幻灯片15-19)5.探究点4新知讲授(见幻灯片20-21)6.课堂小结(见幻灯片27)1.满足什么条件的二次根式是最简二次根式?2.化简下列两组二次根式,每组化简后有什么共同特点?(1)8180.5;,, (2)804520.,,五、要点探究 探究点1:在二次根式的加减运算中可以合并的二次根式类比探究 在七年级我们就已经学过单项式加单项式的法则.观察下图并思考:(1)由左图,易得2a +3a = ;(2)当a 2时,分别代入左、右得_2__232=___; (3)当a 32333=_____+;......(4)根据右图,你能否直接得出当a 2,82a +3b 的值?结果能进行化简吗?.要点归纳:(1)判断几个二次根式是否可以合并(加减运算),一定都要化为最简二次根式再判断.(2)合并的方法与合并同类项类似,把根号外的因数(式)相加,根指数和被开方数(式)不变.如:(m a n a m n a =+典例精析例1 若最简根式2132m n +-3mn 的值.方法总结:确定可以合并的二次根式中字母取值的方法:利用被开方数相同,指数都为2列关于待定字母的方程求解即可.【变式题】38a -172a -可以合并,42a x x a--有意义,求x 的取值范围.针对训练 1.3是同类二次根式的是( )A.25 C.8128与最简二次根式1m +m =_____.课堂探究教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片11-19)3.下列二次根式,不能与12合并的是________(填序号). 1348125118.32①;②-;③;④;⑤探究点2:二次根式的加减及其应用思考 现有一块长7.5dm 、宽5dm 的木板,能否采用如图的方式,在这块木板上截出两个分别是8dm2和18dm2的正方形木板? 问题1 怎样列式求两个正方形边长的和?问题 2 所列算式能直接进行加减运算吗?如果不能,把式中各个二次根式化成最简二次根式后,再试一试(说出每步运算的依据).要点归纳:二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.加减法的运算步骤:(1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)并——把被开方数相同的二次根式合并. 典例精析例2 (教材P13例2变式题)计算: 1(1)8;50+ 1(2)312.27-例3 已知a ,b,c 满足()285320a b c -+-+-=.(1)求a ,b ,c 的值;(2)以a ,b ,c 为三边长能否构成三角形?若能构成三角形,求出其周长;若不能,请说明理由.分析:(1)若几个非负数的和为零,则这几个非负数必须为零;(2)根据三角形的三边关系来判断.【变式题】有一个等腰三角形的两边长分别为52,26,求其周长.二次根式的加减与等腰三角形的综合运用,关键是要分类讨论及会比较两个二次根式的大小. 针对训练1.下列计算正确的是( )教学备注配套PPT 讲授 3.探究点2新知讲授(见幻灯片11-19)4.课堂小结(见幻灯片27)A.222+=B. 3232⨯=C. 1233-=D.325+= 2.已知一个矩形的长为48,宽为12,则其周长为________. 二、课堂小结 二次根式的加减 内容法则 一般地,二次根式的加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意 (1)与实数的运算顺序一样;(2)实数的运算律仍然适用;(3)结果要化成最简形式.1.二次根式:31218272、、、中,与3能进行合并的是( )A .3122与B .3182与C .1227与D .1827与 2.下列运算中错误的是 ( )A.235+=B. 236⨯=C. 822÷=D.233()-= 3.三角形的三边长分别为204045,,,则这个三角形的周长为________. 4.计算:=( 1 ) 52 18 ______+;_________(2)418-92= ; -(3)102(3872)_______ +=;-.(4)512(38227)_______ +=5.计算:1(1)58-22718(2)218-5045.3++ ; ()1144311112484340.583(3)(4).⎛⎫⎛⎫+--- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭-;6.下图是某土楼的平面剖面图,它是由两个相同圆心的圆构成.已知大圆和小圆的面积分别为763.02m 2和150.72m 2,求圆环的宽度d (π取3.14).能力提升7.已知a ,b 都是有理数,现定义新运算:a *b=3a b +,求(2*3)-(27*32)的值.第十六章 二次根式当堂检测教学备注配套PPT 讲授 5.当堂检测(见幻灯片20-26)16.3 二次根式的加减第2课时 二次根式的混合运算学习目标:1.掌握二次根式的混合运算的运算法则;2.会运用二次根式的混合运算法则进行有关的运算.重点:二次根式的混合运算的运算法则.难点:运用二次根式的混合运算法则进行有关的运算.一、知识回顾1.二次根式的乘、除法则是什么?2.怎样进行二次根式的加减运算?3.填空:m (a +b +c )= ;(m +n )(a +b )= ;(ma +mb +mc )÷m = .六、要点探究 探究点1:二次根式的混合运算及应用 算一算:若把字母a ,b ,c ,m 都用二次根式代替(每个同学任选一组),然后对比归纳,你们发现了什么?要点归纳:二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用. 典例精析例1(教材P14例3变式题)计算:(1)32327+63();---06(2)20163+312.2()---方法总结:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.例2 甲、乙两个城市间计划修建一条城际铁路, 其中有一段路基的横断面设计为上底宽42m ,下底宽 62m ,高6m 的梯形,这段路基长 500 m ,那么这段路基的土石方 (即路基的体积,其中路基的体积=路基横断面面积×路基的长度)为多少立方米呢?针对训练课堂探究 自主学习 教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-10)教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片11-15)计算:(1 2 1⎝();() .探究点2:利用乘法公式进行二次根式的运算问题1 整式乘法运算中的乘法公式有哪些?问题2 整式的乘法公式对于二次根式的运算也适用吗?例3(教材P14例4变式题)计算:212);+((2);⨯201720192222.()((-⨯计算:())))2(1)1(2).;探究点3:求代数式的值n b的式子,构成2==2.计算2.=3.设,310,3101-=+=ba则a b(填“>”“ < ”或“= ”).4.计算:A BC C BAAB CC BA七、要点探究 探究点1:勾股定理的认识及验证 想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A ,B 和C 面积之间的关系,你能想到是什么关系吗? 2.右图中正方形A 、B 、C 所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A 、B 、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A 、B 、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法 利用我国汉代数学家赵爽的“赵爽弦图”课堂探究证明:∵S 大正方形=________,S 小正方形=________,S 大正方形=___·S 三角形+S 小正方形,∴________=________+__________.方法1:补形法(把以斜边为边长的正方形补成各 边都在网格线上的正方形):左图:S c =__________________________; 右图:S c =__________________________.方法2:分割法(把以斜边为边长的正方形分割成 易求出面积的三角形和四边形):左图:S c =__________________________; 右图:S c =__________________________. 教学备注 配套PPT 讲授2.探究点1新知讲授(见幻灯片6-19)3.探究点2新知讲授(见幻灯片20-24)要点归纳:勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 公式变形: 222222--.a c b b c a c a b ===+, ,探究点2:利用勾股定理进行计算 典例精析例1如图,在Rt △ABC 中, ∠C =90°. (1)若a =b =5,求c ; (2)若a =1,c =2,求b .变式题1 在Rt △ABC 中, ∠C =90°. (1)若a :b =1:2 ,c =5,求a ; (2)若b =15,∠A =30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2 在Rt △ABC 中,AB =4,AC =3,求BC 的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB =90°,CD ⊥AB ,AC =3,BC =4.求CD 的长.教学备注3.探究点2新知讲授(见幻灯片20-24)方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.针对训练求下列图中未知数x 、y 的值:二、课堂小结内 容勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.注 意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论1.下列说法中,正确的是 ( )A.已知a ,b ,c 是三角形的三边,则a 2+b 2=c 2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt △ABC 中,∠C =90°,所以a 2+b 2=c 2D.在Rt △ABC 中,∠B =90°,所以a 2+b 2=c22. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.3.在△ABC 中,∠C =90°.(1)若a =15,b =8,则c =_______. (2)若c =13,b =12,则a =_______.4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.5.求斜边长17cm 、一条直角边长15cm 的直角三角形的面积.6.如图,在△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°,AD =1,求△ABC 的周长.能力提升:7.如图,以Rt △ABC 的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,求△ABE 及阴影部分的面积.当堂检测 教学备注 配套PPT 讲授 4.课堂小结 (见幻灯片30)5.当堂检测 (见幻灯片25-29)第十七章 勾股定理17.1 勾股定理第2课时 勾股定理在实际生活中的应用学习目标:1.会运用勾股定理求线段长及解决简单的实际问题;2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长. 重点:运用勾股定理求线段长及解决简单的实际问题.难点:能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.一、知识回顾1. 你能补全以下勾股定理的内容吗?如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么____________. 2. 勾股定理公式的变形:a =_________,b =_________,c =_________. 3. 在Rt△ABC 中,∠C =90°.(1)若a =3,b =4,则c =_________;(2)若a =5,c =13,则b =_________.八、要点探究 探究点1:勾股定理的简单实际应用 典例精析例1在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?方法总结:利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.针对训练1. 湖的两端有A 、B 两点,从与BA 方向成直角的BC 方向上的点课堂探究 自主学习教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片4-11)C 测得CA =130米,CB =120米,则 AB 为 ( )A.50米B.120米C.100米D.130米2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草. (1)求这条“径路”的长;(2)他们仅仅少走了几步(假设2步为1米)?探究点2:利用勾股定理求两点距离及验证“HL ”思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?证明:如图,在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C =∠C ’=90°, AB =A ’ B ’,AC =A ’ C ’.求证:△ABC ≌△A ’ B ’ C ’ .证明:在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C=∠C ’=90°,根据勾股定理得BC =_______________,B ’ C ’=_________________. ∵AB=A ’ B ’,AC=A ’ C ’,∴_______=________. ∴____________≌____________ (________). 典例精析例2 如图,在平面直角坐标系中有两点A (-3,5),B (1,2)求A ,B 两点间的距离.方法总结:两点之间的距离公式:一般地,设平面上任意两点()()()()2211222121,,,,.A x yB x y AB x x y y =-+-则探究点3:利用勾股定理求最短距离想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,蚂蚁怎么走最近(在以下四条路线中选择一条)?2.若已知圆柱体高为12 cm ,底面半径为3 cm ,π取3,请求出最短路线的长度.要点归纳:立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线. 典例精析例3 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米(已知油罐的底面半径是2 m ,高AB 是5 m ,π取3)?变式题 小明拿出牛奶盒,把小蚂蚁放在了点A 处,并在点B 处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?例4 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?方法总结:求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径. 针对训练1.如图,是一个边长为1的正方体硬纸盒,现在A 处有一只蚂蚁,想沿着正方体的外表面到达B 处吃食物,求蚂蚁爬行的最短距离是多少二、课堂小结1.从电杆上离地面5m 的C 处向地面拉一条长为7m 的钢缆,则地面钢缆A到电线杆底部B 的距离是( )A.24mB.12mC.74m D. 26c m当堂检测 勾股定理 的应用用勾股定理解决实际问题解决“HL ”判定方法证全等的正确性问题 用勾股定理解决点的距离及路径最短问题教学备注4.探究点3新知讲授(见幻灯片15-24)5.课堂小结 (见幻灯片31)2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A.9cmB.12cmC.15cmD.18cm3.已知点(2,5),(-4,-3),则这两点的距离为_______.4.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?5. 如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm ,10cm 和6cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?能力提升6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm ,其横截面周长为36cm ,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?第十七章 勾股定理17.1 勾股定理第3课时 利用勾股定理作图或计算学习目标:1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.重点:会运用勾股定理确定数轴上表示实数的点及解决网格问题.难点:灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出自主学习教学备注 配套PPT 讲授6.当堂检测 (见幻灯片25-30)第1题图 第2题图。
新人教版八年级数学下导学案(全册)+数学教学反思汇总.docx
新人教版八年级数学下导学案(全册)+数学教学反思汇总第十六章二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:Va >0(a>0)和(斯)2=。
(。
20)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质> 0(a > 0)和(痴沪=a(a > 0)。
三、学习过程(-)复习回顾:(1)已知x2= a ,那么a是x的;1是。
的,记为,a—定是数。
(2)4的算术平方根为2,用式子表示为再=;正数。
的算术平方根为, 0的算术平方根为;式子Va > 0(a > 0)的意义是o(二)自主学习(1)V16的平方根是;(2)—个物体从高处自由落下,落到地面的时间是M单位:秒)与开始下落时的高度加单位:米)满足关系式h = 5t\如果用含h的式子表示t,则t=;(3)圆的面积为S,则圆的半径是;(4)正方形的面积为b-3,则边长为o思考:应,的,妤3等式子的实际意义.说一说他们的共同特征.定义:一般地我们把形如V^(«>0)叫做二次根式,。
叫做1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?也,-依,V4, 知20), V7T12、当。
为正数时西指。
的而0的算术平方根是负数—,只有非负数a才有算术平方根。
所以,在二次根式西中,字母。
必须满足—,膈才有意义。
3、根据算术平方根意义计算:(1)(V4)2⑵(妁2 (3) (V05)2(4)(昏根据计算结果,你能得出结论:(扃)七 ,其中心0,4、由公式(插)S0),我们可以得到公式a =(插V ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(V5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(打练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解尸一7 4a2-11(三)合作探究例:当x是怎样的实数时,在实数范围内有意义?解:由x-2>0,得x>2当x> 2时,/刁在实数范围内有意义。
人教版数学八年级下册16
人教版数学八年级下册16.3二次根式的加减教案教学内容:二次根式的加减教学目标:知识与技能目标:学生理解和掌握二次根式加减的方法。
过程与方法目标:教师先提出问题,分析问题,渗透对二次根式进行加减的方法的理解。
然后总结经验,用它来指导根式的计算和化简。
情感与价值目标:通过本节的研究培养学生利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力。
重难点关键:1.重点:二次根式化简为最简根式。
2.难点关键:判定是否是最简二次根式。
教法:1.引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识。
这充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用。
2.讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练,培养学生的阅读惯和规范的解题格式。
学法:1.类比的方法:通过观察、类比,使学生感悟二次根式加减的模型,形成有效的研究策略。
2.阅读的方法:让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3.分组讨论法:将自己的意见在小组内交换,达到取长补短,体验研究活动中的交流与合作。
4.练法:采用不同的练法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
媒体设计:PPT课件,展台。
课时安排:1课时。
教学过程:一、复引入学生活动:计算下列各式。
1)2x+3x;(2)2x-3x+5x;(3)x+2x+3y;(4)3a-2a+a教师点评:上面题目的结果,实际上是我们以前所学的同类项合并。
同类项合并就是字母不变,系数相加减。
二、探索新知学生活动:计算下列各式。
1)√2+√3;(2)√2-√3+√53)√7+2√7+3√7;(4)3√3-2√3+√2老师点评:1)如果我们把2看作x,不就转化为上面的问题吗?2+√3=(√2+√3)2+√3)(√2+√3)2+2√6+35+2√62)把8看作y;2-√3+√5=(√2-√3+√5)2-√3+√5)(√2-√3+√5)2-2√6+3+2√10-3√6-51-√6+2√103)把7看作z;7+2√7+3√7=(1+2+3)√76√74)3看作x,2看作y.3√3-2√3+√2=(3-2)√3+√23+√2因此,二次根式的被开方数相同是可以合并的,如√2和√8表面上看是不相同的,但它们可以合并。
【推荐】人教版数学八年级下全册导学案2
八年级(下)数学导学案教学目录第16章二次根式(9)16.1 二次根式(2)16.2 二次根式的乘除(2)16.3 二次根式的加减(3)阅读与思考海伦——秦九韶公式数学活动小结(2)第17章勾股定理(9)17.1 勾股定理(4)阅读与思考勾股定理的证明17.2 勾股定理的逆定理(3)阅读与思考费马大定理数学活动小结(2)第18章平行四边形(15)18.1 平行四边形(7)18.1.1 平行四边形的性质18.1.2 平行四边形的判定18.2 特殊的平行四边形(6)18.2.1 矩形18.2.2 菱形18.2.3 正方形实验与探究丰富多彩的正方形数学活动小结(2)第19章一次函数(17)19.1 变量与函数(6)19.1.1 变量与函数19.1.2 函数的图象阅读与思考如何测算岩石的年龄19.2 一次函数(7)19.2.1 正比例函数19.2.2 一次函数19.2.3一次函数与方程、不等式信息技术应用用计算机画函数图象19.3 课题学习选择方案(2)数学活动小结(2)第20章数据的分析(12)20.1 数据的集中趋势(6)20.1.1 平均数20.1.2 中位数和众数20.2 数据的波动程度(2)阅读与思考数据波动程度的几种度量20.3课题学习体质健康测试中的数据分析(2)数学活动小结(2)第二十一章 二次根式 16.1 《 二次根式(1)》学案课型: 上课时间: 课时:学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程 一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
人教版2019年春八年级下册数学全册精品导学案(40份打包)
16.1 二次根式第1课时 二次根式的概念学习目标:1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题.重点:理解二次根式的概念及有意义的条件.难点:利用二次根式的有意义的条件及其非负性解题.一、知识链接1.什么叫作平方根?2.什么叫作算术平方根?什么数有算术平方根?二、新知预习1. 用带根号的式子填空:(1)如图①的海报为正方形,若面积为2m 2,则边长为 m ;若面积为S m 2,则边长为______ m .(2)如图②的海报为长方形,若长是宽的2倍,面积为6m 2,则它的宽为_____m .(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,那么t 为_____. 2.自主归纳:(1)二次根式的概念:一般地,我们把形如()0a a ____的式子叫作二次根式. “____”称为二次根号.(2)二次根式的双重非负性:二次根式的被开方数为________数,二次根式的值为_________数.三、自学自测1.下列各式中是二次根式的是( )A .33 B.4 C.3-πD.()31-2.二次根式5x -有意义的条件是_____________. ____________________________________________________________自主学习教学备注学生在课前完成自主学习部分教学备注 配套PPT 讲授1.情景引入 (见幻灯片3-8)2.探究点1新知讲授(见幻灯片9-16)图① 图②一、要点探究探究点1问题分别表示什么意义?问题2这些式子有什么共同特征?要点归纳:)0a≥的式子叫作二次根式. ”称为_______.))(1)(2)6;(3)0(5),;(6)mx y≤;异号1(2)1x-(.若A.3个B.4个C.5个D.6个2.(1)x的取值范围是___________;(2)若式子12x+-x的取值范围是___________.探究点2:二次根式的双重非负性问题1:当x问题2的被开方数a的取值范围是什么?它本身的取值范围又是什么?要点归纳:二次根式的实质是表示一个非负数(或式)的算术平方根.1)a为被开方数,为保证其有意义,可知a____0;活动2 为了验证活动1的结论是否具有广泛性,下面根据算术平方根及平方的意义填空,你又发现了什么?a (a ≥0) 算术平方根 a 平方运算()2a观察两者有什么关系? 要点归纳:aa =(a ____0),即一个非负数的算术平方根的平方等于_________.典例精析P3例2变式题)计算:2237(1);(2).54⎛ ⎝例2 在实数范围内分解因式:242(1)3;(2)4 4.x y y --+方法总结:本题逆用了()()20aa a =≥在实数范围内分解因式.在实数范围内分解因式时,原来在有理数范围内分解因式的方法和公式仍然适用.针对训练 22(1)(5)(2)(22). ;探究点22a 议一议:下面根据算术平方根的意义填空,你有什么发现?1.计算:=24 ;=22.0 ;=2)54( ; =220 .观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时 .教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片12-21)2 4 13 ... ____________________ ... ____________________ ...2.计算:=-2)4( ;=-2)2.0( ;=-2)54( ;=-2)20(.观察其结果与根号内幂底数的关系,归纳得到:当=<2,0aa时 .3.计算:=20 ;当==2,0aa时 .要点归纳:将上面得到的结论综合起来,得到二次根式的又一条非常重要的性质:()()()2____0____=0____0.aa a aa⎧⎪==⎨⎪⎩>,,<即任意一个数的平方的算术平方根等于它本身的绝对值.典例精析例3 (教材P4例3变式题)化简:2(1)10;-2(2)(3.14).-π方法总结:利用2a a=化简求值时,先应确定a的正负,再化简.例 4 实数a、b在数轴上的对应点如图所示,请你化简:()222.a b a b-+-【变式题】实数a、b在数轴上的对应点如图所示,化简:2244a ab b a b+++-.方法总结:利用数轴和二次根式的性质进行化简,关键是要要根据a,b的大小讨论绝对值内式子的符号.例5已知a、b、c是△AB C的三边长,化简:()()()222.a b c b c a c b a++-+-+--分析:针对训练1.计算:22(1)(-2)(2)(-1.2).;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片12-21)教学备注配套PPT讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)利用三角形三边关三边长均为正数,a+b>c两边之和大于第三边,b+c-a>0,c-b-a<0探究点3:代数式的定义用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起来的式子,我们称这样的式子为代数式.典例精析例6 (1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为5:3的长方形贺卡,若面积为S,用代数式表示出它的长.方法总结:列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是()A.7B.3>2C.2xD.2223x y+2.如图是一圆形挂钟,正面面积为S,用代数式表示出钟的半径为__________.二、课堂小结二次根式的性质内容性质1 一个非负数的算术平方根的平方等于它_______.即()()20.a a a=≥性质2 一个数的平方的算术平方根等于它的______.即()()20.a aa aa a≥⎧⎪==⎨-⎪⎩,<1.化简16得()A. ±4B. ±2C. 4D.-42.当1<x<3时,2(3)3xx--的值为()A.3B.-3C.1D.-13.下列式子是代数式的有 ( )①a2+b2 ; ②ab; ③13; ④x=2; ⑤3×(4-5);⑥x-1≤0; ⑦10x+5y=15 ; ⑧.acb+A.3个B.4个C.5个D.6个4.化简:(19=_______ ; (22(4)-_______;当堂检测教学备注配套PPT讲授6.当堂检测(见幻灯片26-29)(3)()27______-=; (4)()281______=.5. 实数a 在数轴上的位置如图所示,化简22(1)a a -+-的结果是_________.6.利用a =2()a (a ≥0),把下列非负数分别写成一个非负数的平方的形式: (1) 9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0 . 能力提升7.(1)已知a 为实数,求代数式2242a a a +---+的值. (2)已知a 为实数,求代数式249a a a +--+-的值.第十六章 二次根式16.2 二次根式的乘除第1课时 二次根式的乘法学习目标:1.理解二次根式的乘法法则;2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算.重点:理解二次根式的乘法法则:()0,0≥≥=⋅b a ab b a . 难点:会运用二次根式的乘法法则和积的算术平方根的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子()2a 有意义的条件是_________.三、要点探究探究点1:二次根式的乘法算一算 计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯ _____;2516____;_______2516)2(=⨯=⨯=⨯._____3625____;_______3625)3(=⨯=⨯=⨯思考 你发现了什么规律?你能用字母表示你所发现的规律吗?猜测 _____0,0ab a b ,你能证明这个猜测吗?要点归纳:一般地,二次根式相乘,_________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.典例精析例1(教材P6例1变式题)计算:23 5.⨯⨯课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-5)2.探究点1新知讲授(见幻灯片6-15)式k a b k ⋅⋅=⋅⋅⋅⋅( 2 ⎪⎝⎭单n b (2)213-与-开方也______0,0_a b 要点归纳:算术平方根的积等于各个被开方数积的算术平方根典例精析 4 (教材P7例2变式题)化简:方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.针对训练 1. 计算:()()31(1)144169(2)284a a ; . -⨯-⋅2.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若长为24,宽为8,求出它的面积.二、课堂小结 二次根式的乘法 内容二次根式的乘法法则算术平方根的积等于各个被开方数积的算术平方根.即()0,0≥≥=⋅b a ab b a积的算术平方根的性质 积的算术平方根,等于积中各因式的算术平方根的积.即0,0aba b a b二次根式的乘法法则拓展①多个二次根式相乘时此法则也适用,即()0,0,00abc n abc n a b c n ⋅⋅⋅=⋅⋅⋅≥≥≥⋅⋅⋅⋅⋅⋅≥②()()0,0m a n b mn ab a b =≥≥1.若()66x x x x -=⋅-,则() A .x ≥6 B .x ≥0 C .0≤x ≤6 D .x 为一切实数2.下列运算正确的是 ( )A.21835680⨯=B.22225353532-=-=-=C.(4)(16)416(2)(4)8-⨯-=-⨯-=-⨯-=D.222253535315⨯=⨯=⨯= 3.计算: (1)315 ⨯ =______ ;(2)612 ⨯ =_______ ;(3)322_____. ⨯= 4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):1544524227.();()--5. 计算:( 1 ) 23 521⨯; ;)(⎪⎪⎭⎫⎝⎛-⨯418332 (3)322105; ⨯⨯ 21(4)600.3ab a b a b (,)⋅>>当堂检测 教学备注 配套PPT 讲授5.当堂检测 (见幻灯片23-28)8a,12b ,求250a ,332b ,求491616___________;_____;2525 36___________;_____.49你发现了什么规律?你能用字母表示你所发现的规律吗?_____0,0a a b .:(1)算术平方根的商等于被开方数商的算术平方根(2)当二次根式根号外的因数(式教学备注探究点4:二次根式除法的应用例4 (教材P9例7变式题)高空抛物现象被称为“悬在城市上空的痛”.据报道:一个30g 的鸡蛋从18楼抛下来就可以砸破行人的头骨,从25楼抛下可以使人当场死亡.据研究从高空抛物时间t 和高度h 近似的满足公式210ht .从100米高空抛物到落地所需时间t 2是从50米高空抛物到落地所需时间t 1的多少倍?二、课堂小结 二次根式的除法 内容二次根式的除法法则算术平方根的积等于各个被开方数积的算术平方根.即0,0a aa b bb . 商的算术平方根的性质 商的算术平方根,等于积中各因式的算术平方根的商.即0,0a aa b b b.最简二次根式最简二次根式满足两个条件:①被开方数不含分母; ②被开方数中不含能开得尽方的因数或因式.教学备注 配套PPT 讲授 4.探究点3新知讲授(见幻灯片15-19)5.探究点4新知讲授(见幻灯片20-21)6.课堂小结(见幻灯片27)示电如果t=15式不是影响2.化简下列两组二次根式,每组化简后有什么共同特点?(1)8180.5;,,(2)804520.,,五、要点探究探究点1:在二次根式的加减运算中可以合并的二次根式.观察下图并思考:(1)由左图,易得2a +3a = ;(2)当a 2时,分别代入左、右得_2__232=___; (3)当a 32333=_____+;......(4)根据右图,你能否直接得出当a 2,82a +3b 的值?结果能进行化简吗?.要点归纳:(1)判断几个二次根式是否可以合并(加减运算),一定都要化为最简二次根式再判断.(2)合并的方法与合并同类项类似,把根号外的因数(式)相加,根指数和被开方数(式)不变.如:(m a n a m n a =+典例精析例1 若最简根式2132m n +-3可以合并,求mn .方法总结:确定可以合并的二次根式中字母取值的方法:利用被开方数相同,指数都为2列关于待定字母的方程求解即可.【变式题】38a -172a -42a x x a--义,求x 的取值范围. 针对训练 1.3是同类二次根式的是( )A.258122.8与最简二次根式1m +m =_____.3.12________(填序号). 1348125118.3①;②-;③;;⑤探究点2:二次根式的加减及其应用思考 现有一块长7.5dm 、宽5dm 的木板,能否采用如图的方式,在这块木板上截出两个分别是8dm2和18dm2的正方形木板?问题1 怎样列式求两个正方形边长的和?课堂探究教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片11-19)问题 2 所列算式能直接进行加减运算吗?如果不能,把式中各个二次根式化成最简二次根式后,再试一试(说出每步运算的依据).要点归纳:二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.加减法的运算步骤:(1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; . 典例精析P13例2变式题)计算: 1(1)850 1(2)312.27例3 已知a ,b,c 满足(285320a b c --=.(1)求a ,b ,c 的值;(2)以a ,b ,c 为三边长能否构成三角形?若能构成三角形,求出其周长;若不能,请说明理由. 分析:(1)若几个非负数的和为零,则这几个非负数必须为零;(2)根据三角形的三边关系来判断.【变式题】有一个等腰三角形的两边长分别为52,26,求其周长. 二次根式的加减与等腰三角形的综合运用,关键是要分类讨论及会比较两个二次根式的大小. 针对训练1.下列计算正确的是( )A.222+=B. 3232⨯=C. 1233=325=2.已知一个矩形的长为48,宽为12,则其周长为________. 二、课堂小结 二次根式的加减 内容 法则 一般地,二次根式的加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并. 注意(1)与实数的运算顺序一样; (2)实数的运算律仍然适用; (3)结果要化成最简形式.教学备注配套PPT 讲授 3.探究点2新知讲授(见幻灯片11-19)4.课堂小结(见幻灯片27)A.B.C D2.)A.=B. 2 D.23(=3.则这个三角形的周长为________.4.计算:______;_________(2);6.下图是某土楼的平面剖面图,它是由两个相同圆心的圆构成.已知大圆和小圆的面积分别为763.02m2和150.72m2,求圆环的宽度d(π取3.14).能力提升7.已知a,b都是有理数,现定义新运算:a*b=3a b+,求(2*3)-(27*32)的值.第十六章二次根式16.3 二次根式的加减第2课时二次根式的混合运算学习目标:1.掌握二次根式的混合运算的运算法则;2.会运用二次根式的混合运算法则进行有关的运算.重点:二次根式的混合运算的运算法则.难点:运用二次根式的混合运算法则进行有关的运算.一、知识回顾1.二次根式的乘、除法则是什么?2.怎样进行二次根式的加减运算?3.填空:m(a+b+c)= ;(m+n)(a+b)= ;(ma+mb+mc)÷m= .六、要点探究探究点1:二次根式的混合运算及应用算一算:若把字母a,b,c,m都用二次根式代替(每个同学任选一组),然后对比归纳,你们发现了什么?要点归纳:二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用.典例精析例1(教材P14例3变式题)计算:(1)32327+63();---06(2)20163+312.2()---方法总结:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-10)例2 甲、乙两个城市间计划修建一条城际铁路, 其中有一段路基的横断面设计为上底宽42m ,下底宽 62m ,高6m 的梯形,这段路基长 500 m ,那么这段路基的土石方 (即路基的体积,其中路基的体积=路基横断面面积×路基的长度)为多少立方米呢?针对训练 (3 1 6 2 2 2 + 2 1 28⎝⨯() ; () .--探究点2:利用乘法公式进行二次根式的运算 问题1 整式乘法运算中的乘法公式有哪些?问题2 整式的乘法公式对于二次根式的运算也适用吗? 典例精析P14例4变式题)计算:21(32)();((2)32481843;⨯32a a b a ab a b --+方法总结:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式,因式分解等来简化运算. 【变式题】计算:201820181223223;()()()-⨯+20172019322-3232.2()()()+-⨯-教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片11-15)())))2(1)1(2).;n b 的式子,构成平方(2)化简:1111.42648620182016+++⋅⋅⋅+++++第十七章 勾股定理17.1 勾股定理第1课时 勾股定理学习目标:1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想; 2.会用勾股定理进行简单的计算.重点:用面积法来证明勾股定理,体会数形结合的思想. 难点:会用勾股定理进行简单的计算.一、知识回顾1.网格中每个小正方形的面积为单位1,你能数出图中的正方形A 、B 的面积吗?你又能想到什么方法算出正方形C 的面积呢?A BC CBA七、要点探究探究点1:勾股定理的认识及验证A ,课堂探究自主学习 教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-5)方法1:补形法(把以斜边为边长的正方形补成各 边都在网格线上的正方形): 左图:S c =__________________________; 右图:S c =__________________________. 方法2:分割法(把以斜边为边长的正方形分割成 易求出面积的三角形和四边形): 左图:S c =__________________________;右图:S c =__________________________.教学备注 配套PPT 讲授2.探究点1新知讲授(见幻灯片6-19)3.探究点2新知讲授(见幻灯片20-24)ABC CBAB 和C 面积之间的关系,你能想到是什么关系吗?2.右图中正方形A 、B 、C 所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A 、B 、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A 、B 、C 所围成的直角三角形三条边之间有怎样的特殊关系? 思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想. 证法 利用我国汉代数学家赵爽的“赵爽弦图”要点归纳: 勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.公式变形: 222222--.a c b b c a c a b ===+, ,探究点2:利用勾股定理进行计算 典例精析例1如图,在Rt △ABC 中, ∠C =90°. (1)若a =b =5,求c ; (2)若a =1,c =2,求b .变式题1 在Rt △ABC 中, ∠C =90°. (1)若a :b =1:2 ,c =5,求a ; (2)若b =15,∠A =30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2 在Rt △ABC 中,AB =4,AC =3,求BC 的长.证明:∵S 大正方形=________,S 小正方形=________,S 大正方形=___·S 三角形+S 小正方形, ∴________=________+__________. 教学备注3.探究点2新知讲授(见幻灯片20-24)方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB =90°,CD ⊥AB ,AC =3,BC =4.求CD 的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.针对训练求下列图中未知数x 、y 的值:二、课堂小结内 容勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.注 意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论1.下列说法中,正确的是 ( )A.已知a ,b ,c 是三角形的三边,则a 2+b 2=c 2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt △ABC 中,∠C =90°,所以a 2+b 2=c 2D.在Rt △ABC 中,∠B =90°,所以a 2+b 2=c22. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.ABC C (1)若a =15,b =8,则c =_______. (2)若c =13,b =12,则a =_______.4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.5.求斜边长17cm 、一条直角边长15cm 的直角三角形的面积.6.如图,在△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°,AD =1,求△ABC 的周长.当堂检测 教学备注 配套PPT 讲授 4.课堂小结 (见幻灯片30)5.当堂检测 (见幻灯片25-29)能力提升:7.如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,求△ABE及阴影部分的面积.第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用学习目标:1.会运用勾股定理求线段长及解决简单的实际问题;2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.重点:运用勾股定理求线段长及解决简单的实际问题.难点:能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.一、知识回顾1. 你能补全以下勾股定理的内容吗?如果直角三角形的两直角边长分别为a,b,斜边长为c,那么____________.2.勾股定理公式的变形:a=_________,b=_________,c=_________.3.在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=_________;(2)若a=5,c=13,则b=_________.八、要点探究探究点1:勾股定理的简单实际应用典例精析例1在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?方法总结:利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.针对训练A、B两点,从与BA方向成直角的BC方向上的点课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片4-11)C测得CA=130米,CB=120米,则AB为 ( )A.50米B.120米C.100米D.130米2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草.(1)求这条“径路”的长;(2)他们仅仅少走了几步(假设2步为1米)?探究点2:利用勾股定理求两点距离及验证“HL”思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?证明:如图,在Rt△ABC和Rt△A’ B’ C’中,∠C=∠C’=90°, AB=A’B’,AC=A’ C’.求证:△ABC≌△A’ B’ C’.证明:在Rt△ABC和Rt△A’ B’ C’中,∠C=∠C’=90°,根据勾股定理得BC=_______________,B’C’=_________________.∵AB=A’ B’,AC=A’ C’,∴_______=________.∴____________≌____________ (________).典例精析例2 如图,在平面直角坐标系中有两点A(-3,5),B(1,2)求A,B两点间的距离.方法总结:两点之间的距离公式:一般地,设平面上任意两点()()()()2211222121,,,,.A x yB x y AB x x y y=-+-则探究点3:利用勾股定理求最短距离想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,蚂蚁怎么走最近(在以下四条路线中选择一条)?2.若已知圆柱体高为12 cm,底面半径为3 cm,π取3,请求出最短路线的长度.教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片12-14)4.探究点3新知讲授(见幻灯片15-24)教学备注4.探究点3新知讲授(见幻灯片15-24)5.课堂小结(见幻灯片31)要点归纳:立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.典例精析例3 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米(已知油罐的底面半径是2 m,高AB是5 m,π取3)?变式题小明拿出牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?例4 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?方法总结:求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.针对训练1.如图,是一个边长为1的正方体硬纸盒,现在A处有一只蚂蚁,想沿着正方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少二、课堂小结1.从电杆上离地面5m的C处向地面拉一条长为7m的钢缆,则地面钢缆A到电线杆底部B的距离是()A.24mB.12mC.74mD. 26c m2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cmB.12cmC.15cmD.18cm3.已知点(2,5),(-4,-3),则这两点的距离为_______.当堂检测勾股定理的应用用勾股定理解决实际问题解决“HL”判定方法证全等的正确性问题用勾股定理解决点的距离及路径最短问题第1题图第2题图如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?5.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?能力提升6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?第十七章勾股定理17.1 勾股定理第3课时利用勾股定理作图或计算学习目标:1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.重点:会运用勾股定理确定数轴上表示实数的点及解决网格问题.难点:灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.一、知识回顾1.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表示3,-2.5的点吗?2.求下列三角形的各边长.九、要点探究:勾股定理与数轴课堂探究自主学习教学备注配套PPT讲授6.当堂检测(见幻灯片25-30)教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-12)想一想 1.你能在数轴上表示出2的点吗?2-呢?(提示:可以构造直角三角形作出边长为无理数的边,就能在数轴上画出表示该无理数的点.)2.长为13的线段能是这样的直角三角形的斜边吗,即是直角边的长都为正整数?3.以下是在数轴上表示出13的点的作图过程,请你把它补充完整.(1)在数轴上找到点A,使OA=______;(2)作直线l____OA,在l上取一点B,使AB=_____;(3)以原点O为圆心,以______为半径作弧,弧与数轴交于C点,则点C即为表示______的点.要点归纳:利用勾股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.类似地,利用勾股定理可以作出长2,3,5为线段,形成如图所示的数学海螺.典例精析例1如图,数轴上点A所表示的数为a,求a的值.易错点拨:求点表示的数时注意画弧的起点不从原点起,因而所表示的数不是斜边长.针对训练A. 3B. 5C. 3D.5--2.ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作M,则点M表示的数为()A.2B.5 1C.10 1D.53.你能在数轴上画出表示17的点吗?典例精析6×8的网格中,每个小正方形的边长都为1,写出格点△ABC各顶点的坐标,并求出此三角形的周长.教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片13-17)第1题图第2题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章二次根式
例2 甲、乙两个城市间计划修建一条城际铁路,其中有一段路基的横断面设计为
上底宽,下底宽
的梯形,这段路基长500 m,那么这段路基的
土石方(即路基的体积,其中路基的体积=路基横断面面积×路基的长度)为多少立方米呢?
计算:
(
1 2 1
⎝
();() .
探究点2:利用乘法公式进行二次根式的运算
问题1 整式乘法运算中的乘法公式有哪些?
问题2 整式的乘法公式对于二次根式的运算也适用吗?
例
3(教材P14例4变式题)计算:
2
1
2);
((2);
⨯
方法总结:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式,因式分解等来简化运算.
【变式题】计算:
20182018
133;
()()()
⨯20172019
2222.
()((+-⨯
a n b的式子,构。