行列式练习题及答案
(完整版)行列式习题1附答案.doc

⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。
⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。
;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。
行列式练习题

行列式练习题(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2说明:黄色高亮部分是必做题目,其他为选作第一章 行 列 式专业 班 姓名 学号 第一节 行 列 式一.选择题1.若行列式x 52231521- = 0,则=x [ ](A )2 (B )2- (C )3 (D )3-2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a5[ ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负36.下列n (n >2)阶行列式的值必为零的是 [ ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是2.排列的逆序数是3.已知排列397461t s r 为奇排列,则r = s = ,t =三、计算下列行列式(要写计算过程):1.1322133212.5984131113.yxyx x y x y y x y x+++4.00110000010010045.000100002000010n n -线性代数练习题 第一章 行 列 式专业 班 姓名 学号第二节 行列式的性质一、 选择题:1.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D [ ] (A )8 (B )12- (C )24- (D )24(A )18 (B )18- (C )9- (D )27-53. 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a = [ ] (A )8 (B )2 (C )0 (D )6- 二、选择题:1.行列式=30092280923621534215 2. 行列式=11101101101101112.多项式0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 的所有根是3.若方程225143214343314321x x -- = 0 ,则4.行列式 ==2100121001210012D三、计算下列行列式:62.xa a a x a a a x线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第三节 行列式按行(列)展开一、 选择题:1.若111111111111101-------=x A ,则A 中x 的一次项系数是 [ ](A )1 (B )1- (C )4 (D )4-72(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 3.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a 的解是 [ ] (A )2221211a b a b x =,2211112b a b a x =(B )2221211a b a b x -=,2211112b a b a x =(C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=二、填空题:1.行列式122305403-- 中元素3的代数余子式是式,3.已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,则D = 三、计算行列式:81.321421431432432121111111na a ++线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号综 合 练 习一、 选择题:(A )2 M (B )-2 M (C )8 M (D )-8 M(A)34 (B)25 (C)74 (D)6二、选择题:9。
线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ().(A) 24315 (B) 14325(C) 41523(D)243512.如果阶排列的逆序数是, 则排列的逆序数是( ).n n j j j 21k 12j j j n (A)(B)(C)(D)k k n -k n -2!k n n --2)1(3. 阶行列式的展开式中含的项共有()项.n 1211a a (A) 0(B)(C) (D)2-n )!2(-n )!1(-n 4.( ).=0001001001001000(A) 0 (B) (C) (D) 21-15.( ).=01100000100100(A) 0 (B) (C) (D) 21-16.在函数中项的系数是( ).1000323211112)(x x x x x f ----=3x (A) 0(B) (C)(D) 21-17. 若,则 ( ).21333231232221131211==a a a a a a a a a D =---=3231333122212321121113111222222a a a a a a a a a a a a D (A) 4 (B)(C) 2 (D)4-2-8.若,则 ( ).a a a a a =22211211=21112212ka a ka a(A) (B) (C) (D)ka ka -a k 2a k 2-9. 已知4阶行列式中第1行元依次是, 第3行元的余子式依次为3,1,0,4-, 则(). x ,1,5,2-=x (A) 0(B)(C)(D) 23-310. 若,则中第一行元的代数余子式的和为().5734111113263478----=D D (A)(B)(C)(D)1-2-3-011. 若,则中第四行元的余子式的和为( ).2235001011110403--=D D (A)(B)(C)(D)1-2-3-012. 等于下列选项中哪个值时,齐次线性方程组有非零解.k ⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x ( )(A) (B)(C)(D)1-2-3-0二、填空题1. 阶排列的逆序数是.n 2)12(13)2(24-n n 2.在六阶行列式中项所带的符号是.261365415432a a a a a a 3.四阶行列式中包含且带正号的项是.4322a a 4.若一个阶行列式中至少有个元素等于, 则这个行列式的值等于n 12+-n n 0.5. 行列式.=01001110101001116.行列式.=-0100002000010 nn 7.行列式.=--0001)1(2211)1(111 n n n n a a a a a a 8.如果,则.M a a a a a a a a a D ==333231232221131211=---=3232333122222321121213111333333a a a a a a a a a a a a D 9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式.=--+---+---1111111111111111x x x x 11.阶行列式.n =+++λλλ11111111112.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式,为D 中第四行元的代数余子5678123487654321=D j A 4)4,3,2,1(=j 式,则.=+++44434241234A A A A 14.已知, D 中第四列元的代数余子式的和为.db c a c c a b b a b c a c b a D =15.设行列式,为的代数余子式,则62211765144334321-==D jA 4)4,3,2,1(4=j a j ,.=+4241A A =+4443A A16.已知行列式,D 中第一行元的代数余子式的和为nn D10301002112531-=.17.齐次线性方程组仅有零解的充要条件是.⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 18.若齐次线性方程组有非零解,则=.⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x k三、计算题1.; 2.; cb a d b a dc ad c b dc b a dc b a dc b a++++++++33332222yx yx x y x y y x y x +++3.解方程; 4.;0011011101110=x x xx 111111321321221221221----n n n n a a a a x a a a a x a a a a x a a a a x5. ();na a a a111111111111210n j a j ,,1,0,1 =≠6. bn bb ----)1(1111211111311117. ; 8.; na b b b a a b b a a a b 321222111111111xa a a a x a a a a x a a a a x n nn 3212121219.;10.2212221212121111nn n nn x x x x x x x x x x x x x x x +++210001200000210001210001211.. aa a a a a a a aD ---------=111100011000110001四、证明题1.设,证明:. 1=abcd 011111111111122222222=++++dddd c c c c b b b b a a a a2.. 3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a x b a -=++++++3.. ))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a dc b a +++------=4..∏∑≤<≤=----=nj i i j n i i nnn nn nn n nna a a a a a a a a a a a a a a 1121222212222121)(1115.设两两不等,证明的充要条件是. c b a ,,0111333=c b a c ba 0=++cb a参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.;2.;3.;4.;5.;6.;7.n ”“-43312214a a a a 00!)1(1n n --; 8.; 9.; 10.; 11.; 12.;1)1(212)1()1(n n n n n a a a ---M 3-160-4x 1)(-+n n λλ2-13.; 14.; 15.; 16.; 17.; 18.009,12-)11(!1∑=-nk k n 3,2-≠k 7=k 三.计算题1.; 2. ; ))()()()()()((c d b d b c a d a c a b d c b a ------+++-)(233y x +-3. ;4.1,0,2-=x ∏-=-11)(n k kax 5.;6. ;)111()1(00∑∏==-+-nk k nk k a a ))2(()1)(2(b n b b ---+- 7. ;8. ;∏=--nk k kna b1)()1(∏∑==-+nk k nk k a x a x 11)()(9. ;10. ;∑=+nk k x 111+n 11. . )1)(1(42a a a ++-四. 证明题 (略)第二章矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
行列式练习题及答案

行列式 练习题一、判断题1. 行列式的行数和列数可以相同也可以不同。
( )2. n 阶行列式共有2n 个元素,展开后共有n !项。
( )3. n 阶行列式展开后的n !项中,带正号的项和带负号的项各占一半。
( )4. 行列式D 中元素ij a 的余子式ij M 与其代数余子式ij A 符号相反。
( )5. 上(下)三角形行列式的值等于主对角线上元素的乘积。
( )6. 行列式与它的转置行列式符号相反。
( )7. 行列式中有一行的元素全部是零则行列式的值为零。
( )8. 行列式中有两行元素相同,行列式的值为零。
( )9. 行列式中有两行元素成比例,行列式的值为零。
( ) 10.互换行列式的两行,行列式的值不变。
( ) 11. 行列式中某一行的公因子k 可以提到行列式符号之外。
( ) 12. 行列式中若所有元素均相同,则行列式的值为零。
( ) 13. 行列式的值等于它的任一行(列)的元素与其对应的代数余子式乘积。
( )14. 行列式某一行(列)的元素与另一行(列)的对应的元素的代数余子式乘积之和为零。
( ) 15. 齐次线性方程组的系数行列式0D ≠,则它仅有零解。
( )二、填空题1.=______x yyx -。
2.sin cos =______cos sin θθθθ-。
3. 123246=______345。
4.2-20310=______450。
5.=______a x xx b x x x c。
6. 211123=0______49x x x =,则。
7.222031,005D =-已知111213=______M M M -+则。
8.=______x y x y y x y x x y x y+++。
9.100110=______011001a b c d---。
10.222=______a b c a b c b c c a a b+++。
11. 已知21341023,15211152D =-则1323432=______A A A ++。
线性代数行列式部分练习题及答案

《线性代数与解析几何》练习题行列式部分一.填空题:1.已知41132213----=D 用ij A 表示D 的元素ij a 的代数余子式,则21222323______A A A --+=,31323323____A A A --+=,行列式__________333231232221131211=A A A A A A A A A 2.12434003209106412a a a a a 的的代数余子式的值等于________。
3.设512312123122x x x D xxx=,则D 的展开式中3x 的系数为______4.4阶行列式111213142122232414423132333441424344a a a a a a a a D a a a a a a a a a a =展开式中含有因子的项为______和______5.行列式234234234234a a a ab b b b Dc c c c dd d d ==______6.设xx x x x f 321132213321)(=则(4)_____f = 7.设0112520842111111154115212111111541132111111323232=++-x x xx x xx x x上述方程的解______________________=x8.行列式112233440000000a b a b D b a b a ==__________ 9.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ 只有零解,则λ应满足_________条件。
10.若方程123123123020kx x x x kx x x x x ++=⎧⎪+-=⎨⎪-+=⎩有非零解,则k =_________或k =________。
11.行列式xy yyx y yyx=______ 12.行列式1110110110110111=______13.行列式000000000ab c de f=______14.方程组12312321231x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ 有唯一解时,对λ的要求是______二.计算题: 1.已知5阶行列式270513422111542131122254321=求434241A A A ++和4544A A +,其中ij A 是元素ij a 的代数余子式。
9.4.1 三阶行列式(含答案)

【课堂例题】例1.用对角线法则计算下列行列式,并化简:(1)302213231-- (2)123456789例2.求证:ad g d a g be h eb h cfif c i=-例3.利用行列式解方程组:632752215x y z x y z x y z ++=⎧⎪-+=⎨⎪++=⎩(选用)课堂练习1.用对角线法则展开下列行列式,并化简:(1)101111111aa-+-;(2)000a b c d e f2.求关于,,x y z 的方程组13x y mz x my z m x y z ++=⎧⎪++=⎨⎪-+=⎩有唯一解的条件,在此条件下写出方程组的解.【知识再现】1.行列式111222333a b c a b c a b c = . (按对角线法则展开)2.关于,,x y z 的三元线性方程组111122223333a x b y c z d a x b y c z d a x b y c z d++=⎧⎪++=⎨⎪++=⎩的系数行列式D =,若记x D =,y D =,z D =,当D 时,方程有唯一解:x = ,y = ,z = . 【基础训练】1.把下列行列式按对角线法则展开并求值:(1)123142301-= = ; (2)123012331-= = . 2.计算:201010=- . 3.按对角线法则展开下列行列式,并化简:(1)000a bba ab = = ; (2)000xyzp q r= = .4.已知齐次线性方程组111222333000a x b y c z a x b y c z a x b y c z ++=⎧⎪++=⎨⎪++=⎩,若系数行列式1112223330a b c a b c a b c ≠, 则方程组的解是 .5.用行列式解线性方程组:273514223x y z x y z x y z -+=⎧⎪-+=⎨⎪--=⎩6.利用三阶行列式,证明下列行列式的性质I :(只需证明“列”的情况,并且(1)(2)(3)只需证明一种情形,其余情况不必证明) (1)行列式A 的某一列(行)的元素全为0,则0A =; (2)行列式A 的两列(行)相同,则0A =;(3)互换行列式A 的两列(行),则行列式的值变为原来的相反数.7.用行列式解关于,,x y z 的方程组x y z a x y z b x y z c -+=⎧⎪+-=⎨⎪-++=⎩【巩固提高】8.已知1112223330a b c a b c a b c =但它的所有元素均不为零且没有两行或两列的元素相同, 试写出这样的一个行列式.(课堂例题中出现过的行列式不得使用)9.当a 为何值时,关于,,x y z 的三元一次方程组2112x y z x y az x ay a z ⎧++=⎪++=⎨⎪++=⎩有唯一解?在此条件下写出该方程组的解.(选做)10.阅读题:余子式与代数余子式以三阶行列式111213212223313233a a a a a a a a a 为例,划去第i 行第j 列的的全部元素后,剩余元素所构成的二阶行列式称为元素ij a 的余子式,记为ij M ,例:21a 的余子式1213213233a a M a a =,把(1)i jij M +-称为元素ij a 的代数余子式,记为ij A ,例:21a 的代数余子式212121(1)A M +=-.(1)写出23a 的余子式与代数余子式; (2)求证: 111213111121213131212223313233a a a a A a A a A a a a a a a ⋅+⋅+⋅=; 1112212231320a A a A a A ⋅+⋅+⋅=; (3)模仿(2)再写出两个相仿的等式.【温故知新】11.线性方程组273514223x y z x y z x y z -+=⎧⎪-+=⎨⎪--=⎩用矩阵乘法可以表示为 .【课堂例题答案】 例1.(1)-40 (2)0例2.证:左=aei dhc bfg ceg afh bdi ++---,右=()dbi ahf ecg fbg dch aei -++---aei dhc bfg ceg afh bdi =++---=左 证毕 例3.1,2,3x y z === 【课堂练习答案】 1.(1)2a a + (2)adf2.1m ≠±时有唯一解:344,,11m x y z m m -===-++ 【知识再现答案】1.123231312321132213a b c a b c a b c a b c a b c a b c ++---2.111111111111222222222222333333333333,,,x y z a b c d b c a d c a b d D a b c D d b c D a d c D a b d a b c d b c a d c a b d ====0,,,y x zD D D D D D≠ 【习题答案】1.(1)141322(1)03343102(1)21⨯⨯+⨯⨯+-⨯⨯-⨯⨯-⨯⨯--⨯⨯,-18 (2)1113(2)20333131230(2)1⨯⨯+⨯-⨯+⨯⨯-⨯⨯-⨯⨯-⨯-⨯,-262.03.(1)000000a b b a a b a a a b b b ⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯,33a b -- (2)00000x z r p y q p z x q a y r ⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯,xzr4.000x y z =⎧⎪=⎨⎪=⎩ 5.213x y z =⎧⎪=-⎨⎪=⎩6.证:(1)1122233112213213330000000000b c b c b c b c b c b c b c b c b c =⨯+⨯+⨯-⨯-⨯-⨯= (2) 1112221232313123211322133330a a c a a c a a c a a c a a c a a c a a c a a c a a c =++---= (3) 111111222123231312321132213222333333a cb a bc a c b a c b a c b a c b a c b a c b a c b a b c a c b a b c =++---=- 证毕 7.,,222a b b c a cx y z +++===8.答案不唯一 1234567899.当1a ≠时有唯一解,21,,011a x y z a a -===-- 10.(1)1112111223232331323132,(1)a a a a M A a a a a +==- (2)证:222312131213112131323332333223a a a a a a a a a a a a a a a -+=111213112233211332311223113223211233312213212223313233a a a a a a a a a a a a a a a a a a a a a a a a a a a ++---=212311131113112131313331332123a a a a a a a a a a a a a a a -+-=1121331131232111332131133111233121130a a a a a a a a a a a a a a a a a a -++--+=(3)111213121222223232212223131223233333313233,0a a a a A a A a A a a a a A a A a A a a a ++=++=,答案不唯一 11.1217351142213x y z -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭。
(完整版)行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。
ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。
行列式练习题与答案资料讲解
行列式练习题与答案收集于网络,如有侵权请联系管理员删除第1章 行列式 (作业1)一、填空题1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题1.由定义计算行列式nn 0000000010020001000 -= ( ).(A )!n (B )!)1(2)1(n n n -- (C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x xx x f 21123232101)(=中,3x 的系数是( ).(A )1 (B )-1 (C )2 (D )33.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8.三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列;2. 各项以列标为标准顺序排列;3. 各项行列标均以任意顺序排列.四、若n阶行列式中,等于零的元素个数大于nn 2,则此行列式的值等于多少?说明理由.收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除第1章 行列式 (作业2)一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则2.方程229132513232213211x x --=0的根为___________ .二、计算题 1. 8171160451530169144312----- 2.dc b a100110011001---3.ab b babb b a D n=收集于网络,如有侵权请联系管理员删除4.111113213211211211211nn n n n a a a a x a a a a x a a a a xa a a a x D---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n 。
行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 学号 第一节 n 阶 行 列 式一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,24.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
行列式练习题答案
.第1 章行列式( 作业1)一、填空题1.设自然数从小到大为标准次序,则排列13⋯(2n1)24⋯(2n)的逆序数为,排列13⋯(2n1)(2n)(2n2)⋯2的逆序数为.2.在6阶行列式中,a23a42a31a56a14a65这项的符号为.3.所有n元排列中,奇排列的个数共个.二、选择题00010002001.由定义计算行列式=().n100000000nn(n1)(n1)(n2)(A)n!(B)(1)2n!(C)(1)2x x102.在函数1x23f(x)3x中,x3的系数是(22n!(D)(1)n(n1)n!).112x(A)1 (B)-1 (C)2 (D)33.四阶行列式的展开式中含有因子a32的项,共有()个.(A)4;(B)2;(C)6;(D)8.三、请按下列不同要求准确写出n阶行列式D det()定义式:aij1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n阶行列式中,等于零的元素个数大于n2n,则此行列式的值等于多少?说明理由.......第1 章行列式( 作业2) 一、填空题a11a12a134a112a113a12a13 1.若D=a21a22a231,则D14a212a213a22a23_____.a31a32a334a312a313a32a3311232.方程12x223的根为___________. 231=052319x2二、计算题2134a1001.419162 .1b10 3015456001c1 11718001da b bb a b3.D nb b a......x a1a2a n11a1x a2an114.a1a2x a n11D n1a1a2a3x1a1a2a3a n1x11x12x1nx21x22x2n(n2)。
5.计算n阶行列式D nxn1xn2xn n ......第1 章行列式(作业3)一、填空题0a12a13a1na120a23a2n1.当n为奇数时,行列式a13a230a3n=_________.a1n a2n a3n0x y0000x y002.行列式.000x yy000x二、选择题1.设D是n阶行列式,则下列各式中正确的是( ).[ A ij是D中a ij的代数余子式].(A)n(B)naijAij0,j1,2,,n;aijAij D,j1,2,,n; i1i1(C)n(D)na1jA2j D;aijAij0,i1,2,,n. j1j12.行列式结果等于(ba)(c a)(d a)(c b)(d b)(d c)的行列式是().111111111aa2a31000(A)abc d;(B)0bacad a;(C)1bb2b3;(D)1babb2 a2b2c2d20b c d1cc2c31cacc2a4b4c4d40b3c3d31dd2d31dadd2三、计算题15131.设A 1134A41A42A43A44,其中A(j1,2,3,4)是A中元素a的代,计算11234j4j 2234数余子式.......x10000x1002.a n 3.D n1 4.D2n00x1an1an2a2xa1a n(a1)n(an)na n1(a1)n1(an)n1a a1an111a nb na1b100c1d1c nd n第1章行列式( 作业4) 一、填空题......a1x1a2x2a3x3d11.已知关于变量x i(i1,3)的线性方程组b1x1b2x2b3x3d2,由克莱姆法则,当满足c1x1c2x2c3x3d3条件时,方程组有唯一解,且x3. a11x1a12x2a1n x n02.齐次线性方程组a21x1a22x2a2nxn0的系数行列式为D,那么D 0是该行列式有an1x1an2x2annxn0非零解的条件.二、求解下列行列式0123n11012n21.Dn2101n33210n4n1n2n3n40......1a111111a2, 其中a1a2a n0.2.D n111a n(1)x12x24x30三、问取何值时,齐次线性方程组2x1(3)x2x30有非零解?x1x2(1)x30......第1 章行列式 (检测题)一、填空题1.若排列i 1i 2i n 的逆序数为k ,则排列i n i n1 i 1的逆序数为. a 1 a 2 0 0 0 a 3a 4 0 0 0 2.Dc 1c 2 2 31. c 3 c 4 0 1 4 c 5c 6 4 5 0a1na2nan1nanna1n1 a2n2 an1n10 3.n 阶行列式=. a12 a22 0 0a110 0 1 2 2223 4.11 1 1=.1 4 42 4 31 5 5253二、选择题1 a 1 a2 an11 a1 x1 a2an11.设P(x) 1 a 1 a 2x2an1,其中a 1,a 2,,a n1是互不相同得实1a1a2 an1 xn1数,则方程P (x )=0()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章行列式(作业1)一、填空题1 •设自然数从小到大为标准次序,则排列1 3…(2n 1)2 4…(2n )的逆序数为排列1 3…(2n 1) (2 n)(2 n 2)…2的逆序数为 3.所有n 元排列中,奇排列的个数共 个.1. 各项以行标为标准顺序排列;2. 各项以列标为标准顺序排列;3. 各项行列标均以任意顺序排列四、若n 阶行列式中,等于零的元素个数大于n 2 n ,则此行列式的值等于多少?说明理由2.在6阶行列式中, 823842831 a 56aga 65这项的符号为0 00 00 21 00 01•由定义计算行列式=(n 1 0 0 0 0n(n 1)(n 2)(C ) ( 1)n! ( D ) ( 1)n(n "n!2.在函数f (x )x x 11x23 23x2 1 1 2 xx 3的系数是((A) 1(B ) -1(C ) 2 (D ) 33.四阶行列式的展开式中含有因子 a 32的项,共有)个.(A) 4;(B ) 2; (C ) 6;( D ) 8.、请按下列不同要求准确写出n 阶行列式D det (a j )定义式:、选择题n( n 1)(A) n! ( B ) ( 1)^ n!第1章 行列式 (作业2)、填空题=0的根为2二、计算题a 11 a 12a 134a 11 2a 113a 12a 13a 21 a 22 a 231,则 D 14a 212a 21 3a 22 a 23a 31 a 32 a 334a 31 2a 31 3a 32 a 331•若 D= 2 1 3 4a1 0 0 4 1 9 16 2.1 b 1 030 15 45 600 1 c1 117181 d1.3.D n 2.方程X a1 a2 a1 X a24. D n 1 a1a2Xa1a2a3a1 a2 a3a n 1 1a n 1 1a n 1 1X 1a n 15•计算n阶行列式D n x1 1 x1 2x2 1 x2 2x1nx2n(n 2) o X n 1 X n2 X n n2 •行列式na ij A iji 1 na ij A ij二、计算题、填空题 1当n 为奇数时, 行列式 第 1早行列式(作业a 12 a 13 a 1na 120 a 23a 2na 13a 23 0 a 3n =a 1 n a 2na 3n3)1 1 1 111 1 11 a2 a3 a1 00 0 a bcd;(B )0 b ac ad a ;(C ) 1 b b 2 b 3;(D) 1 b a b b 2 2 ,2 2,2bd 2 3 12a b c d c 1 c c cc a c c 4,44,4,33,3 dd ,2abcd0 b cd1 d d2 d 31 a dc )的行列式是(). b)(d j 1b)(d 1 2数余子式•计算 A 41 A 42 A 43A 44 , 其中A 4j(j1,2,3,4)是A 中元素 a 4j 的代y二、选择题1 •设D 是n 阶行列式,则下列各式中正确的是()•[ A j 是D 中a j 的代数余子式 ].(A) a ^j A ij, j 1,2, ,n;i 1 (B) n(C) a 1 j A 2 j D ;j 1行列式结果等于(b(D) a)(c a)(da)(cD , j 1,2, ,n;0, i 1,2, ,n.n2.x 1 0 0 x 1 2.0 0 0a n a n 1 a n 2 0 0 0 0X 1 a2 x a13. D n 1 a n(a 1)nn 1 na (a 1)a a 11 1(a(an)nn)n1 a n4. D2n 0c na1b1C1 d1b nn i n 2 n 3 n 4 0第1章行列式(作业4)______________________ 条件时,方程组有唯一解,且X 3、求解下列行列式i 23 n ii 0 i 2 n 2 i . D n2 i 0 i n3 32in 4、填空题 d i1 •已知关于变量x i (i 1,3)的线性方程组b i X i b 2X 2 b 3X 3d 2,由克莱姆法则,当满足 C i X i C 2X 2 C 3X 3d 3a ii x i a i2 X 2 a in X n 2 •齐次线性方程组a 2i X 〔a ?2 x 2a 2n X na ni X ia n2X 2a nnX n非零解的 条件•的系数行列式为 D ,那么D 0是该行列式有1 a i1 12. D n1 1 a 21,其中 aQ 2a n 011 1 a n(1 )X 1 2X 2 4X 3 2x i (3 )X 2 X 3X 1 X 2(1 )X 3三、问取何值时,齐次线性方程组 0)有非零解?第1章行列式(检测题)一、填空题1 •若排列i i i2 i n 的逆序数为k ,则排列i n i n 1i l 的逆序数为3. n 阶行列式1 2 22 231 1 1 1 1 4 42431 5 52 53、选择题1 a 1a 2a n 1 x n 1攵,则方程P (x ) =0 ()0(A )无实根;(B )根为 1, 2,oo o, n-1 (C )根为- 1, -2 ? 0 0 0 ,- (n-1); (D )根为0 o2•设n 阶行列式D det(a j ),把D 上下翻转、或逆时针旋转 90a 1 a 2 0 0 0a 3 a 4 0 0 0 2.D C 1C 2 2 3 1C 3 C 4 0 1 4C 5 C 6 4 5 0a 1 n a 1n 1a 2na 2n 2a n 1 n a nn a n 1n 1a 12 ana 22 04.1 11.设 P(x) 1a 〔a 2 a 1 x 1 a 2 a 1a 2 x 2a n 1a n 1a n 1,其中a 1, a 2, , a n 1是互不相同得实或依副对角线翻转,依次得a n1 a nn a1n a nn a nn a1nD1 5 D,D3 ,则()2an a1n an a n1 a n1 ann n(n 1)D (A)D1 D2 D3 D ;(B);D1 (1)2D,D2 () 2 D,D3n(n 1) n(n 1)(C)D1 D2 D,D3 (1) 2D ;(D)D1 D2 ( 1) 2D, D3 D 0二、计算题1 2 3 18 19 202 1 2 17 18 1932 1 16 171819 18 17 2 1 220 19 18 3 2 1 3. D4. D n a1xx a2x xx xx xx x(a i x,i 1,n)a n 1 xx a n1. 31152 1 43 5 12 2 20 2 34 1 22.0 a b a a 0 ab b a 0 a a ba 0、填空题1. -12。
第1章行列式(作业2) 答案± 1,± 2.2。
二、计算题1. 0; 2.abcd ab cd ad 1 ; 3.[a (n 1)b] (a b)n4. (x a i);i 15. 当n=2时, D2 一、填空题1.0. 2.x 三、计算题X2 ; 当n>2时,用拆项法可得D n 第1章行列式(作业3) 答案n ( 1)n 1y n.二、选择题1 (B). 2(C),X1(D )四、证明题1.行列式D中的每个数a ij分别用b i j(b 0)去乘,试证所得行列式D i与D相等.答案第1章行列式(作业1) 答案.填空题1 n (n 1) n(n 1). 2.正号. 3.也2 2、选择题1. (C);2. (B); 3 .(C)、1.(1)t(P i P2 P n)a aa1 P1 a2 P2 a nP n; 2. (1)叫叫4叫2 (叩 2 P n) q n)3.(1)t(Pi P2 P n) t(qe2 q n)a aa小1%口 2 a P n q n. 四.值为0.a q“n .2.证明Dn 2cos112cos112cos sin(n 1)sin2cos112cosi 1i 1 a ix第1章行列式(检测题)答案n(n 1)、填空题 1.巴 耳 k ;2.12(a 1 a 4 a z a ?) ;3.( 1)^^3222 a .n ; 4. - 72.2、选择题 1 (C );2 (D ). 三、1. -37;2. b 2 b 2 4a 2 .3. 21 218 .4. a i x 1四、1.[提示]用行列式定义证明;2.[提示]用数学归纳法证明.第1.6;2. x na 1 x n 1a n 1 x a n ; 3.n 1 i第 1章行列式a 1 a 2 d 1b 1b 2d 2a 1 a 2 a 3一、填空题 1. b 1 b 2 b 30 , C 1 C 2 d 3 -。
a 1 a 2 a 3 C 1 C 2 C 3b 1b 2b 3C 1 C 2 C 3n r2.a j (11 J 。
三、当0,2或j 1j 1 a j(i j) ; 4.D 2n(a i d i b i C i ).j 1i 1(作业4) 答案2充要条件.二、1. ( 1)n 论1)2n 23时,该齐次线性方程组确有非零解。